Giebt man m die Werthe 0, 1, 2, ... μ — 1, so hat man den Werth aller Wurzeln der Gleichung.

Der vorausgehende Ausdruck für die Wurzeln enthält allgemein eine μ — 1-fache Anzahl verschiedener Radicale der

Form $\sqrt[\mu]{v}$. Daher hat er eine $\mu^{\mu-1}$ -fache Anzahl von Werthen, während die Gleichung $\varphi x = 0$ nur μ Wurzeln hat. Aber man kann dem Ausdruck für die Wurzeln eine andere Form geben, welche nicht dieser Schwierigkeit unterliegt. Wenn

nämlich der Werth von $\sqrt[\mu]{v_i}$ festgelegt ist, so ist auch derjenige der anderen Radicale, wie wir sogleich sehen werden, bestimmt.

Wie auch immer die Zahl μ beschaffen ist, gleichgültig ob sie eine Primzahl oder keine Primzahl ist, so kann man stets eine Wurzel α der Gleichung $\alpha^{\mu} - 1 = 0$ finden, dass die Wurzeln:

$$\alpha_1$$
, α_2 , α_3 , ... $\alpha_{\mu-1}$

durch:

(36)
$$\alpha, \alpha^2, \alpha^3, \ldots \alpha^{\mu-1}$$

dargestellt werden können.

Beachtet man dies, so hat man:

(37)
$$\begin{cases} \sqrt[\mu]{v_k} = x + \alpha^k \Theta x + \alpha^{2k} \Theta^2 x + \dots + \alpha^{(\mu-1)k} \Theta^{\mu-1} x, \\ \sqrt[\mu]{v_1} = x + \alpha \Theta x + \alpha^2 \Theta^2 x + \dots + \alpha^{\mu-1} \Theta^{\mu-1} x. \end{cases}$$

Hieraus folgert man:

$$(38) \begin{cases} \sqrt[n]{v_k} \left(\sqrt[n]{v_1}\right)^{\mu-k} = (x + \alpha^k \Theta x + \alpha^{2k} \Theta^2 x + \dots + \alpha^{(\mu-1)k} \Theta^{\mu-1} x) \\ \times (x + \alpha \Theta x + \alpha^2 \Theta^2 x + \dots + \alpha^{\mu-1} \Theta^{\mu-1} x)^{\mu-k}. \end{cases}$$

[142] Die rechte Seite dieser Gleichung ist eine rationale Function von x, welche ihren Werth nicht ändert, wenn man an die Stelle von x irgend eine andere Wurzel $\Theta^m x$ setzt; dies ersieht man leicht, indem man diese Substitution ausführt und auf die Gleichung $\Theta^{\mu+\nu}x=\Theta^{\nu}x$ Rücksicht nimmt. Bezeichnet man die fragliche Function, um die es sich handelt, mit ψx , so hat man:

$$\sqrt[\mu]{v_k} \cdot \left(\sqrt[\mu]{v_1}\right)^{\mu-k} = \psi x = \psi \Theta x = \psi \Theta^2 x = \dots = \psi \Theta^{\mu-1} x,$$