3. Technical foundations

3.1 Technology of the application of air mixtures with increased Po₂

3.1.1 Theoretical aspects

In order to keep the expense and, in particular, the O₂ requirement for the implementation of the O₂MT as low as possible, the problem in the

O₂ application must be solved in such a way as to allow only a slight O₂ loss. In addition to this, the technical solution must not cause more

	Inflow		Outflow		Normal air (phys.)	
	Symbol	Level	Symbol	Level	Symbol	Level
Total volume flow	F+	7-10lmin ⁻¹	F-	=F +	_	
O ₂ -concentration	co+	40%	c ₀₂	~35%	co*	21%
CO ₂ -concentration	CC02	≤ 1%	c_co2	~ 5%	c**	-0
rel.air humidity	f+	~f* (or ~80%)1	f-	~95%	f*	40-60%
Temperature	3.+	~9*	9-	~37%	3*	18 - 22°C
Heat flow	-	(05-37%)	Fw -	-14 kcallmin	-	-

Fig. 160 The significant factors to be considered in the administering of O2 enriched air

¹Without warming and moistening of inhalation air in the nose-throat area (e.g. when a nose tube is used). Figures - for the 36 h O₂ multistep therapy processes GK 4-I to GK 4-IV