J. W. Capstick. On the ratio of the specific heats of some compound gases. Proc. Roy. Soc. 57, 322—324, 1895†. [Nature 71, 91, 1895†.

Der Verf. bestimmte in weiterer Verfolgung seiner früheren Versuche nach der in Phil. Trans. 185, 1, 1893 (s. diese Ber. 49 [2], 371—372, 1893) beschriebenen Methode der Kundt'schen Staubfiguren und mit denselben Apparaten das Verhältniss der specifischen Wärmen von Gasen und fand:

Methylenchlorid, CH2 Cl2	· γ =	1,129
Chloroform, CHCl ₃		1,154
Kohlenstofftetrachlorid, CCl4		1,130
Aethylenchlorid, C2 H4 Cl2		1,137
Aethylidenchlorid, C2 H4 Cl2 .		1,134
Aethylen, C ₂ H ₄		1,264
Vinylbromid, C2H3Br		1,198
Allylchlorid, C3 H5 Cl		1,137
Allylbromid, C3 H5 Br		1,145
Aethylformiat, HCOOC2H5.		1,124
Methylatetat, CH3COOCH3.		1,137
Schwefelwasserstoff, SH2		1,340
Kohlensäure, CO2		1,308
Schwefelkohlenstoff, CS2		1,239
Kohlenstofftetrachlorid, CCl4		1,129

Diese Resultate zeigen, dass allgemein die entsprechenden halogenen Derivate desselben Kohlenwasserstoffs dasselbe γ haben.

In der Veröffentlichung ist weiter der Beweis für die Formel

$$\beta + 1 = \frac{\frac{2}{3} + \frac{1}{p} \frac{d}{dv} (pv)}{\gamma - 1}$$

gegeben, aus welcher sich β berechnen lässt, d. h. das Verhältniss der Vergrösserungen der intramolocularen und translatorischen Energie des Molecüls beim Temperaturanstieg. Die Werthe von β sind für die untersuchten Gase angegeben.

Ferner wird gezeigt, dass $\frac{\beta+1}{n}$ für Paraffin und dessen monohalogene Derivate constant ist.

Scheel.

H. Petrini. Specifische Wärme der Gase. ZS. f. phys. Chem. 16, 97 -117, 1895 †.

Aus der grossen Zahl der für die Gase bisher erfolgten Bestimmungen der specifischen Wärme will der Verf. die theoretisch