The breadth of the stream that was deflected was much greater than that of the body; and the sensible deflection begun at a considerable distance up the stream, especially in the outer filaments.

Lastly, the form of the curves was greatly influenced by the proportion between the width of the trough and that of the body. The curvature was always less when the trough was very wide in proportion to the body.

Great varieties were also observed in the motion or velocity of the filaments. In general, the filaments increased in velocity outwards from the body to a certain small distance, which was nearly the same in all cases, and then diminished all the way outward. This was observed by inequalities in the colour of the filaments, by which one could be observed to outstrip another. The retardation of those next the body seemed to proceed from friction; and it was imagined that without this the velocity there would always have been greatest.

These observations give us considerable information respecting the mechanism of these motions, and the action of fluids upon solids. The pressure in the duplicate ratio of the velocities comes here again into view. We found, that although the velocities were very different, the curves were precisely the same. Now the observed pressures arise from

precisely the same. Now the observed pressures arise from the transverse forces by which each particle of a filament is retained in its curvilineal path; and we know that the force by which a body is retained in any curve is directly as the square of the velocity, and inversely as the radius of curvature. The curvature, therefore, remaining the same, the transverse forces, and consequently the pressure on the body, must be as the square of the velocity: and, on the other hand, we can see pretty clearly (indeed it is rigorously demonstrated by D'Alembert), that whatever be the velocities, the curves will be the same. For it is known in hydraulics, that it requires a fourfold or ninefold pressure to produce a double or triple velocity. And as all pressure