
das α_1 negativ erhalten hat, das diametrale i, nämlich 180° + i, zu nehmen, für welches dann das α_1 positiv gilt.

Es sei nun angenommen, dass für das am weitesten nach links liegende positive α_1 , nämlich für $\angle A_1MA$ der Figur 9, die Indexablesung i_1 und für das von demselben um 90° in der Richtung von links nach rechts liegende ebenfalls positive α_2 , nämlich für $\angle B_1MB$, die Indexablesung $i_2 = 90^{\circ} + i_1$ betrage. Zu ermitteln ist der Neigungswinkel α der Verticalachse und der Ebene LPL_1Q , sowie die Indexstellung i, für welche die Libelle in der Verticalebene dieses Neigungswinkels sich befindet und das linke Ende derselben höher liegt als das rechte.

Nebenstehende Figur 10 ist ein Theil der vorhergehenden und stimmt daher die Bezeichnung der einzelnen Punkte derselben mit derjenigen in genannter Figur überein. Nur erscheint zur besseren Uebersicht die gegenwärtige Figur gegen die vorige um den Winkel AMH von links nach rechts gedreht.

Die Verticalebene des Neigungswinkels α bilde mit der Verticalebene des Winkels α_i den Winkel γ , also $\angle AMH = \mathrm{sph.} \angle AZH = \gamma$; dann erhält man für die Richtung des Neigungswinkels α die Indexablesung

$$i=i_1+\gamma\ldots\ldots$$
 16)

In dem bei L rechtwinkligen sphärischen Dreiecke ALZ hat man

$$\tan \alpha_1 = \tan \alpha \cdot \cos \gamma$$
,

oder da hier, wegen der Kleinheit von α_1 und α , $\tan \alpha_1 = \alpha_1$ "· $\sin \tau$ " und $\tan \alpha = \alpha$ "· $\sin \tau$ " gesetzt werden können,

In analoger Weise folgt aus dem bei L rechtwinkligen Dreiecke BILZ

Durch Division beider Gleichungen ergiebt sich dann

$$\tan \gamma = \frac{\alpha_2}{\alpha_1}$$

 α_1 und α_2 sind nach Formel 15) zu ermitteln. Bezeichnet man in Formel 14) den doppelten Libellenausschlag $\left(\frac{l-l_1}{2}-\frac{r-r_1}{2}\right)$ für α_1 mit λ_1 und für α_2 mit λ_2 , so ist

Daher auch, wenn man diese Werthe in die Formel für tan y substituirt: