mit Nebenbedingungen, und es wird daher, um die Gesammtausgleichung und die Trennung derselben in beide Theile besser überblicken zu können, zunächst die Theorie dieser Gesammtausgleichung ins Auge zu fassen sein.

§ 40.

Die vermittelnde Ausgleichung mit Nebenbedingungen im Allgemeinen.

Es seien v die an den Beobachtungen u anzubringenden Verbesserungen, p die Gewichte derselben, und die zu findenden definitiven Elemente seien

$$E_1 + \Delta E_1$$
, $E_2 + \Delta E_2$, $E_3 + \Delta E_3$, . . .

worin die E diejenigen Theile derselben bezeichnen, welche die Summe [pvv] bereits zu einem Minimum machen, wenn nur die vermittelnden Fehlergleichungen, also nicht auch die gegebenen Nebenbedingungsgleichungen berücksichtigt werden. Die ΔE bedeuten dann Verbesserungen, welche durch Hinzutreten der letzteren an den E so anzubringen sind, dass die $E + \Delta E$ sowohl die erwähnte Minimumsgleichung als die Nebenbedingungsgleichungen erfüllen.

Wenn $x, y, z \dots$ unabhängige, u aber die davon abhängige und beobachtete Variable bedeuten, dann hat man dem Vorstehenden gemäss die n vermittelnden Fehlergleichungen von der bekannten allgemeinen linearen Form:

Da E_1 , E_2 , E_3 ... schon für sich allein die Gleichung

$$[pvv] = Minimum$$

herbeiführen sollen, so hat man zunächst die

vermittelnden Normalgleichungen:

deren Anzahl k mit der Anzahl der zu bestimmenden Elemente übereinstimmt.

^{*)} Durch die Numerirung einzelner Gleichungssysteme mit römischen Ziffern soll die Reihenfolge der Anwendung dieser Gleichungen bei der numerischen Auflösung, also der praktische Rechnungsgang angedeutet werden.