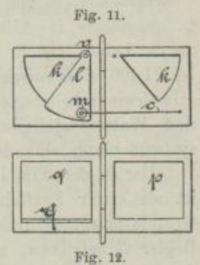

Eine vereinfachte Form der Schaltvorrichtung ist in den Fig. 9 und 10 dargestellt.

Hier ist der excentrisch zur Welle A gelagerte Mitnehmer g zum directen Antrieb durch einen Riemen geeignet gestaltet. Die Klinken b b_1 werden mittels Doppelfedern c_0 gegenüber den Rädern f f_1 in ein- bezieh. ausgerücktem Zustande gehalten. Durch ein geeignetes Gestänge c_0 , l_0 , m_0 ist die Regulatorhülse o mit zwei Anschlaghebeln k_0 verbunden. Ein jeder dieser Hebel k_0 ist mit einem Anschlagklotz a versehen, gegen welche, je nach ihrer Stellung, die Federn c_0 der entsprechenden Mitnehmerseite anschlagen können. Die Bewegung der Hebel k_0 durch die Regulatorhülse erfolgt entgegengesetzt und zwar um Scheiben e_2 . Die Umfangslinie der letzteren ist durch zwei Kreisbogen mit ungleichen Radien, welche

Schaad's Geschwindigkeitsregulatoren

durch Sprungcurven $q q_1$ verbunden sind, gebildet, so dass bei der Drehung der Hebel k_0 die Anschlagklötze a die Curve $s_0 t_0$ beschreiben und sich demnach radial verstellen müssen.

Sobald das Regulatorgestänge einen der Klötze a so weit vorgeschoben hat, dass die umlaufenden Klinkenfedern c_0 an dieselben anschlagen, werden die Klinken $b\,b_1$ frei und durch die Druckfedern sofort mit Zahnrad f bezieh. f_1 in Eingriff gebracht, in welchem jede Klinke so lange verharrt, bis dieselbe durch die auf geeignete Weise, allenfalls verstellbar, angeordnete Streichschiene d_0 ausgelöst wird.


Die excentrische Anordnung des Mitnehmers g gegenüber der Welle A und den Zahnrädern ff_1 soll die Auslösung der Mitnehmerklinken b b_1 aus den Rädern ff_1 erleichtern, indem, sobald zwei oder mehrere Klinken b b_1 angeordnet sind, die unteren Klinken in Folge ihrer excentrischen Lage während der Drehung der Radzähne von f f_1 relativ zurückbleiben und daher vom Zahneingriff frei werden. Der Streichschiene d_0 bleibt somit nur die geringe Spannung der auf die Mitnehmerklinken drückenden Federn zu überwinden übrig.

Die Patentansprüche für diese Constructionen sind folgende:

1) Eine Schaltvorrichtung für Geschwindigkeitsregulatoren, gekennzeichnet durch einen rotirenden Mitnehmer g von entsprechender Form, der zu beiden Seiten mit einer oder mehreren Mitnehmerklinken b bezieh. b₁ mit Federn d bezieh, d_1 , entsprechenden Fangklinken u bezieh, u_1 sammt Streichstangen v bezieh. v_1 und Federn $c c_1 \dots$ versehen ist, in Verbindung mit durch ein Wechselgetriebe verbundene Räder ff_1 , in welche die vorerwähnten Mitnehmerklinken b bezieh. b, eingreifen können, um die Rotation des Mitnehmers g in dem geeigneten Moment und dem erforderlichen Sinne auf die Regulirwelle A zu übertragen, und mit um kreisrunde Führungsbahnen drehbaren Stellkränzen i und i1, an welchen Auslöser kk, angebracht sind, deren Enden in den Unterbrechungen rr, der Gleitringe s bezieh. st ruhen, die auf den mit Rastkerben w und w, versehenen Supports T T drehbar angeordnet sind und welche Stellkränze ii vom Regulator aus derart bewegt werden, dass die auf den Leitringen sst gleitenden Auslöser k k, radial verschoben werden, zum Zwecke, durch Anschlag der Streichstangen vvi an diesen Auslösern k k1 die Uebertragung der Rotation des Mitnehmers g in den geeigneten Momenten auf die Regulirwelle A durch Eingreifen der Klinken b bezieh. b1 in die Zahnung des einen oder des anderen der Räder ff, hervorzubringen, sowie mit dem zum Auslösen derselben Klinken bb1 dienenden Ausschaltexcenter e mit Ausrückhebeln hh.

2) Eine Schaltvorrichtung für Geschwindigkeitsregulatoren der in Anspruch 1) gekennzeichneten Art dahin vereinfacht, dass der rotirende und die zwei Reihen Mit-

nehmer g mit doppelten Fangfedern $c_0 c_0$ versehen ist und vom Regulator aus zwei drehbar um die Führungsscheibe e_2 mit Springcurven $q q_1$ gelagerten und mit Anschlagklötzen $a a_1$ versehenen Hebel $k_0 k_0$ derart bewegt werden, dass die Klötze $a a_1$ radial verschoben werden, zum Zwecke, durch Anschlag der Federn $c_0 c_0$ an diesen Klötzen $a a_1$ die Uebertragung der Rotation des Mitnehmers in den

Ehrlich's Regulator.

geeigneten Momenten und dem erforderlichen Sinne auf die Regulirwelle durch Eingreifen der Klinken b bezieh. b_1 in die Zahnung des einen oder des anderen der Räder ff_1 hervorzubringen und Streichschiene d_0 zum Auslösen derselben Klinken b b_1 aus den Zahnrädern ff_1 dienen, wobei der Mitnehmer g excentrisch angeordnet sein kann, um das Auslösen der Klinken b b_1 aus den Zahnrädern ff_1 zu erleichtern.

Für kleinere Triebwerke erscheint der der Actiengesellschaft Fabrik Leipziger Musikwerke vorm. Paul Ehrlich und Co. in Leipzig-Gohlis patentirte Regulator für Trieb-