Hundertviertelungsjahr der Rechtsverfassung

Hundertviertelungsjahr der Rechtsverfassung

Jahrestag 1869
Jahrestag 1869

Mit einer Tafeln Abbildungen.
Mit einer Tafeln Abbildungen.

Schützenfest
Schützenfest

Danzig 1869
Danzig 1869
Polytechnisches Journal.

Herausgegeben
von

Dr. Emil Maximilian Dingler.

Fünfte Reihe. Zweiundvierzigster Band.

Jahrgang 1869.

Mit acht Tafeln Abbildungen.

Augsburg.

Druck und Verlag der J. G. Cotta'schen Buchhandlung.
Politechnisches Journal.

Inhalt des hundertzweundneunzigsten Bandes

Herausgegeben

von

Dr. Emil Maximilian Dingler.

Hundertzweundneunzigster Band.

Jahrgang 1869.

Mit acht Tafeln Abbildungen.

Augsburg.

Druck und Verlag der J. G. Cotta'schen Buchhandlung.
Inhalt des hundertzweundneunzigsten Bandes.

Erstes Heft.

I. Über den Berichtig der sogenannten Mannlöcher der Dampfkessel; von Gebrüder Schulz in Mainz. Mit Abbildungen auf Tab. II. 1

II. Regulator zur Erhaltung einer gleichmäßigen Dampfspannung, von Luppin d. Ält. in Rothen. Mit Abbildungen auf Tab. I. 3

III. Überprüfung von Apparaten, welche automatisch den Abschluß des Condensationswassers aus Dampfleitungen regeln. Mit Abbild., auf Tab. I. 7

IV. Neue Formeln für die Bewegung des Wassers in Kanälen und Flüssen. 13

V. Beschreibung zweier Maschinen zur Erzeugung von Furnieren durch Hobeln. Mit Abbildungen auf Tab. I. 17

VI. Große leistungsfähige Kreissäge von Gebrüder Schmaltz in Offenbach a. M. Mit einer Abbildung. 24

VII. Über ein gleichermäßiges Drahtmähs. von J. B. Poyle. Mit einer Abbildung. 28

VIII. Über Wasserhaltungen; von Professor Kohl in Chemnitz. Mit Abbildungen auf Tab. II. 35

IX. Gas-Kochbrenner mit Zugregulator; von Professor Dr. H. Weidinger. Mit Abbildungen auf Tab. II. 43

X. Über die Reinigung der Zinnerei von Wolfram; von Robert Dyland. Mit Abbildungen. 47

XI. Über die von der Mansfeldischen Ober-Berg- und Hütten-Direction prämierten Kupferhämmermachinmethoden. 50

XII. Über die Verwertung des Chromalminies; von J. F. Neun. 52

XIII. Chemische Untersuchungen über die hydraulischen Cemente; von C. Freyd. (Zweite Mittheilung.) 53

XIV. Die Zusammenlegung und Analyse verschiedener Produkte, welche bei Verarbeitung der Hüttenstäbe der Soda- und Chlorkalifabriken nach dem in Deigne, angewandten Verfahren gewonnen werden; von Dr. E. Richters zu Walduyburg. 60

XV. Uber das von Designolle erfundene neue Schieß- und Sprengpulver; von A. Hayen. 67

2 *
Zweites Heft

XVI. Centrifugal-Regulator von Professor W. Thomson in Glasgow. Mit Abbildungen auf Tab. III. Seite 81

XVII. Dynamometer von Heinrich King, Ingenieur in Glasgow. Mit Abbildungen auf Tab. III. Seite 82

XVIII. Der Ausblas-Tönendfasser von Alexander Morton in Glasgow. Mit Abbildungen auf Tab. III. Seite 84

XIX. Regulator zur Erhaltung einer gleichförmigen Dampfspannung in Dampfleitungen, von Wadsorth und Eastwood in Blackburn. Mit einer Abbildung auf Tab. III. Seite 91

XX. Bakes's Bolzen mit zentrifugal steifendem Kopfe. Mit Abbildungen auf Tab. III. Seite 93

XXI. Vierzylinderdampflokomotive von Charles und Comp. in Bordeaux. Mit Abbildungen auf Tab. III. Seite 94

XXII. Wheeler and Wilson's verbesseter Stoßschieber für Nähtmaschinen. Mit Abbildungen auf Tab. III. Seite 96

XXIII. Ausreifemaschine für Zenge; von Paul Helmann in Mühlhausen. (Tab.) Mit Abbildungen auf Tab. III. Seite 97

XXIV. Notizen über zwei neue physikalische Apparate; von Conrector Delabaz, in St. Gallen. Mit Abbildungen auf Tab. III. Seite 101

1. Das Holzspitzen oder der Stirnmeißler von H. A. Clum, 2. Das Pathometer oder der Tiefemeißer von S. E. und G. W. Morse.

XXV. Der Erzschaffens-Prozeß zur Schmiedeisen-Erzeugung. Seite 105

XXVI. Besserer's verbessertes Verfahren zur Stahlfabrikation. Mit Abbildungen auf Tab. III. Seite 108

XXVII. Neue Verfahren zum Bessererfrischen, construiert von A. P. Holley und J. B. Pearse, Ingenieure in Sudbury (Nordamerika). Mit Abbildungen auf Tab. III. Seite 112

XXVIII. Neuer die quantitative Bestimmung der Titanfäule; von David Forbes. Seite 116

XXIX. Krank es's Fabrication flinker Sandsteine. Seite 121

XXX. Neuer die Einwirkung von Schwefelsäure auf Eisenoxydhydrat und Eisenoxyd bei gewöhnlicher Temperatur; von Emil Brescius in Frankfurt a. M. Seite 125

XXXI. Neuer die Einwirkung des Sauersofens der Luft auf Eisen-Schwefeleisen; von A. Wagner. Seite 131
XXXII. Beiträge zur Kenntniss des Dieder Bergfahns zur Verarbeitung der Milchstände der Choralfakt. resp. Gobafabriken; von Dr. C. Richters, Chemister an der Bergschule zu Waldenburg. 133

XXXIII. Indigopräparat (reduziertes Indigotin) zum gleichzeitigen Aufbringen von Blau und Grün mit den Beizen für Krappfarben auf Baumwolle und Leinengewebe; von J. Lichtsche. 140

XXXIV. Ueber die Anwendung des Fuchsins in der Tarraubfärberei; von Carl Jütto Resel, Assistent für chemische Technologie am R. Polstechnicum zu Wien. 142

XXXV. Ueber Darstellung der Metachromatypien oder präparierten Abziehbilder; von A. Müller in Paris. 149

XXXVI. Neue Methode zur Fabrikation und Reinigung des Zuckerz; von Fr. Margueritte. 153

XXXVII. Ueber das Verhältniss des veränderten Zuckers (der Glucose) in den Rohzucker und raffinierten Zucker aus Rinderlebern; von Dr. Brunot. 158

XXXVIII. Neues (mechanisches) Verfahren zur Wiederbelebung der Knochenbrösel in Zuckersorten; von H. Gordon in St. Francisco (Californien). 161

XXXIX. Die Säges- und Schießbaumwolle als Zirkularmittel. 165

XL. Ueber das Verhalten des Ammons und des sogenannten Ammons zu Gwasspapier; von Arno Greiner. 167

Miscellen.

Drittes Heft.

XLI. Direct wirrbrunde Dampfwarme von M. Tijou, Giulingenieur in London. Mit Abbildungen auf Tab. IV. 177

XLII. Doppeltwirrbrunde Pumpe von Fryer in New-York. Mit Abbildungen auf Tab. IV. 178

XLIII. Verbesserte Dampfwarme von Fryer in New-York. Mit Abbildungen auf Tab. IV. 180

XLIV. Ueber einige neuer Versuche mit Feuerprisen; von Prof. Rahmann. Mit Abbildungen auf Tab. IV. 182

XLV. Malzkeim zum Ziehen der Mahlissteine aus J. G. Wolfer in Edinburg. Mit Abbildungen auf Tab. IV. 186
XLVI. Cylinderpresse zum Trocknen der ausgegerbten Lese. von Bréval, H. Mechaniker in Paris. Mit Abbildungen auf Tab. IV. 188
XLVII. Elevator für pulveris. oder grusförmige Körper von Robertson, Inge- gentein in Glasgow. Mit Abbildungen auf Tab. IV. 189
XLVIII. Das Werder'sche Hintersadungsgewehr. 190
XLIX. Eine weitere Modifikation des P. Pachnow'schen Militär-Distanzmeßers. 194
L. Ueber die Messung der Intensität des Lichtes und ein neues Photometer; von William Crookes. Mit Abbildungen auf Tab. IV. 195
LI. Ein Diaphanometer zu praktischen Messungen; von Ferdinand Zicinsky. Mit Abbildungen auf Tab. IV. 199
LII. Thermometer von A. R. Berthelot in Paris. Mit Abbild. auf Tab. IV. 202
LIII. Ueber die physikalischen Eigenschaften und die Herkunft des Petroleum's und der Mineralöle, von H. Sainte-Claire Deville. (Zweite Abhandlung.) 204
LIV. Ueber Verfeinerung saurer Grubenwässer zum Gebrauch für den Dampf- teesbetrieb; von Dr. Erwin Willigl, Privatdocent an der Prager Hochschule. 212
LV. Neuer Versuch zur Fabrication von Besserer-Wölfsmast; von Capt. Leguen in Breis. 217
LVI. Ueber Darstellung von pulverförmigem hybranulischem Kalk; von H. de Billenene. 220
LVII. Ueber die Analyse des Cementmerges; von Dr. G. Linneburger. 222
LVIII. Ueber die Bestimmung der Schwefelsäure auf volumetrischem Wege; von Dr. Ab. Clemm. 229
LIX. Versuche, die direkte Berechnung des Schwefelwasserstoffs resp. der Sulfad- stähle mit Manganchlorid betreffend; von Dr. E. Richters, Chemiker an der Bergschule zu Wadenburg. 234
LX. Ueber keramisches Porzellan (Hot-castPorzellan); von H. T. Brennath, Direktor der Spiegelgusshütte bei Dortmund. 239
LXI. Ueber Compièrs Verfahren zur Anilin-Fabrication; von Dr. Greiff. 243
LXII. Ueber die Entfernung des Weines durch Erhitzung. 245
LXIII. Selbstätigener für die Benützung abgewanderter Dämpfe bestimmter Hoch- apparat für Zuckerzäfen; von G. Gordon in St. Francisco (Kalifornien). Mit einer Abbildung auf Tab. IV. 258

Miscellen.
Viertes Heft.

LXIV. Amerikanischer Centrifugalschreiber. Mit Abbildungen auf Tab. V. 265
LXV. Amerikanisches Metalls-Manometer; Vorrichtung zu dessen Einrichtung und Prüfung auf seine Richtigkeit. Mit Abbildungen auf Tab. V. 266
LXVI. Wilcox's Zähloprat. Mit Abbildungen auf Tab. V. 267
LXVII. Frictionstaupeung von Kitchin und Chalas in Leeds. Mit Abbildungen auf Tab. V. 269
LXVIII. Hydraulischer Vagger von F. Robertson, Ingenieur in Glasgow. Mit Abbildungen auf Tab. V. 270
LXIX. Hadgion's Drahtseilbahn. Mit Abbildungen. 271
LXX. Die jugendlichen Lores-Eisen (schmiedeeiserne Tragbalken). Mit Abbild. 273
LXXI. Das gezogene Martin-Henryische Hinterladungsgewebe. Mit Abbildungen auf Tab. V. 274
LXXII. Drehbank zum Drücken von Metallschienen; von Grünenberger, Mechaniker in Rouen. Mit Abbildungen auf Tab. V. 276
LXXIII. Schmieröl-Rührapparat von F. Hegg, Ingenieur in Zürich. Mit einer Abbildung auf Tab. V. 278
LXXIV. Hydraulisches Gebäude zur Gasbeizung, zur Belastung mit gepreßter Luft und zu anderen Zwecken; von M. Conricteur in Paris. Mit einer Abbildung auf Tab. V. 279
LXXV. Über die unter hohem Druck stattfindende Verbrennung des Wasserstoff- und Kohlensäuregases in Sauerstoffgas; von T. Frankland. 285
LXXVI. Über die Temperatur der Flammen und ihre Beziehungen zum Druck; von H. Sainte-Claire Deville. 288
LXXVII. Über das amalgamierte Jute und sein Verhalten gegen Säuren; von J. d'Almeida. 294
LXXVIII. Mittheilungen aus dem Laboratorium für technische Chemie in Braunschweig. 297

LXXXI. Abwägung des Schwefels aus Schwefligruben; von Max Schaffner. Mit Abbildungen auf Tab. V. 308
LXXXII. Über die Bestimmung der Phosphorsäure durch Umwandlung der Phosphorwasserstoffe; von Th. Schlössing. 317
LXXXIII. Über die Bestimmung der Phosphorsäure in Pflanzenölen, Düngern und Bodenarten; von Th. Schlössing. 321
LXXXIV. Das Kryomanometer als Reagens zur sicheren Nachweisung des giftigen Arsenit-Kupferoxids; von C. Buscher in Nürnberg. 325
LXXXV. Analysen einiger Kupferöle; von C. Mène. 327
LXXXVI. Über die Anwendung des Tuchfins in der Scharlachfarbe; von Dr. H. Reimann. 328
XC. Über den trocknungsfeinden Zucker hinsichtlich seiner Beziehungen zur Wissenchaft und Textilindustrie; von Dubrunfaut. 329
XCI. Untersuchung des ungarischen Weizens und Weizenmehles; von O. Dempwolff. 332
Miscellen.

Fünftes Heft.

XCII. Emerson'ss Belot-Dynamometer. Mit einer Abbildung auf Tab. VI. 345

XCIII. Centrifugaloventilator von D. F. Sturten in Boston. Mit Abbildungen auf Tab. VI. 346

XCIV. Dampfsaume mit direkter Wirkung von J. Hristian, Constructeur in Paris. Mit Abbildungen auf Tab. VI. 347

XCV. Die Straßenbahn mit nur einer Schiene, System Larmann; von Ingenieur Hendrich Böhmes. Mit Abbildungen. 350

XCVI. Die Freier'sche Methode des Geschirr-Abwaschens. 360

XCVII. Die fünf Modelle der Borey-Batone. 362

XCVIII. Nick's höheren Rollen (Rollen) mit Metallbeleidigung für Flaschen-
ssé, Tafelwief etc. 364

XCIX. Die patentirte Flaschenreduzierte von C. Kieseler u. Sohn in Greiss-
waard. Mit Abbildungen auf Tab. VI. 366

C. Ueber die Spottauer Walschmaschine für Gengrunder. von Dr. Anton
g Pfr in Prag. Mit Abbildungen auf Tab. VI. 368

CL. Ueber ein neues Verfahren zum Reproduiren industrieller Heizungen; von H. Caneran, Telegraphen-Inspector in Laufanze. Mit einer Ab-
bildung auf Tab. VI. 370

CII. Veröffentlichung des Caderay'schen Verfahrens zur Reproduction
industrieller Heizungen; von J. Wכס in Prag. Mit einer Abbildung auf Tab. VI. 373

CIII. Verbesserter Wolfe'scher Farbenbrüder. Mit Abbild. auf Tab. VI. 376

CIV. Ueber die bisherigen Berechnungen der Wassertauigewindigkeit in der
Saugdrain; von J. v. Schmidt. 380

CV. Ueber fabrikmäßige Darstellung des Wassertropfengases für Beleuchtungs-
und Heizungszwecke; von C. Vial, Apotheker in Paris. 382

CVI. Die Umwidigung in der Gasbeleuchtung; von C. Schim. Mit einer
Abbildung. 388

CVII. Verfahren zum Wegthun von Sprödeisiffen in mit Dynamit oder mit
comprimirt Schießbaumwolle geladenen Bohrlochern. Mit einer Abbild. 405

CVIII. Ueber M. Giers Verfahren zur Stahlfabrikation. Mit Abbildungen auf Tab. VI. 406

CIX. Ueber Dunkemars' Verfahren der direkten Eiterung des Eisens mit
unterschweisflüglarem Kältern; von Carl Balling. 410
CX. Über die Zusammensetzung des Heisch-Porcelain oder Keramischglas; von C. P. Williams, früherem Professor der analytischen Chemie am polytechnischen Collegium zu Philadelphia.

CXL. Mittheilungen aus dem Laboratorium für technische Chemie in Braunschweig.

2. Unnormes Verhalten von Zudekauf. 3. Fabrikation aus schiefersaurer Kalkstein und Eifenporz; von Wäddec.

CXX. Uber einen dolomitierten Kegel und dessen Verwendung zur Cementfabrication; von L. Gätchenberger.

Mischellen.

CXIII. Über die Einrichtung und Wirkungsweise des neuen Regulators für Linien und Wasser über Carl A. Specker, Ingenieur in Wien; von Conrector Delabar in St. Gallen. Mit Abbildungen auf Tab. VII.

CXIV. Uber die Methode des Bandagierung der Zimmereien; von Dr. Nob. Schmidt. Mit Abbildung.

CXV. Outridge's Entzündungsschieber. Mit Abbildungen auf Tab. VIII.

CXVI. Thomson's Berührzeuge zum Heißleug und Abschneiden der Stahlschleifer. Mit Abbildungen auf Tab. VIII.

CXVII. Vorwärmer von Wasser in Hartford, America. Mit einer Abbildung auf Tab. VIII.

CXVIII. Verrichter Drehbank. Mit Abbildungen auf Tab. VIII.

CXIX. kleine Bohrmaschine von D. Morette, Mechaniker in Saint-Luenin. Mit Abbildungen auf Tab. VIII.

CXX. Mühlsteinpumpmaschine von S. Golan in Woon (Canton Waadt) beschrieben von Süssingenieur Hermann Fischer in Hannover. Mit Abbildungen auf Tab. VII.

CXXI. Amerikanischer Höhrenbrunnen. Mit Abbildungen.

CXXII. H. Cohn's Katarat-Waschtasche; von Dr. O. Buchner in Gießen. Mit einer Abbildung.
Inhalt des hundertzweundneunzigsten Bandes.

CXXIII. Lepan's Vertheilung von Eindrohre. Mit Abbildungen auf Tab. VII. 465
CXXIV. Lepan's verbessertes Davolli'sche Säule und dessen neuen Regulator für das elektrische Lebenlicht; Bericht von Jamin. Mit Abbildungen auf Tab. VII. 466
CXXV. Lepan's Jugtemmung der Silber-, Blei- und Kupferzeile auf elektrochemischem Wege; von Becquerel. 471
LXXXVI. Die Erzeugung von gängenden Platinüberschlägen auf Glas, Porzellan, Steinsalz und vergleichbare; von Prof. Dr. Böttger. 475
CXXVII. Lepan's Erionglung einer schönen Patina auf Bronzen in großen Städten. 477
CXXVIII. Lepan's Herstellung einer dauerhaften schwarzen Patina auf Jint; von Ph. Neumann. 479
CXXIX. Lepan's Herstellung der Eichenpflaume; von H. Debrau. 486
CXXX. Mittheilungen aus dem Laboratorium für technische Chemie in Brauns. 489
CXXXI. Lepan's Herstellung des Schwefelölfönnisses in der Halse; von P. Stein. 495
CXXXII. Lepan's Materialverband bei der Beschichtung mit verschiedenen Lackstoffen; von Dr. Grün Willig, Privatdocent an der Hochschule zu Prag. 497
CXXXIII. Lepan's ein einfaches Verfahren, den prozentuellen Wasserstoff der verschiedenen Startleinsorten zu bestimmen; von Dr. E. Scheidler in Berlin. 504

Miscellen

I.

Ueber den Verschluß der sogenanten Mannlöcher der Dampfkessel; von Gebrüder Schultz in Mainz.

Mit Abbildungen aus S. 11.

Bekanntlich werden alle Dampföfen mit Deffnungen versehen, welche als Zugänge in das Innere derselben dienen und von solcher Größe sind, daß ein Arbeiter ziemlich bequem durchschlüpft kann. Die Form dieser Deffnung (Mannloch) ist oval, s. Fig. 1; der dazu gebährige Deckel ist ebenfalls oval, aber etwas größer; er legt sich mit dem Rande an die innere Blechseite des Mannloches an; ein passendes Verbindungsmaterial (mit Mengen befeischten Hanförgen oder auch ein delegate) wird zum vollkommenen Verschluß verwendet; dann werden die äußeren Bügel mittels Muttern fest angezogen.

Bei diesen Mannlochdeckeln wirkt, sobald im Kessel Druck vorhanden ist, der Dampf durch seine Spannung zur Verbindung mit; dies mag auch ein Hauptgrund ihrer Beliebtheit sein, neben nicht schwieriger Anfertigung.

Nachdem wir Versuche mit abgedrehten geraden Flächen, mit großer Anzahl von Schrauben, eiserne Ringen mit Hakenschrauben und Andersen längst ausgeführt haben, benützen wir seit mehreren Jahren einen zu dem genannten Zwecke von uns erfundenen Verschlußdeckel, welchen wir gern zum allgemeinen Nutzen mittheilen, da aus diese Weise der Industrie wohl am besten gebient wird. Wir selbst haben damit die

1 Gegen dieses Ueber heissen aufgenietete Verstärkungsringe, deren Verwendung wir sehr empfehlen.

günstigsten Erfolge erzielt und verwenden diese Construction beständig in unserer Kesselschmiede.

Die Borteile dieser runden Verschlussdeckel sind:

a) das Deffnen oder dampfdichte Verschlüsse geschieht in wenigen Minuten (eine Fehlverdichtung kommt nicht vor);

b) das erforderliche Verdichtungsmaterial beträgt etwa eine Nutzhülle voll seiner Menge.

Die folgende Erläuterung bezieht sich speziell auf horizontale Kessel, obwohl die Verwendung unserer Verschlussdeckel bei jedem anderen Kessel gleich möglich ist.

Die horizontalen Dampfkessel haben üblicher Weise das Mannloch oben aus dem Dome, womit ein höchst unbequemes Einsteigen verbunden ist; außerdem befindet sich der Arbeiter, welcher in den Kessel eintritt, in einem dumpfen dunklen Raum, der durch ein Licht erhellt werden muß, dessen sich ansammelnde gasförmige Verbrennungsprodukte ihm lästig werden.

Das neue Mannloch ist an der Bördewand des Kessels anzubringen; ist der Kessel lang, so wird auch an dem Hinterhalse dieselben ein Mannloch angebracht; die beiden Kesselenden müssen aus der Mauerung hervorragen, die Rauchübe werden entsprechend eingerichtet.

Es ist einleuchtend, daß bei dem Deffnen eines oder gar mehrerer Mannlöcher das Innere des Kessels von Außen vollständig zu überblicken ist, was namentlich dem Fabriksbern sehr erwünscht sein muß. Auch läßt sich der Kessel rasch ab und kann frühzeitig befahren werden.

Eisenscheiben bekommen dieselben Verschlussdeckel, wo möglich immer einen hinten und einen vorn.

Die Verbindung nun stattfindet, ist hinreichend klar; man hat es nur mit schmalen, vollkommen geraden und reinen Flächen zu thun. Die vier Schrauben selbst liegen außerhalb des Dichtungskreises, was ein sehr wesentlicher Vorteil ist.

Bei kleinen Kesseln kann der Wassersstand unmittelbar aus dem Deckel D, e angebracht werden.

Bei großen, langen Kesseln treffen wir die Einrichtung nach Fig. 6.

Die Wichtigkeit einer leicht ausführbaren Untersuchung und
Tulpin's Regulator zur Erhaltung einer gleichmäßigen Dampfspannung.

einer gründlichen Reinigung der Kessel berühren wir nicht weiter; saß jeder Kesselbesitzer hat mit mehr oder minder großen Opfern Erfahrungen darüber gesammelt; der Kesselsaftkant wird diese beiden Vortheile ebenfalls gebührend würdigen.

Mainz, 15. Februar 1869.

II.

Regulator zur Erhaltung einer gleichmäßigen Dampfspannung, von Tulpin d. ält. in Rouen.

Nach Armgardt's Genie industriel, Januar 1869, S. 40.

Mit Abbildungen auf Tab. 1.

In der Beschreibung der Tulpin'schen Trodencylinder in Armgardt's Publication industrielle vol. XIV ist bereits eines automatisch wirken den Dampwerktheilers dieses Constructeurs erwähnt, welcher den Zweck hat, die Dampfspannung in den Trodencylindern auf einer gleichen Höhe zu erhalten.

Die alte Einrichtung für diesen Zweck bestand im Wirkens einer einem pumpenähnlichen Apparat, welcher an der Dampfleitungskrone zu den Trodencylindern angebracht war. Die Kolbenstange war mit einem belasteten Hebel und dieser mit der Asche der Dampfstappe so in Verbindung, daß die auf- und niedergehende Bewegung des Kolbens — die Folge eines Wecubs in der Dampfspannung — eine Drehung der Drosselstelle im Dampfrohr bewirkte.

Den Bearbeiter dieses Aufsages sei noch gesagt, an dieser Stelle auch einen ähnlich wirkenden Apparat der Gebr. Séraphin in Paris vorzuführen, welchen dieser bei ihren Huberdosapparaten angebracht haben. (Statt des in Armgardt's Publication industrielle vol. XVII p. 257 zu finden.) Die Fig. 18 zeigt den Dampfvertheiler im Schnitt. Der Dampf wird durch das Rohr c eingespeist und gelangt in der normalen Stellung des belasteten Hebel L in den Rau A und weiter durch die Höhe b zu den Kondensapparaten. Im Cylindere C befinden sich zwei mit einander durch die Schiene i mit dem Hebel L verbundene Kolben p und p'. Die Communication von v und dem Canal a wird aber unterbrochen, sobald der Dampfstrud in A höher ist, als dem Gewichte P entspricht, indem dann eine Veränderung der Stellung der Kolben p p' erfolgt. Der Dampf in A expandirt in Folge des abnehmenden Dampfstrudrisses, bis der Hebel G in die normale Lage zurückkehrt. Im dem Rohrleitung s ist ein Sicherheitsventil S angebracht, dessen Abschluß den Wärter auf eine unregelmäßigkeit aufmerksam macht, solche zuläßigerweise der Dampfstrud im Reservoir A die erlaubte Grenze übersteigen.
Der in Fig. 13 bis 15 (Tab. 1) in 1/40 natürlicher Größe dargestellte Regulator zur Erhaltung einer gleichmäßigen Dampfspannung ist im Wesentlichen wie der ältere angeordnet; er entspricht in der Praxis nach den weiter unten angeführten Berichten des Bergingenieurs de Genouillac in den Annales des mines vollkommen seiner Aufgabe.

Kautschukplatte hat eine verschieden lange Dauer; gewöhnlich muß sie nach einem Jahre ausgewechselt werden, was keine große Mißtung verursacht. Neigt sie einmal früher, so kennzeichnet sich dies durch das Geräusch des ausstretenden Dampfes. Den Wärter bleibt nur die Pflicht, sich zeitig zu überzeugen, daß die Rohre N mit Wasser gefüllt ist, welches in einzelnen Fällen erwischenmaßen verbuschte.

Den praktischen Wert dieses einfachen Apparates beweisen folgende Berichte des erwähnten Bergingenieurs über dessen Verwendung.

In der Rattendruckerei von Koupee und Railroad in Soulin sind drei solche Tulipinsche Apparate in Verwendung; der erste in den Trockenräumen, der zweite an den Farbenmachereien und der dritte an Dampfstellen.

Die Dampfkegel liefern Dampf von 6 Atmophären, während der Dampfdruck in den verschiedenen Dampfapparaten 2 1/2 Atm. nicht überstreiten soll.

Seit drei Jahren bewähren sich die Tulipinschen Dampfregeulato-
ren. Nur einmal beobachtete der Fabrikleiter, daß das Wasser im Apparat verdampft war. Die Kautschukschichten leisteten mindestens ein Jahr lang ihren Dienst; eine hielt bereits drei Jahre. Der Wärter hat somit, wie erwähnt, seine Aufmerksamkeit auf den Wasserspiegel in Rohre N zu lenken. — Zur Erprobung der Empfindlichkeit wurden verschiedene Berichte vorgenommen. Offenbart man die Dampfschaufelhähne mehrerer Kochapparate, so öffnete sich sofort die Dampfklappe; wurde dagegen der Dampfverbrauch unterbrochen, so schloß sich die Klappe nahezu voll-
zu Erhaltung einer gleichmäßigen Dampfspannung.

ständig. Die Manometernadel nähm nach einigen Schwankungen nicht sofort die normale Stellung ein, sondern wich etwa 1/4 Atm. aus, kehrte aber schnell genug zurück. Die hier gemachten Erfahrungen ersehein somit sehr zufriedenstellend.

Ebenso günstige Resultate wurden in der Kattunbrucerei von E. Faquett in Deville erzielt; in diesem Etablissement, sowie in den zwei anderen beobachtete man nicht eine Entleerung des Wasserschres N.

Zu der filature de la Foudre* werden die verschiedenen Etagen mit Dampf gedeiht, welcher durch kupferne und eiserne Rohren verschiedene Grosse gesetzt wird (Durchmesser derselben sind 0,11, 0,13, 0,18 Meter), in einer Länge von ungefähr 500 Meter.

Die Dampfleitung mündet nicht in's Freie, sondern in Apparate zum Anzameln des Condensationswässers, welche jeden überflüssigen Dampfverlust verhüten. Der zum Heizen benutzte Dampf hatte 2 bis 3 Atm., während die 14 Dampfstoffel unter Atmophären Druck arbeiteten.

Nach einer Verwendung von 2 1/2 Jahren hatte der Tulipin'sche Apparat keine andere Störung veranlasst, als das Aushämmern der Kautschukplatte, sonst einen stets regelmäßigen Betrieb erzielte.

Die hier angestellten Versuche ergaben eine Empfindlichkeit des Dampfregulators bis auf 1/8 Atm. Bei jeder plötzlichen Aenderung des Dampfverbrauches bewegte sich der Hebel L auffällig und die Manometernadel schlug um 1/4 Atm. aus, kehrte aber bald bis auf 1/8 zurück. Man dagegen solche Aenderungen langsam zu, so blieb die Nadell unbeweglich, ein Zeichen der Gleichmäßigkeit der Regulierung.

Ein erhöhtes Interesse hatten die Versuche in der Spinnerei von O. Faquett und Comp. in Düsseldorf, einerseits wegen der großen Dimensionen der mit einem Tulipin'schen Dampfregulator versehenen Dampfleitung (800 Meter Länge und 0,1 Meter Durchmesser), andererseits durch die speziellen Betriebsvorlage, indem das in der Dampfheizungs-Köpenleitung angesammelte Condensationswasser zu dem Betriebsdampfstoßeln zurückgeführt wurde. Der Heizdampf wurde in Unbe- tracht der Ausdehnung der Leitung mit 5 Atm. Spannung in einem Kessel erzeugt, wobei die Maschinen von zwei Dampfstoffeln mit Dampf von 4 Atm. gespeist wurden. Da der Heizstoß mehr Dampf lieferte als zur Heizung notwendig war, so verwendete man den Überhisch zur Speit ung der Betriebsdampfleitung, indem man den Dampf von 5

* Eine grofe Baumwollspinnerei bei Rouen.

3 Der Tulipin'sche Automat zu diesem Zweck ist in der nächstfolgenden Abhand- lung beforbrieten.
Tulpin’s Regulator zur Erhaltung einer gleichmäßigen Dampfspannung.

auf 4 Atm, mit Hilfe des Tulpin’schen Apparates expandirte; dieser fand seine Anwendung auf der Dampfleitungsröhre zu den Maschinen, zwischen dem Heizdampfkeßel und dem benachbarten Betriebstöpfen.

Um auf den interessanten Versuch zu kommen, so zeigte noch ein Scalenmanometer den Druck des Dampfes bei seinem Laufe zu den Maschinen an; damals war nur einer der Betriebstöpfe im Gange.

Man wechselte so rasch, als es die Feuerung gestattete, den Druck im Heizkeßel zwischen 4 und 5 und gleichzeitig jenen des Betriebstöpfls zwischen 3 und 4 Atmosphären.

Das Manometer schwankte nur zwischen 3½ und 4 Atm., unter diesen Verhältnissen ein günstiges Zeugnis für die Wirkung des hiermit genügend erprobten Tulpin’schen Apparates.

Diese Erfahrungen berechtigen den Ingenieur Genouillac zu dem Ausdrucke, daß Tulp in der zu lösenden Aufgabe vollkommen entsprochen hat. Sein Dampfregulator erhält einen constanten Dampfdruck, indem er den Heizdampf bis zur gewünschten Grenze expandirt; das Spiel ist regelmäßig; die Empfindlichkeit prächtig genügend und die Anwendung desselben jetzt keine lästige Beaufsichtigung voraus. Da man genau mit der nötigen Dampfspannung arbeiten kann, so gemäß die Benutzung dieses Apparates auch eine große Dampfersparnis.

Durch diesen Apparat soll aber die Benutzung der an den Dampfapparaten üblichen Sicherheitsventile nicht ausgeschlossen werden; der Dampfregulator beobachtet eine, wenn auch geringe Beaufsichtigung er kann in Unordnung gerathen, indem ein Bruch, z. B. der Ventilachse, eintreten kann, worauf die rasch erfolgende Ausgleichung der Dampfspannung im Keßel und in allen Heizräumen nachtheilige Folgen nach sich ziehen dürfte. Nichts würde diesen Unbehagen angehen, als das mit dem Apparat in Verbindung stehende Manometer, welches aber selten beobachtet wird. Diesem Mißstande kann leicht durch Anbringung eines Sicherheitsventiles an Tulp in’s Dampfregulator, welche weder schwierig noch kostspielig ist, abgeholfen werden.

(Die Combination des Regulators mit einem Sicherheitsventil findet man an dem in der Anmerkung S. 3 beschriebenen Apparate von Sétarpin, Fig. 18. Ferner s. noch aus Roll und’s Dampfregulator in diesen Journal Bd. CLXXXI S. 242 hingewiesen.)

Johann Zeman.
III.
Übersicht von Apparaten, welche automatisch den Ablauf des Condensationswassers aus Dampfleitungen regeln.

Die Abbildungen auf Tab. 1.

Benutzt man aber gute Automaten an richtiger Stelle und mit richtigem Verständnis, dann wird deren Nutzen bald klar; im Gegenteil kann ihre falsche Verwendung ohne jede andere Sicherheitsvorrichtung selbst gefährlich werden.

Dem Prinzip nach kann man zweierlei Arten von Automaten unterscheiden: entweder regelt die Auseinanderlegung in Folge erhöhter Temperatur oder die Stellung eines Schwimmers den Ablauf des Wassers.

Der Automat von Wright Jones (Fig. 19) kombiniert beide Prinzipien in sehr einfacher Weise und Grosseteste erklärt denselben für den vollendetsten ihm bekannten.

Wenn ein Apparat zu dem in Rede stehenden Zweck an geeigneter Stelle der Dampfleitung eingeschaltet ist, so muss er vor der eigentlichen Wirkung der Luft gestatten, welche in ihm und in der Leitung enthalten ist; alsbann tritt das Condensationswasser in den Automat, welches so lange frei entweichen kann, bis der Dampf eintritt. Von da ab darf das Wasser nur in dem Maasse abgelassen werden, als es zutritt und ohne hierbei irgend einen Dampfverlust zu gestatten.

Die Eintrittsöffnung ist bei dem in Fig. 19 dargestellten Apparat mit O, die Austrittsöffnung mit O' bezeichnet. Die erwähnten drei Pe-
rioden der Thätigkeit derartiger Apparate erfolgen bei denselben nach folgend:

1) Austritt der Luft; die Messingstange a, b, welche bei a befestigt ist, wird so zugerichtet, daß im fallten Zuhande das Ventil s offen steht; derselbe befindet sich unter dem Druck der austretenden Luft.

2) Das Condensationswasser tritt ein und entweicht; zufolge der Temperaturerhöhung durch das heiße Wasser befindet sich die Stange a, b aus, die Stange c neigt sich nach abwärts; in folge dessen wird sich, wie aus dem Zusammenhang in Fig. 19 ersichtlich, das Ventil s allmählich schließen.

3) Füllt Dampf den Apparat aus, so beträgt die Ausdehnung der Stange a, b soviel, daß der Verschluß vollkommen eintreten kann; der Schwimmer k steigt mit dem steigenden Wasserspiegel. Der Schwimmerhebel hebt die Ventilstange c, um den nötigen Abfluß des Wassers (jedoch ohne Dampf) zu gestatten.

Um solchen Umständen zu begegnen, konstruiert man Apparate wie sie in Fig. 20 und 22 in 1/10 natürlicher Größe dargestellt sind, bei welchen entweder ein Schieber s (Fig. 20) oder zwei entgegengesetzt aufliegende Ventile s und s_1 (Fig. 22) in Verwendung kommen. In beiden Fällen hat der Schwimmer nur einen geringen Widerstand zum Druck der Austrittsöffnungen zu überwinden.

Fig. 22 zeigt eine sehr praktische Anordnung; mit der Stange T können die Ventile von Außen gelenkt werden; a ist ein Entlüftungshahn, durch welchen die Luft im Beginne der Thätigkeit des Apparates abgelassen wird; i ist das Schrannventil, durch welches nach Beendigung des Betriebes und Erkalten der Leitung Luft eintritt. Da die Stange T fest an dem Schwimmerhebel befestigt ist, so kann leicht eine Stöckung in Folge einer zu großen Leibung in der Stopfbüchse eintreten; ebenso wenn sich fremde Theile an die Ventilflügge ablagnern.

Andere Automaten sind mit einem vom Schwimmer abhängigen Hahn versehen. Hierher gehört jener von Blondel in Rouen, welcher in Fig. 24 in 1/10 wirklicher Größe gezeichnet ist. Der Schwimmer k beeinflußt durch den Hebel t die Stellung des Hahnes r, dessen Bohrung mit dem Ablaufrohr in Verbindung zu sehen ist; r ist der Luftablasshahn. Die Stange T ist mit dem Schwimmerhebel t nicht in feister Verbindung.
weilhalb der so eben genannte Nebenstand nicht leicht eintreten kann. a und b deuten Berührflächen an, durch welche man leicht in's Innere gelangt. Diese Apparate erfreuen sich in Frankreich einer vielseitigen Verbreitung.

Die in Fig. 21 skizzierte Anordnung besitzt ebenfalls einen Hahn b, welcher von Außen noch gestellt werden kann. Sie ist recht einfach und arbeitet befriedigend.

Tulpin's Automat (Fig. 23 in 1/20 wirklich der Größe) ist ebenfalls vielfach in Anwendung. Das eintretende Wasser hebt den Schwimmer f und mit Hilfe des Balancier und der Zughange t wird der Abflusshahn h gestellt. Jeder Seitenbruch der durch die Stopfbüchse gegendene Stange b wird durch das Anhängen der Kette an dem Kreissector l befestigt. Etwas vor Beginn der Wirksamkeit wird der Schwimmer durch ein den genannten Balancier unterstützendes Stängelchen in etwas gehobener Lage erhalten, um den Austritt der Luft und des zween eintretenden Condenationswassers frei zu gestatten. 4

Vor etwa drei Jahren wurde in dem Etablissement von Dollfuß-Mieg und Com. in Mülhausen ein Automat von Schäffer und Budenberg in Rudau-Magdeburg eingeführt, welcher sich vorzüglich bewährte und in Fig. 25 bis 27 dargestellt ist.

Die Wirkung besteht darin, daß das durch die Öffnung a in den Condenationsstopf T eintretende Wasser den hohen kupfernen Schwimmer e hebt; dieser ist an der Stange l befestigt, welche mit dem Ende b in das Einführungsrohr c ragt, das zum Ablaufrohr o führt (Fig. 26). Das am Deckel feste Rohr t ragt in den Schwimmer. Erreicht das Wasser eine gewisse Höhe im Gefäß l, so hebt es den Schwimmer f, so daß das Ablaufrohr o verschlossen ist. Das unterdessen angestammelte Wasser steht endlich in den Schwimmer f über, bis das Gewicht des gesättigten Schwimmers größer ist als der Auftrieb und selbst sinkt. Die Austrittsoffnung wird frei und das Wasser tritt in Folge des Dampfdruckes aus, passt bei s ein Ventil, welches den Zurücktritt des Wassers (und der Luft) verhindert, und gelangt so in's Freie. Dieser Wasserausflus dauert so lange, bis der grobenteils entleerte Schwimmer wieder aufsteigt und die Mündung des Rohres o verleitet. Da der Schwimmer mit einer Viertelsfüllung noch schwimmt, so ist es selbstverständlich, daß er nie leer wird und daß das zurückbleibende Wasser das Anströmen des Dampfes verhindert. Im Beginne entweicht die Luft durch die heise Öffnung bei d. Durch zeitweiliges

Deffnen des Verschlusses bei k und Austreten des Wassers werden die auf dem Boden des Gefässes T sich etwa ablagernden fremden Theile weggewaschen, welche der freien Bewegung des Schwimmers hindurch werden konnten.

Der Automat ist 350 Millimeter hoch und hat einen Durchmesser von 280 Millimeter.

Der in Fig. 28 in 1/4, wirklicher Größe dargestellte Apparat von Caisterwood und Woodworth beruht gänzlich auf der Wirkung der Ausdehnung, wenn in Folge des Dampfzutrittes die Temperatur

6 Der in Fig. 29 dargestellte, älteren, in Fabriken häufig zu findende Apparat ist nach demselben Prinzip construirt und ruht eigentlich von Kirchmeyer her (Schaffer und Bendelberg besitzen das Patent). Die untere Deffnung des Abflußrohres c ist hier bedeutend höher gehalten als in Fig. 28, damit der Niederdruck des Dampfes bei der Erhitzung seiner Spannung nicht zu groß werde und der Apparat innerhalb weiterer Grenzen des Dampfdruckes wirksam bleibe. c ist ein stahles Bronzenuß (in manchen Fällen auch Kupferkupfer), welches sich gegen den Benitit f anpreßt, wenn der Schwimmer gehebt wird. Das Abflußrohr d mündet an einem gelegenen Ort, damit man sich leicht von der Wirksamkeit des Automaten überzeugen kann, indem das Wasser siegreich aussteigt. Wo der Referent diesen Apparat angewendet finden, wurde derstelle fehle empfinden.

Zur Ergänzung des Berichtes folgen nach in Fig. 30 und 31 zwei hierher gehörige Beförderung nach Schott. Fig. 30 stellt ein sehr zweckmäßiges, jetzt viel gebrauchtes Entwässerungsentitil in halber natürlicher Größe dar. Daselbe wird bei A an eine tiegelegte Stelle der Leitung angebracht und setzt dieselben in fortwährende Verbindung mit der Höhung des Gefäßes B. Dieses ist bei C durch das brenzogene Benitit D verschließbar, welches mit einem aus Schmierölen gefertigten fordernrohr E in eine kleine Dampfüberleitung im Gange des Gefäßes B entlaucht. Im E D eingeschosse Luft drängt dabei den Dampfzweigpfiegel bei F nach unten, und es wird nun das Wärmebad so getrieben, daß im falschen Zustande des Rohres das Benitit etwas unter seinem Siege schwiebt. Wird nun Dampf in die tiege Leitung eingeschauf, so conturke sich sofort Wasser in derselben, stieß durch A zu dem Benitit und entweicht bei C, daselbe thut die in der Leitung vorhandene Luft, die das Wasser zuführt. Ist dieses aber abgeschlossen, und es kommen Dampf in das Gefäß, so erwärmt desselben sofort das Rohr E und die darin enthaltene Luft; letztere dehnt sich aus, hebt das Benitit und schließt somit bei guter Zuführung des Ausgang bei C. Reiner Wasserzutritt mindert die Temperatur der Luft in E und öffnet wieder das Benitit D. Off bringt man diese Vorräthe zu hoch gelegen an, daß sie nur die Luft ansteigen, während das Wasser durch einen anderen Apparat entfernt wird.

Ein zweites empfehlenswerthes Entwässerungsentitil ist das Andrea'sche, Fig. 31 (Patent der Fabriken der Drahtschlacken-Compagnie in Magdeburg). In diesem Apparat bewirkt die Ausdehnung einer Wassersäule den Benitittha. Die zu entwässernde Leitung ist bei C in Verbindung mit dem Apparat gebracht, so daß das niederliegende Condensationswasser das sehr dünnwandige Rohr F, welches mit Wasser geacht und bei C mit einer Kupferkupfermembrane geschlossen ist, umspült und zwischen dem Benitit E und dessen Siege B in das Gefäß A fließen kann. Von dort geht es durch die Höhung der Kapitel H nach D und fließt ungehindert ab.

eine höhere wird. Wenn auch diese Vorrichtung eine nur sehr beschränkte Anwendung in den hier gemeinten Fällen finden kann, so ist sie doch interessant und der Kenntnissnahme wertvoll.

Das Ventil s ist an der Stange l mittels Mutter und Gegenmutter e, e fest mit der Band a in Verbindung. Der Ventilhahn b dagegen ist an dem Ende des Rohres t angebracht, durch welches das Condensationswasser (eventuell der Dampf) zugeleitet wird. Die Stellung von s ist so getroffen, daß das Condensationswasser entweichen kann; sofort aber der heisse Dampf zustritt, schliesst sich das Ventil und zwar lediglich in Folge der Ausdehnung des Rohres t, welche ein Andriessen des Eises an das Ventil s bewirkt.

Die Ausdehnung des Kupfers beträgt pro Meter Länge 1,8 Millimeter bei der Temperaturänderung von 0° auf 100° C. Hat der Dampf (bei 1 1/2 Atm.) 110°, das Condensationswasser im Maximum 100°, so beträgt die Ausdehnung der 1 Meter langen Rohre t nahezu 2/10 Millimeter. Gestatten es die Verhältnisse ein 2 Meter langes Rohr t anzubringen, so beträgt unter den sonst gleichen Verhältnissen der Längenunterschied circa 1/10 Millim., um welch keinen Betrag die Dehnung des Ventiles variiiren kann. Dieser Spielraum ist aber zur Ableitung des Condensationswassers praktisch ungenügend.

Selbst bei 5 Atm. (153° C.) würde diese Ausdehnung der Rohre t von 1 Meter Länge nur 0,95 resp. 1,9 Millimeter für 2 Meter Länge betragen. Dies genügt für die Beurtheilung der praktischen Verwendbarkeit; übrigens ist der Automat höchst einfach, sehr compendios und billig.

Es finden sich noch zahlreiche andere Anordnungen dieser Apparate; sie lassen sich aber alle in die drei Clasfen eintheilen, aus welchen die wichtigsten und zweckmässigsten vorgeführt wurden.

Die Vergleichung der selben ergibt:
1) daß die Automaten mit Ventilen oder Schiebeventilen unter jedem Dampfdruck verwendbar sind, wenn man demselben bei den Dimensionen der wirkenden Theile Rechnung trägt;
2) daß die Automaten mit Zahnverchluss, in allen Fällen anwendbar sind, indem die Herstellung unabhängig vom Dampfdruck erfolgen kann.

Alle vorgeführten Automaten sind gut, manche ausgezeichnet unter der Bedingung, daß man deren automatische Wirkung nicht zu vorträglich nimmt. Kein Apparat macht die Beaufsichtigung unnötig und ebenso die Anwendung eines Reservehahnes, um den Abfluß des Wassers resp. des Dampfes nach Belieben regeln oder vollkommen unterbrechen zu
können. Ist es nämlich, was nicht selten vorkommt, zur Erzielung einer höheren Temperatur der Dampfheizung nöthig, den Dampfdurchzug freizumachen, da die durch die einfache Condensation des Dampfes bewirkte Dampfcirculation ungenügend ist, so wird der Entwässerungsapparat hinderlich; und ist kein Reservoirbahn vorhanden, so kann sich der Arbeiter, der die Aufficht schließlich doch zu vereiteln weiß, dadurch helfen, daß er die an dem Schwimmerhebel hängende Stange durch Anziehen der Stopfbüchse festklemmt, also den Schwimmer einfach außer Thätigkeit setzt. Dies ist oft nur für einige Augenblicke nöthig, aber der nachtheilige Zustand, in welchen der Apparat verfegt wurde, verursacht weiterhin eine Verminderung der sonst erzielbaren Defonomie.

Man kann deshalb, — schließt Großecke seinen Bericht — sagen (wie die Eingang geheben), daß die Anwendung der Entwässerungsapparate sehr möglich ist, wenn sie eben mit Verständnis erfolgt.

Johann Zeman.
IV.

Neue Formeln für die Bewegung des Wassers in Kanälen und Flüssen.

Wir fügen diese Formeln hinzu, und indem wir bezüglich ihrer Entstehung, Ableitung und Begründung auf die angeführten Werke verweisen, beschränken wir uns darauf, eine Anzahl verschiedener Messungsresultate zusammenzustellen und an denselben die Formeln zu prüfen.

Wir geben die Formeln für das Metermaß und bemerken, daß die eingeführten Buchstaben folgende Bedeutungen haben:

\[R = \frac{a}{p} \]; a ist der Flächeninhalt des Wassersquerschusses und p der benetzte Umfang desselben.

\[J = \frac{h}{l} \] (inclinatio) das Gefälle der Wasseroberfläche auf die Längeneinheit bezogen.

\[W \] ist die Wasserpiegelbreite.

\[R_1 = \frac{a}{p + W \cdot n} \] (natura) Rauhkeitscoefficient.

1) Formel von Humphreys und Abbott.

\[v = \left[V 0.0025 \frac{m}{s} + \sqrt{V 68.7 \cdot R_1 \cdot V \cdot J - 0.05 \frac{V}{m}} \right]^{0.5}. \]
\[m = \frac{0.933}{\sqrt{R + 0.457}} \]

Abgekürzt von Grebenau:
\[v = \beta 8.29 \sqrt{R_1 V J} \]

2) Formel von Bazin.
\[v = \sqrt{\frac{R_1 J}{\alpha + \frac{\beta}{R}}} \]

Die Werte \(\alpha \) und \(\beta \) sind für vier Kategorien ausgemittelt und folgende:

I. Wände von reinem Zement, vorgängig gehobeltem Holz u. f. w.
 \[\alpha = 0.00015; \ \beta = 0.0000045. \]

II. Wände von ungehobelten Brettern, Quader- und Backstein-
 Mauerwerk,
 \[\alpha = 0.00019; \ \beta = 0.0000133. \]

III. Wände von Bruchstein-Mauerwerk,
 \[\alpha = 0.00024; \ \beta = 0.0000600. \]

IV. Wände in Erde,
 \[\alpha = 0.00028; \ \beta = 0.0003500. \]

3) Formeln von Gaußler.
 a) Wenn das Gefälle 0,0007 übersteigt:
 \[v^3 = \alpha \sqrt{R_1 V J} \]
 b) Wenn das Gefälle kleiner ist als 0,0007:
 \[v^3 = \beta \sqrt{R_1 V J} \]

Die Werte \(\alpha \) und \(\beta \) sind für jedes Kategorien angegeben, wie folgt:

I. Mauerwerk von behauenen Quadern und von Zement,
 \[\alpha = 8.5 \text{ bis } 10.0; \ \beta = 8.5 \text{ bis } 9.0. \]

II. Gutes gewöhnliches Mauerwerk,
 \[\alpha = 7.6 \text{ bis } 8.5; \ \beta = 8.0 \text{ bis } 8.5. \]

III. Die Seitenvände gemauert, die Schleife in Erde,
 \[\alpha = 6.8 \text{ bis } 7.6; \ \beta = 7.7 \text{ bis } 8.0. \]

IV. Kanäle in Erde, ohne Pflanzen,
 \[\alpha = 5.7 \text{ bis } 6.7; \ \beta = 7.0 \text{ bis } 7.7. \]

V. Kanäle in Erde mit Pflanzen,
 \[\alpha = 5.0 \text{ bis } 5.7; \ \beta = 6.6 \text{ bis } 7.0. \]

VI. Flüsse,
 \[\alpha = 5.0 \text{ bis } 5.7; \ \beta = 6.4 \text{ bis } 7.0. \]
<table>
<thead>
<tr>
<th>Gewässer</th>
<th>R.</th>
<th>J.</th>
<th>Mittlere Geschwindigkeiten nach Reifung</th>
<th>H. u. A.</th>
<th>B.</th>
<th>G.</th>
<th>H. g. K.</th>
<th>Differenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mississippi bei Columbus, Doppelschwimmer, Mississippi-Commission.</td>
<td>1858.</td>
<td></td>
<td>2,080 2,102 1,700 3,892 2,018 2,066</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,022</td>
</tr>
<tr>
<td></td>
<td>1851.</td>
<td></td>
<td>1,729 1,308 0,508 3,363 1,409 1,214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,079</td>
</tr>
<tr>
<td>Riv. sta.</td>
<td></td>
<td></td>
<td>0,694 0,466 0,477 0,330 0,576 0,624</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,158</td>
</tr>
<tr>
<td>Riv. st.</td>
<td></td>
<td></td>
<td>10,786 0,984 0,832 0,690 1,756 1,626 1,926</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,192</td>
</tr>
<tr>
<td>Rhein su Spier, Weltmann'scher Flügel. Straus.</td>
<td></td>
<td></td>
<td>2,464 0,877 0,927 0,103 0,909 0,616 0,289</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,085</td>
</tr>
<tr>
<td>Rigole de Grosbois, Serie Nr. 49 (4). Canal in Orbe. Bazin.</td>
<td></td>
<td></td>
<td>0,543 0,423 0,402 0,429 0,456 0,464</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,096</td>
</tr>
<tr>
<td>Seine à Paris, (9.) Schwimmer. Poiré.</td>
<td>1851.</td>
<td></td>
<td>4,855 4,217 4,214 4,540 3,275 1,290 1,274</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0,093</td>
</tr>
<tr>
<td>Seine à Poissy etc. (5.) Weltmann'scher Flügel. Emμery.</td>
<td></td>
<td></td>
<td>4,136 4,082 0,762 0,671 0,947 0,784</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0,029</td>
</tr>
<tr>
<td>Saône à Roanneay, (10.) Leceillè.</td>
<td></td>
<td></td>
<td>4,825 0,0001730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,014</td>
</tr>
<tr>
<td>Canal du Jard. (1.) Schwimmer. Dubuat.</td>
<td>1782.</td>
<td></td>
<td>1,776 0,0000279</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
<tr>
<td>Rivière de Haute. (4.)</td>
<td></td>
<td></td>
<td>1,197 0,0000205</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
<tr>
<td>Pissar de Chur. (5.) la Ritcha.</td>
<td>1835.</td>
<td></td>
<td>0,612 0,0000362</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,014</td>
</tr>
<tr>
<td>Chéronanal. (2.) legier.</td>
<td></td>
<td></td>
<td>1,347 0,0000300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,011</td>
</tr>
<tr>
<td>Mein bei Gérardstein, Weltmann'scher Flügel. Gerbenaan.</td>
<td>1865.</td>
<td></td>
<td>4,251 1,474 1,450 3,265 1,781 1,235 1,271</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0,056</td>
</tr>
<tr>
<td>Simmenceanal in Vex, Kanton Bern, Schwimmer. (1.) Rampfier.</td>
<td></td>
<td></td>
<td>1,927 1,168 2,431 1,921 2,781 1,850</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0,114</td>
</tr>
<tr>
<td>Mein zu Bolf, Weltmann'scher Flügel. Gerbenaan.</td>
<td></td>
<td></td>
<td>2,900 0,0002600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
<tr>
<td>Experimentanal, Cement, Serie Nr. 24. (12.) Bazin.</td>
<td>1857.</td>
<td></td>
<td>1,882 0,0001420</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
<tr>
<td>Bazin.</td>
<td></td>
<td></td>
<td>1,828 0,0001320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
<tr>
<td>Bazin.</td>
<td></td>
<td></td>
<td>2,400 0,0000900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
<tr>
<td>Bazin.</td>
<td></td>
<td></td>
<td>1,726 0,0001320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
<tr>
<td>Bazin.</td>
<td></td>
<td></td>
<td>1,862 0,0001620</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
<tr>
<td>Bazin.</td>
<td></td>
<td></td>
<td>3,056 0,0001520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
<tr>
<td>Bazin.</td>
<td></td>
<td></td>
<td>6,216 0,0000672</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
<tr>
<td>Bazin.</td>
<td></td>
<td></td>
<td>4,400 0,0001115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
<tr>
<td>Bazin.</td>
<td></td>
<td></td>
<td>4,800 0,0001500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
<tr>
<td>Bazin.</td>
<td></td>
<td></td>
<td>1,880 0,0001460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
<tr>
<td>Bazin.</td>
<td></td>
<td></td>
<td>5,844 0,0001620</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
<tr>
<td>Bazin.</td>
<td></td>
<td></td>
<td>0,112 0,0001460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
<tr>
<td>Bazin.</td>
<td></td>
<td></td>
<td>0,229 0,0002290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,002</td>
</tr>
</tbody>
</table>

Summa: 39,958 7,659 7,788 45,959 2,134

Durchschnitt: 1,381 0,335 0,269 1,538 0,071
4) Formel von Hagen.

\[v = 2,425 \sqrt{\frac{R}{J}} \]

5) Formel von Ganguillet und Kutter.

\[v = \left(\frac{Z}{1 + \sqrt{\frac{R}{J}}} \right)^n \]

\[Z = a + \frac{1}{n} + \frac{m}{J}; \]

\[x = \left(a + \frac{m}{J} \right)^n, \]

\[a = 23; \quad l = 1,00; \quad m = 0,00155, \quad \text{daher} \]

\[v = \left(\frac{23 + \frac{1}{n} + \frac{0,00155}{J}}{1 + \left(\frac{23 + \frac{0,00155}{J}}{1} \right)^n} \right)^n \]

n mit dem Grade der Rauheit des benetzten Umfanges zwischen 0,008 und etwa 0,040 variiert.

In diesen Formeln erhebt das Gefälle bald unter der zweiten, bald unter der vierten, und bald sogar unter der sechsten Wurzel eingesetzt und ungefähr nach diesen drei Clamen bestimmen sich auch die Differenzen zwischen den Resultaten der Formeln und der Messungen. Ist das Gefälle sehr klein, so geben die Formeln mit den höheren als zweiten Wurzeln des Gefälles die Geschwindigkeit zu groß, umgekehrt aber zu klein und nur in der Nähe des Uebergangpunktes (I = 0,0001) treffen sie zu. Wählt man Gewässer, deren Gefälle nicht sehr viel von 0,0001 abweichen, so sind diese Formeln brauchbar; will man sie aber bei Gewässern, B. mit sehr starken Gefällen anwenden, so geben sie falsche Resultate. Wir wollen dieses sofort zeigen und die Resultate selbst sprechen lassen.

Zusammenstellung einer Anzahl Messungsresultate mit den Resultaten der neuesten Formeln.

H. und H. bedeutet Humphreys und Abbot.
B. „ Bazin.
G. „ Gaudler.
H. „ Hagen.
S. und S. „ Ganguilles und Kutter.

Metermaß. (Man jebe die beigegebene Tabelle.)

Diese Zusammenstellung sehr verschiedenartiger Messungsresultate aus dem Werke von Humphreys und Abbot, aus den Recherches hydrauliques von Bazin, aus einer Abhandlung im ersten Jahrgang des „Kulturingenieur“, aus einer anderen im Jahrgang 1868 Heft 1 der Allg. Bauzeitung von Förster und aus einer Abhandlung in

Es ist hier nicht der Ort, noch gesättigt es der Raum, näher in die Sache einzugehen. Wir können uns aber nicht enthalten, uns darüber zu verwundern, daß die deutschen Fachmänner so schnell neue Formeln adoptieren, wenn sie an einigen Messungen sich bewähren, welche unter sich ähnlichen Bedingungen entsprechen, oder wenn eine solche Formel aus Amerika kommt u. s. w., wie dafür der 1. Jahrgang des „Güter-ingenieur“, das polychrom Journal, zweites Septemberheft 1868, und die Mitteilungen des hannoverschen Gewerbevereines 1868, Heft 6, wo die Formel von Hagen bis auf Weiteres zum praktischen Gebrauche empfohlen wird, Beispiele liefern, während man in Deutschland von den äußerst wichtigen und im höchsten Grade bedeutsamen „Recherches hydrauliques“ von Bazin, Paris 1865, wenig oder gar nichts hört. So lange aber dieses Werk von den Hydrologen nicht studiert wird, so lange wird man mit der Erkenntnis der richtigen Grundsätze der Bewegung des Wassers im Dunkeln bleiben.

Die Formel von Ganguillet und Kutter scheint allgemein anwendbar zu sein, obwohl sie complicirt ist. Doch ergibt sich aus dem Inhalte des zweiten Theiles der Abhandlung im zweiten Heft der Zeitschrift des österreichischen Ingenieur- und Architektenvereines von 1869, daß, wenn für die vorkommenden Haupt-Kraftgrade des bezeichneten Umfanges die Werthe $Z = a + \frac{1}{n} + \frac{m}{J}$ und $x = \left(a + \frac{m}{J}\right)^n$, ...
beschrieben und in einer Tabelle zusammengestellt werden, was in der Abhandlung am Schlusse gegeben ist, für die schnelle Berechnung der Werthe C alle Schwierigkeit wegsällt. Interessant und einfach wird aber die Bestimmung der Werthe C (sowie auch der Werthe n, R und J) mittels eines in der Abhandlung erklärten graphischen Verfahrens, wo aus einer konstruirten Figur mit Scala diese vier unbekannten Werthe der Formel sofort gefunden werden, wenn drei derselben bekannt sind. Sehr bemerkenswerth ist das Resultat der Vergleichung von 210 Messungsresultaten mit den bezüglichen Resultaten der fünf Formeln, wo die Formel von Canguellet und Ritter bei weitern die beste Übereinstimmung zeigt.

Wird sich diese neue, allgemeine Formel, deren Ableitung durch das graphische Verfahren Ausmerkenswert verdient, als praktisch und richtig bewähren, was nach der Zusammenstellung obiger 210 Messungsresultate zu erwarten ist, so scheint sie unbedingt auf allgemeine Anwendung Anspruch machen zu können.

V.
Beschreibung zweier Maschinen zur Erzeugung von Furnüren durch Hobeln.

Mit Abbildungen auf Tab. I.

Zur Herstellung von Furnüren dienen schon lange Maschinen, welche entweder auf der Anwendung einer Säge oder eines großen Hobels beruhen.

Mit den besten Maschinen der ersten Art, den so genannten Furnürschneidsägen, erhält man aus einer 27 Millimeter dicken Bohle 20, höchstens 25 Furnüren, deren Dicke nicht unter 0,5 Millimeter beträgt; mehr als die Hälfte geht als Ablauf beim Sägen verloren. Aus einem Holsteck gleicher Stärke schneidet man aber mit einer Maschine der zweiten Art, den Furnürhobelmaschinen, ohne besondere Schwierigkeiten bis 100 ja 150 Wäbter, also von Papierdicke; diese Maschinen sind gleichzeitig so eingerichtet, daß auch Furnüre größerer Dicke für gewöhnliche Tischlerarbeiten geschnitten werden können.

Mit Rücksicht auf den in diesem Journal aufgenommenen Artikel 6

Beschreibung zweier Maschinen

Die Anwendung des Hobels zum Schneiden von Furnituren läßt sich einige Jahrzehnte zurück nachweisen. 7

Auszuführung von 1839 und 1844 waren so geschlitzte Furnituren zu sehen, welche wie Papier mit verschiedenen Geheimnissen bedeckt waren.

Marion nahm 1836 ein Patent auf eine Maschine zum Schneiden des Holzes in dünne Blätter statt zum Sägen, welche infolge keine Verbreitung fand; ebenfalls Mathieu im Jahre 1840.

Im J. 1847 nahm Garand das erste Patent, das zweite 1847 auf eine Spiral-Sägenmaschine.

Bei der zweiten Maschine — besonders für Inniges Holz — erhält das Messer zwei Bewegungen; die eine in der Richtung der Länge der Maschine, die zweite gleichzeitig in der dazu senkrechten. Die Tischplatte mit dem Holz war etwas drehbar, um das Messer je nach dem Material verschieben sich wie zu lassen.

Im Jahre 1857 nahm Part in Amerika und darauf in Frankreich ein Patent auf eine Furniersägenmaschine für Holz oder aber anderes Material. Die sehr verfeinerte Maschine arbeitete nach dem Prinzip, daß ein Messer sich in zwei Richtungen bewegte, wie die schneidende Seite in einem Holzhammer.
Der Wirkungsweise nach unterscheidet man zweierlei Arten von Maschinen:
A. Spiral-Furnurbobelmaschinen; bei diesen rückt dem während des Schneidens sich drehenden Holzstiftes ein tangential gestellter Messer, mit einer der Furnurbide entsprechenden Geschwindigkeit, stetig näher. Es entsteht ein spiralförmiger Schnitt und der Holzkörper wird in ein Blatt von beträchtlicher Länge verwandelt.
B. Furnurbobelmaschinen; über einen auf einem Tische festgehaltenen Holzblöck bewegt sich ein über diesen ganzen Breite gebender, sich gestellter Hobel; der Tisch mit der Wohle wird vor jedem neuen Schnitt um die Dicke eines Furnurbildes gehoben.

In allen Fällen wird das Holz durch Dämpfe oder Eintauchen in heisses Wasser erweicht. Hierdurch wird wohl das Holz eigener weislicher Eigenschaften beraubt, man erlangt aber dadurch den Vorteil, dass man bunte Furnüre schneiden zu können.
Nach diesen einleitenden Bemerkungen gehen wir zur Beschreibung der Maschinen selbst über.

Figur 1 stellt den Grundriß dieser Maschine dar.
Fig. 2 ist ein Schnitt nach der Linie 1,2.

White aus England patented 1858 eine Maschine, welche sehr complicted und wenig durchdacht erscheint.

Fig. 3 zeigt den Schnitt durch die Achse des Holzzyllinders A, und zwar die rechte Seite der Einlagerung; sämtlich in 1/30 wirft Gr. Der Holzzyllinder A ist gehörig auf der Achse B, B, befestigt, so dass er eine bestimmte drehende Bewegung erhalten kann. Da die Holzbreite variabel ist, so sind die Ächsen B, B, verschiebbar gelagert; die Verschiebung erfolgt von der Leitschraube D links und D, rechts, ohne dass durch deren Wirkung eine Verschiebung der Zahnrader C und C, erfolgen kann. In Fig. 3 ist deutlich die Anordnung zu erkennen, welche an der rechten Seite der Maschine aus diesem Grunde getroffen wurde. E bezeichnet die festgehaltene Mutter der Schraube D, durch deren Drehung der Träger I hin und her geschnitten werden kann, welcher diese Bewegung auf die in dessen unterem Ende gelagerte, mit Schraubenwinklnungen versehene Ächse B, überträgt. Diese gleitet im Lager des Seitengehles F,; das Rad C, sitzt mit Feder und Ruh auf der Ächse B und bringt diese somit in drehende Bewegung, ohne eine Verschiebung derselben zu hindern. Die Mutter a und Gegenmutter a, halten nach einer geschehenen Einstellung das Rad C.

Eine weitere Feststellung erfordert das Schneidwerk, dessen Anordnung Fig. 4 und 5 zeigen; Fig. 5 lässt deutlich den eigentlich wirksamen Theil, ein scharf messerscharf zugeschliffenes Hobeleisen von beträchtlicher Ausdehnung erkennen, welches an dem Körper N durch zwei Deckplatten M und M' gehalten wird; gleichzeitig verhindert M durch seinen Anlegen an die Holzfläche ein tiefes Eindringen des Hobeleisens; M, dagegen leitet die Furnière U ab, welche auf eine Rolle A, aufgewickelt wird.

Das Messerhaus N ruht auf verstellbaren Schrauben d des Wagens J, welcher durch die Leitschraube V zum oder von dem Holzzyllinder gerichtet werden kann. Beim Schneiden muss das Messer stetig der Holzzyllinder-achse genähert werden, welche Bewegung von der Dicke der zu sehendenen Furnière und von der Drehung des Holzes abhängt. Die Verschiebung erfolgt beispielsweise von der auf der Ächse B stehenden Niemenscheibe H (Fig. 1); der Niemen läuft auf H, von deren Ächse die Regelräder H, und H, die Niemenscheibe g, und g in Drehung versetzen; die Ächse der letzteren bildet die Schraube V. Die Furniurblende wird durch Auswechseln der Scheibe g oder g, verändert.

Nun muss auf den Kreistopf L hingewiesen werden, welcher unmittel-
bar über dem Messer der ganzen Breite nach aus das Holz drückt, um ein etwaiges Eintreiben beselben zu verhüten. Die Schrauben b (Fig. 4) gestatten die genaue Einstellung von L.

Im Webrigen bezeichnen in allen Figuren gleiche Buchstaben gleiche Theile, so daß eine weitere Beschreibung zur Erklärung der Wirkungsweise der Maschine überflüssig ist. Nur von den Schmutzrollen p sey noch erwähnt, daß sie zur Unterstützung der Einlagerung des Holzblockes oder der Trommel dienen, welche in Fig. 6 und 7 angezeigt ist. Der Zweck dieser Anordnung ist, das Schneiden von Furnürern aus den Holzleisten m zu gestatten. Sie werden auf Holzunterlagen n befestigt und dann der Wirkung des Messers ausgesetzt.

Um möglichst wenig Material zu verlieren, wird der zu verarbeitende Holzblock abstützartig zugerichtet; man erhält im Beginn so lange eine Anzahl getrennter furnürübren, bis der Querschnitt kreisförmig ge- worden ist, und die Arbeit dauert bis der Zylinder auf circa 0,16 Met. Durchmesser abgeschafft ist.

Man kann mit dieser Maschine bei einem Krautfahrband von 4 bis 5 Maschinenpferden sehr leicht in einem Tag zwei Blöcke Mahagoniholz von 2 Met. Länge und 0,5 Met. im Gevierte in Furnür ein- schneiden (der Holzylinder macht 5 Umbreihungen per Minute und die Beschleunigung beträgt beispielsweise 0,75 Millimeter per Umbreihung, entsprechend 36 Furnürer aus 27 Millimeter Holzdicke). Die so erzeugten Furnürer haben nach einer leicht durchzuführenden Rechnung 544 Quadratmeter Fläche.

Mit einer Furnürträge erhält man bei günstiger Arbeit 20 solcher Furnürer auf 27 Millimeter, also im Ganzen 370 Quadratmeter.

B. Führhopelmaschine von Bernier d. ält. und Arben, Constructeurs in Paris. 11

Diese Maschine ist in den Figuren 8—12 dargestellt, und zwar in Fig. 8 der Grundriß; in Fig. 9 der Schnitt nach der Linie 1,2 der Fig. 8; Fig. 10 ist die Ansicht von hinten, sammlich in \(\frac{1}{20} \) natürlicher Größe. Das Gestell besteht aus den Seitenwänden A, A', welche mittels Querspannen und der Vorderwand B zu einem festen Ganzen verbunden sind.

Die Tischplatte C ist viereckig und durchlocht zur Aufnahme von Schraubentypen zur Befestigung des Holzkörpers O. Dieser wird vor dem Schneiden, wie schon oben gesagt wurde, gedämpft. An der Tischplatte ist die Druckmuttern c, c (Fig. 10) der Führungsschrauben Q1 und Q2, welche eine sichere parallele Hubung des Tisches vermitteln; dieses sind die Muttern c eine senkrechte Führung in den entsprechenden ausgebildeten Leisten c, c' (Fig. 9). Den wesentlichsten Theil bildet das Hobeleisen d, von dessen unverrückbarer Führung und richtigem Angriff die Arbeit abhängt. Das Messer d ist ein Doppelmteseließen von einer über die ganze Maschine sich erstreckenden Breite; es steht schief — nahezu 80° geneigt — gegen die Richtung des Schneidens und unter einem Winkel von 16° gegen die Holzfläche. Die Art der Befestigung ist deutlich aus Fig. 11 und 12 zu entnehmen. Hierzu ist nur zu bemerken, daß zur Unterstützung der gleichförmigen Abnahme der Furniere, also gegen ein etwaiges Einreißen des Holzes, eine Kupferstichene f unmittelbar vor dem Hobel durch die Pressf auf das Holz niedergedrückt wird. Die Pressf ist mit der Seitenwand D des Messergehäuses D in Verbindung und beide machen in Folge dessen eine gleiche Bewegung; den Abstand der Kupfersteine f vom Hobeleisen d regulirt man je nach dem zu verarbeitenden Holze mit der Schraube t'. Die Höhenstellung der Schiene f richtet sich nach der Dicke der Furniere; diese ist so groß wie der Abstand der unteren Linealfläche f von der schneidenden Messerkante. Diese Stellung wird durch die Schraube g, g' und die Stahlkeile g beeinflußt; einmal richtig gestellt, wird die Stellschraube G aufgezogen.

Die Bewegung übertragung erfolgt von der Hauptwelle J. Auf

zur Erzeugung von Furnituren durch Hobeln.

23

derielen fünf Niemenfeiben; P und P sind Voll- und p, p, und p Leerscheiben.

In der Stellung der Fig. 8 läuft der Niemen H auf die Voll-

scheibe, während der gekreuzte Niemen H, welcher von derselben Scheibe 12
ander der Transmissionswelle getrieben wird, auf die Leerscheibe p aus-

läuft. Die Bewegung selbst sich durch die Zahnrad für i, j resp. i' und j'

auf die Welle K fort, an deren Ende die mit den Zahnflächen L und

L, in Eingriff stehenden Getriebe k und k' fügen. Mit diesen Zahn-

flächen steht der Wellebalder D in fester Verbindung und wird dieser

in der Führung a, a' über die Bohle O hingeschoben, während das Hobel-

eisen die Furnürfe U abgeschiedet.

Am Ende des Laufes angelangt, rückt in Folge der Wirkung einer
von der gewöhnlichen Metall-Hobelmachine bekannten Umsteuerung —

Stange I, Nase N, verstellbare Knagen n und n, 2c. — der Niemen H

auf die Leerscheibe p, und der gekreuzte Niemen H, auf die Voll scheibe

P; es erfolgt der entgegengesetzte Gang des Hobeleisens. Am Ende

dieses Laufes erfolgt die Hebung des Tisches C um eine Furnurücke

in folgender Art.

Der Stift q (Fig. 8 und 10) an der Zahnflange L, steht gegen

das Sternrad q, wenn der Rückgang nahezu vollendet ist. In Folge

dessen erhält das Kettenrädchen r eine gewisse Drehung, welche sich durch

die Gliederfette R auf das Rad R, und weiterhin auf das Getriebe r

und dessen Achse S überträgt. An beiden Enden derselben fügen die

Reglerräder s, s, welche mit S, S, 2, in Eingriff stehen, deren Achsen je

eine Schraube ohne Ende tragen (Fig. 9). An der Führungsschraube

Q und Q, sitzt unten ein mit jener eingreifendes Schraubennad. Da

Q und Q, nur eine drehende Bewegung zukommt, so rücken die vertical

geführten Muttern c, c mit der Tischplatte C nach außen. Diese

Hebung hängt — abgesehen von einer veränderten Raderübertragung —

von der Drehung des Sternrades q' ab; einen gewissen Spielraum hat

man somit durch Ausheben eines 4, 5 oder 6-sternigen Rades q' in

der Hand.

Nicht hinreichend weit geschnitten, so erfolgt ein rascher Rückgang des

Tisches mit Hilfe der an der Achse von q, beseitigten Kurbel T.

Eine Abstimung der Maschine erfolgt durch eine entsprechende Stel-

lung des Steuerhebels, bei welcher die Niemen auf die Leerscheibe P,
und p, auslaufen, und in welcher der Hebel l durch die einfallende Kurbel o (Fig. 8) erhalten bleibt.

Die Maschine kann bis zu 2,3 Met. lang und 1,8 Met. breit heben; hierbei beträgt die mittlere Geschwindigkeit des Hebels 14 — 16 Met. pro Minute, also im Durchschnitt 0,25 Met. pro Sekunde. Berücksichtigt man, dass die Hälfte der Zeit auf den Rückgang des Hebels verloren geht, so können per Arbeitsstunde 225 Furnürblätter von 2 Met. Länge und einer Breite bis 1,8 Met. von beliebiger Dicke erzeugt werden, wobei aber der Zeitaufwand für das Befestigen des Holzblocles z. c. nicht eingerechnet ist.

Der Preis der beschriebenen Maschine wird mit 6000 Frs. loco Paris angegeben.

Johann Jeman.

VI.

Große selbstthätige Kreissäge von Gebrüder Schmaltz in Offenbach a. M.

Mit einer Abbildung.

Eine Beschreibung der selben mit der hier beigedruckten Abbildung befindet sich im Gewerbesblatt für das Großherzogthum Hessen, Juli 1864, Nr. 27; aus derselben geht hervor, daß unsere Kreissäge von 1860 mit derjenigen, wie sie „in neuerer Zeit“ in der Maschinenfabrik von Johann Zimmermann in Chemnitz gefertigt wird, fast identisch ist.

Die Beschreibung der Maschine a. a. D. lautet:
"Unsere große, selbstfähige Kreissäge für Bauzwecke besteht aus einem harten gusseisernen Gestell mit abgebesser Tischplatte. Die Spindel, in langen Robiguffässern fachig gelagert, besteht aus Gusseisen. Das Blatt hat bei 1 Meter Durchmesser eine Umlaufgeschwindigkeit von 2500 Meter per Minute und ist in der Tischplatte auf eigenthümliche Weise geführt, so daß die Säge möglichst hoch über der Sägeplatte vorwärts, ohne zu schwanken oder zu dich jen zu müssen. Es ist die Einrichtung getroffen, daß das Blatt in wenigen Minuten durch ein anderes ersetzt werden kann, ohne die Spindel heraus zu nehmen, damit man abwechselnd zwei Blätter in Gebrauch nehmen u. das Sägerät in der Zwischenzeit bequemlich laufen. Auf dem Tisch ist eine vermittelst Schraube und Stufenbewegung parallele Führung angebracht und auf dem Fußboden vor und hinter dem Gestell befindet sich eine Bahn aus leichtem Eisenlatten, worauf zwei Kuren B, B laufen, so daß es einer sehr leichten Verschiebung der gesamten Vorräderzüge und vor dem Gestell liegenden Arbeiterkörpereinrichtungen ermöglicht wird. Unter dem Gestell ist eine mit Klemm- und Kardanlagerung versehene Längsrichtung angebracht, auf deren gusseisernen Trommel sich ein
Die Abweichungen und „Vervollkommnungen“ an der zuletzt genannten lassen sich in folgende Punkte zusammenfassen:

1) Es befindet sich eine lose Rolle auf der Sägenwelle.
2) Das Seil der Trommel zieht nicht direkt an dem zu schneidenden Stamm, sondern an dem das Ende des letzteren tragen den Karren, und zwar an dem unteren Ende nächst der Rollenachse.
3) Die Auslöschfähige der Seiltrommel und der Niemen-Austrücker sind mit Winkelhebel verbunden und die Ausrichtung beider geschieht selbsttätig durch den Karren, sobald er in die Nähe des Sägentisches gelangt.

ad 1. Die Anbringung einer losen Rolle auf der Aehse einer Kreissäge ist an und für sich nicht ratsam. Bei der in großen Schnelligkeit der Aehse, verbunden mit dem relativ kleinen Durchmesser der Niemenscheibe oder Rolle, ist die Abnutzung derselben der Aehse groh und die Wirksamkeit der Auslösung gering, d. h. die Säge — obgleich ausgelest — wird noch lange fortlaufen bis sie zur Ruhe kommt. — Nachet man dazu, daß in den meisten Fällen die Anlage einer Zwischenwelle (Vorgelege) mit vermittelnder Schnelligkeit geboten ist, theils weil die Dimensionen der Betriebstriemenscheibe zu folosal werden, theils weil der Standort der Säge zu entfernt von der Transmissions ist, so ist es rationeller die lose Scheibe auf der Zwischenwelle anzubringen, weil dann gleichzeitig zwei Mechanismen stillgestellt werden, sowie auch die Abnutzung geringer und weniger loßbar ist.

ad 2. Bei der Zimmermann'schen Säge zieht das Seil nicht wie bei der Schmalz'schen direct am Stamm, sondern es ist mit dem Karren verbunden, und zwar nahe am Fußboden, etwa 2½ Fuß unter der Tischebene, aus deren Höhe der Schwerpunkt liegt und der Widerstand stattfindet. Es gehört aber nicht viel Calcul dazu, um nachzuweisen, daß der Wagen oder Karren dann nach hinten umzufallen sucht, sich nach vorn heben muß und nur das hintere Rollenpaar auf den Schienen bleibt.

derfelbe die Seiltrommel und die Säge selbstthätig auslost. Es bleibt
etwa noch drei Fuß zu schneiden übrig und es muß zu diesem Zwecke
der Karren mit dem Seile von Hand zurückgezogen, ein Stück Holz
von 3 Fuß zwischen Karren und Stamm gestemmt und die Maschine
wieder von Hand in Thätigkeit gesetzt werden.

Es ist hierbei zu bemerken, daß wenn das Stammende nicht genau
winkelrecht abgeschnitten und das 3 Fuß lange Zwischenholz nicht genau
in der Richtung des Schnitites eingestemmt wird, eine bedeutende Klem-
mung der Säge erfolgen muß. Hierzu kommt noch, daß, da die Säge
bei der ersten Auslösung im Schnitte bleibt, dieselbe wieder in Angriff
kommen wird, ehe der Niemen das Trügheitsmoment des Stillstandes
überwunden hat. Nach Vollendung des Schnittes wird Trommel und
Säge zum zweitenmale selbstthätig ausgelöst, Stamm, Karren und Seil
von Hand zurückgezogen und ein zweiter Schnitt begonnen.

An der Schmaltz'schen Säge geht das Seil über nach Bedürfnis
vertauschbare Leitrollen, seitlich der Säge und über die Lichfläche direct
an das Stammende. Es zieht den Stamm mittelst verstelltem spigen
Haken in gerader Linie gegen die Säge. Der Stamm wird bloß von
dem Karren getragen und durch breite flache Messer am Rippen ver-
bindert. Sobald der Karren gegen den Lich kommt, nimmt der Arbeiter
die Messer weg, löst dadurch die Verbindung zwischen dem Karren und
dem Stämme und der ersterne bleibt ruhig stehen, während letzterer — der
Stamm — ohne Unterbrechung durch die Säge gezogen wird. Erst
nachher wird der Trommel vom Arbeiter durch eine Fußbewegung ausgelöst
und wie bei der Zimmermann'schen Säge der Karren, das Seil und
der Stamm von Hand zurückgezogen, um einen neuen Schnitt zu beginnen.

Für kürzere Hölder kann man den Karren zur Seite schieben und
die Säge als gewöhnliche Kreissäge benügen. Bei der Zimmermann's
chen Anordnung dagegen wird niets in solchen Fällen der Karren oder
das Seil im Wege sein.

Wirft man noch einen Blick auf die Unterschiede in der Construction
der Maschine überhaupt, so wird man bemerken, daß bei Zimmer-
mann die Anordnung der Bewegung zur Seiltrommel eine getreue
Copie der Schmaltz'schen Säge ist, das dagegen in der Construction
des Liches beide sich wesentlich unterscheiden. Bei unserer Säge ist der
Lich mit Lagern, Jarge und dem oberen Theile der Füße aus einem
Stück gegossen und bildet ein Ganzes. Bei der Zimmermann'schen
Säge dagegen ist eine dünne Lichplatte mit zwei Seitenfläden ver-
schraubt, welche als Füße dienen und durch Stege verbunden sind. Die
Sägenächse scheint in angegossenen Halen gelagert zu sein.

VII.

Aus dem Engineer, November 1868, S. 406.

Mit einer Abbildung.

Das Bedürfnis nach einer Geleichförmigkeit der Drahtlebren ist zu bekannt und machte sich längst im Handel sowohl als bei der Fabrication fühlbar. Latimer Clark legte in der Berammlung der British Association zu Dundee eine Tabelle vor, in welcher er nicht weniger als 13 verschiedene gangbare Waage vorführte, welche unter dem Namen Birminghamser Drachtnaß ausreten; diese wichen in ihren Angaben untereinander außerordentlich ab, indem die Gewichtsdifferenzen gleicher Nummern Drach 10, 15, in einzelnen Fällen bis 90 Prozent betrug.

11) Zm Prinzip gleich construirte Kraft in Pfennigleibren, bei welchen die Nummern mit er Diire in Ziffern und Punkten ausgedrückt corrispondiren.
Im Laufe des Jahres 1857 adoptirten die Maschinisten J. R. Brown und Sharp zu Providence, Rhode Island (nun Darling, Brown und Sharp), eine Drabellehre welche der Genauigkeit halber eine weite Verbreitung gefunden und welche unter dem Namen „American gauge“ bekannt wurde, deren allgemeine Annahme nun Pope empfiehlt. Das von Latimer Clark i. J. 1857 vorgeschlagene Maß weicht nicht son-

Der bei dem amerikanischen Drabelmaß ausstretende Verdünnungs-

factor — nach Karmarsch 15 jener Bruch, mit welchem der Durchmesser einer Drahtstange zu multipliziren ist, um den Durchmesser der nächsthöheren seiner Sorte zu finden — bestimmt sich leicht folgendermaßen:

\[
A \text{ bezeichnet das erste Glied der in einer geometrischen Progression zunehmenden Drahtstangen;}
\]

\[
B \text{ das um } N \text{ von } A \text{ abrückende Glied;}
\]

\[
N \text{ Stellungsziffer von } A \text{ begonnen; endlich } i \text{ der Verdünnungsfactor, so ist}
\]

\[
R = \sqrt[3]{B} - \frac{1}{A}
\]

Für A, Draht Nr. 36, ist der Durchmesser 0,005 Zoll, für B, Draht Nr. 0000, 0,46 zu stehen, ferner für N = 40, so dass der gleichblei-

bende Verdünnungsfactor \(R = \sqrt[3]{92} = 1,12293 \) beträgt (log \(R = 0,0503535 \)).

Man erhält somit jedes Glied der Reihe, indem man den Durch-

messer der gefundenen Nummer mit R multipliziert, um jenen der nächst-

folgenden Nummer zu erhalten.

Um auch den Unterschied des amerikanischen Drabelmaßes und des

alten „Birmingamer“ zu untersuchen, sind auf den Schenkeln des Winkels ACB die Teilungen entsprechend aufgetragen und zwar auf A C das

englische und auf BC das amerikanische, das von Pope befürwortete Maß.

Ebenso gestattet nachstehende Tabelle einen Vergleich; Draht Nr. 15

alt entspricht fast genau Nr. 13 neu, wie dies aus dem Höchstmaß und
der Tabelle zu entnehmen ist.

15 Mittheilungen des hannoverischen Gewerbevereins, 1865 S. 75.
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Drahtdicke in Millimeter</th>
<th>Peters' Normallechre</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11,58</td>
<td>0,937</td>
</tr>
<tr>
<td>1</td>
<td>11,58</td>
<td>0,937</td>
</tr>
<tr>
<td>2</td>
<td>11,58</td>
<td>0,937</td>
</tr>
<tr>
<td>3</td>
<td>11,58</td>
<td>0,937</td>
</tr>
<tr>
<td>4</td>
<td>11,58</td>
<td>0,937</td>
</tr>
<tr>
<td>5</td>
<td>11,58</td>
<td>0,937</td>
</tr>
<tr>
<td>6</td>
<td>11,58</td>
<td>0,937</td>
</tr>
<tr>
<td>7</td>
<td>11,58</td>
<td>0,937</td>
</tr>
<tr>
<td>8</td>
<td>11,58</td>
<td>0,937</td>
</tr>
<tr>
<td>9</td>
<td>11,58</td>
<td>0,937</td>
</tr>
<tr>
<td>10</td>
<td>11,58</td>
<td>0,937</td>
</tr>
</tbody>
</table>

Bemerkungen:

- Die Tabelle enthält Werte für Drahtdicke und deren Einfluss auf die Verformungsgüte.
- Die Spalte Peters' Normallechre zeigt die entsprechenden korrigierten Werte.
- Die Werte sind für verschiedene Drahtdicken angegeben.

Anmerkung:

Die Tabelle ist Teil eines größeren Textes über eine gleichförmige Drahtmaß.

Es sei dem Referent gestattet, bei der Wichtigkeit welche diese Angelegenheit auch für deutsche Industrielle beansprucht, auf folgende Anzüge von Karmarisch zu verweisen, und sie theilweise anzuführen.

"Wenn auch bei den Dickenabstufungen der üblichen Drahtlehren viele Unregelmäßigkeiten sich ergeben, so tritt doch bei den gut angeordneten Systemen die Natur der Sache entsprechende Regel hervor: den Verdünnungsfactor — d. h. festen Bruch, mit welchem der Durchmesser einer Drahtorte zu multiplizieren ist, um den Durchmesser der nächstfolgenden seiner Sorte zu finden — mit steigender Feinheit der Drähte abnehmen zu lassen. Es wird hierdurch erreicht, daß die Sprünge von einer Nummer zur anderen bei groben Sorten nicht zu groß und bei seinen nicht zu klein ausfallen. Aber die Ausführung des Grundgesetzes wird offenbar mehr durch ein halbdunkles praktisches Gefühl, als durch bestimmtes Bewuβtsein geleitet und empirischer Griff scheint den Platz eingenommen zu haben, welcher einer wissenschaftlichen Festsetzung gebührt."

"Wenn überhaupt anerkannt wird, daß seine Drahtsorten eines kleineren Verdünnungsfaktors bedürfen, als die größeren bestehenden Sortimente, so muß streng genommen gefordert werden, daß der genannte Faktor mit jedem Schritte von einer Nummer zur anderen sich ändere; und wiewohl die Festhaltung bestimmter Durchmesser der Jieblöcher nur innerhalb gewisser Genauigkeitsgrenzen möglich ist, so ist es doch nicht
unmöglich eine Vorschrift zu kennen, deren Erfüllung man so viel thunlich anzustreben hat."

"Es geht aus dem eben Gesagten als völlig naturgemäß hervor, die Verdünnungsfactoren einer Nummernreihe derart zu bestimmen, dass sie eine geometrische Progression bilden, d. h. jeder folgende durch die Multiplication des vorhergehenden mit einer gewissen (für das ganze Sortiment gleichbleibenden) Zahl (z) entsteht. — Ein darin gerichteter Vorschlag ist bereits gemacht worden (i. polytechnisches Centralblatt, 1858 S. 1401), aber in der Absicht eine einzige „allgemeine Drachtlehre“ aufzustellen, was schon darum nicht angeht, weil verschiedene Gebräuchszwecke bald seine, bald größere Abänderungen verlangen. Auch ist die dort gewählte Progression eine zu rasche, und eine Nachweisung über die Berechtigung ist nicht gegeben."

"Nenn man n die Anzahl Nummern oder Sorten in einem Sortiment, D die Dicke der größten und d die Dicke der feinsten Nummer, endlich p den Verdünnungsfaktor zwischen D und der zunächst daran folgenden Nummer, so ergibt sich, allgemein ausgedrückt, die Reihe der Dickeabstufungen wie nachstehend:

\[
\begin{align*}
&D, pD, p^2D, p^3D, \ldots, p^nD, \\
&D, pD^2, p^2D^2, p^3D^2, \ldots, p^nD^2, \\
&D, pD^3, p^2D^3, p^3D^3, \ldots, p^nD^3, \\
&D, pD^4, p^2D^4, p^3D^4, \ldots, p^nD^4, \\
&D, pD^5, p^2D^5, p^3D^5, \ldots, p^nD^5, \\
&D, pD^6, p^2D^6, p^3D^6, \ldots, p^nD^6, \\
&D, pD^7, p^2D^7, p^3D^7, \ldots, p^nD^7, \\
&D, pD^8, p^2D^8, p^3D^8, \ldots, p^nD^8, \\
&D, pD^9, p^2D^9, p^3D^9, \ldots, p^nD^9, \\
&D, pD^{n-1}, p^2D^{n-1}, p^3D^{n-1}, \ldots, p^nD^{n-1}, \\
&D, pD^n, p^2D^n, p^3D^n, \ldots, p^nD^n.
\end{align*}
\]

\[
D, pD^{n-1}, pD^n, p^2D^{n-1}, p^2D^n, \ldots, p^nD^{n-1}, p^nD^n.
\]

Demnach wird

\[
D = p^n \frac{n^2 - 3n}{2} + 1,
\]

\[
d = p^n \frac{n^2 - 3n}{2} + 1.
\]
und wenn man für \(z \) einen Werth willkürlich annimmt, berechnet sich jener von

\[
p = \sqrt[3]{\frac{n - 1}{d}}.
\]

"Um mit den praktisch bewährten Ordnungen übrigens im Einklang zu bleiben, erscheint als zweckmäßigster Werth für \(z \) (dieser Ableitung ich der Klüfte halber übergehe) der Bruch 0,998; und es ist folglich jeder Verdünnungsfactor um \(\frac{1}{500} \) (0,002) kleiner zu nehmen als der unmittelbar vorhergehende. Der Factor zwischen der höchsten Drahtnummer (1) und der zweiten (2) wird demnach = \(p \); zwischen Nr. 2 und 3 = 0,998 \(p \); zwischen Nr. 3 und 4 = 0,998^2 \(p \); dann so fort: 0,998^3 \(p \), 0,998^4 \(p \), 0,998^5 \(p \), bis bei \(n \) Nummern des Sortimentes der letzte Factor = 0,998^n-1 \(p \) wird."

"Man kann hiernach die Verdünnungsfaktoren und Drahtstärken für jede Drahllehre berechnen, wenn die größte und die geringste Dicke nebeneiner Anzahl dazwischen liegender Nummern gegeben ist. Mein Zweck besteht also auch nicht darin, ein neues oder allgemeines Nummern-System aufzustellen, sondern nur zu zeigen, wie man jedes vorhandene System nach richtigem Grundsätze regeln könne zu."

(Mith., Jahrg. 1865 S. 75 bis 77.)

In dem Artikel „Über verschiedene Drahllehren und im Besonderen die von Petre’s (Zeitschrift des Vereines deutscher Ingenieure, 1867) empfohlene Universal- oder Normallehre“ (Mith., Jahrg. 1867 S. 262), sagt Kar m a r i ch nach der Mittheilung verschiedener Tabellen:

"Wer die im Vorhergehende mitgeteilten Draht- (und Blech-) Nummern-Schicke und dagegen, was ich selbst schon früher (an den Eingangs genannten Stellen) gleichartiges beigebracht habe, zusammengenommen überblickt, wird gewiß der Ansicht sein, daß in diesen zur Bequemlichkeit des Handels bestimmten Einrichtungen eine Bunttheit herrscht, welche nur Unzulichkeit, Unvollständigkeit, Bewirrung und zahllose Missverständnisse hervorbringen muß. In einem völlig veränderten Falle, der die Einheitsbestimmung der Maschinenwasserdreier aller Art betriift, ist die industrielle Welt schon längst über den Gebrauch ganz weniger Systeme einig, von denen jedes seinen festgeglichen und genau bekannten Anwendungskreis hat. Gegenwärtig, wo Übereinstimmung im Maß- und Gewichtswesen ein Lösungswort des Tages ist, tritt das Befehlen jo vieler und in jeder möglicher Weise von einander abweichender Draht- und Blechlehren um so mehr als schreiende Anomalie auf, und es ist."

Dingler’s polyt. Journal Br. CXII. S. 1.
über ein gleichförmiges Drahtmaß.

"Die naturgemäßen Forderungen an eine solche Normallehre lassen sich folgendermaßen formulieren:

1) Sie muß in einfachen Nummern von den dickeren zu den dünnern Sorten aufsteigen, weil selten oder gar nicht das Bedürfnis vorliegt, über etwa 8 Millimeter hinaus noch die Lehre zu grüßen, da dann der Zollstock gewöhnlich noch ausreicht; nicht aber für die höchsten Feinheitsgrade eine bestimmte praktische Grenze gesetzt ist. Für die wenigen Fälle, wo Drahtsorten über 8 Millimeter mit Lehren zu messen sind, wie in den Messingdrahtgießereien und Holzschraubensorten, können Null-Nummern (0, 1/2, 1/3, etwa bis 1/4) hinzugefügt werden.

3) Die Lehre soll sich dem Meistermaße in einfachster und bequemer Weise anschließen, und zwar dadurch, daß man das Gewicht eines Quadratmeters Eisenblech, als der überwiegend wichtigsten Blechgattung, für jede Nummer auf eine möglichst einfache Zahl von Kilogrammen oder Pfunden (Halb-Kilogrammen) stellt."

"Diesen Grundlagen zufolge adoptirte Petters im Wesentlichen die von mir rectificirte englische (Birmingham's) Drahtlehre, jedoch mit folgenden Abweichungen und Zusätzen:

1) Über 1/6 hinauf werden die Nummern bis 1/6 einschließlich fort- gesetzt.

2) Nach Nr. 36 werden noch 4 Nummern — bis 40 einschließlich — hinzugefügt.
3) Die Dicken der einzelnen Nummern werden durch (meist ganz geringfügige) Veränderungen so regulirt, daß sich für das Gewicht eines Quadratmeters Blech eine möglichst einfache Zahl ergibt. Dabei ist das spezifische Gewicht des Eisenbleches zu 7,7778 angenommen.

4) Für den etwaigen Bedürfnissfall bleibt die Einhaltung von Zwischenstufen in Gestalt halber Nummern zulässig, deren Dicke das arithmetische Mittel aus den Dicken der beiden benachbarten ganzen Nummern seyn würde."

VIII.

Über Waschanstalten; von Professor Kohl in Chemnig.

Aus den Mittheilungen des bauverwesenden Gewerbevereines, 1868 S. 317.

Mit Abbildungen auf Tab. II.

Die vielseitig benutzten Waschmaschinen für häusliche Zwecke vermindern zwar die Unbequemlichkeiten der Handwascherei zum großen Theil, sie bedingen aber immer ein vorheriges Einseifen und längeres Einweichen, sowie eine mehr oder minder große Anstrengung für die Bewegung der Handwaschmaschine. Nicht selten wird jedoch die Wäsche durch zu starke Lauge oder ungeeignete mechanische Hilfsmittel, z. B. durch Bürsten, Walzbreter, Stampfen w. starr angegriffen.

Alle diese Unbequemlichkeiten und Nachtheile werden durch die Be-

Die hier zur Unterlage gewählte Waschansalt ist die seit 1½ Jahren bestehende des Herrn H. Kreßchmar in Chemnitz.

Fig. 7 zeigt den etwas vereinfachten Grundriß der Maschinenanlage. Die erforderlichen Räumlichkeiten bestehen aus einem An- und Abnahmee- zimmer, einer kleinen Niederlage für Seife, Del. cc., der Hausfür und dem Wasch- und Dampfmaschinenraume. Bei 40 Ellen Länge der ganzen Anlage und 12½ Ellen Tiefe kommen auf den Waschräume A 18½ Ellen, auf das Zimmer B 8½ Ellen und auf den Dampfmaschinenraum C 5½ Ellen Länge.

Im Waschräume befinden sich 3 Waschmaschinen I, II und III, die Spülmaschine IV und die Centrifugat-Trockenmaschine V. Diese Maschinen werden durch Niemenbiet von der Hauptwelle VI bewegt; für die Trockenmaschine V diert aber zur Geschwindigkeitsübertagung noch das Scheibenvorgelege VII. Der Waschräume enthält noch die Einweich- bottiche VIII und den Auslegetisch IX.

Der Betrieb der Anstalt ist nun folgender:

Zunächst die Frauen oder deren Dienstmädchen während des Was- chens ihrer Wäsche selbst zugegen bleiben wollen, wie es hier meist der Fall ist, wird das Waschen einige Tage vorher angemeldet und die An- stalt bestimmt die Zeit dafür.

In vielen größeren Städten, in denen sich von der Schimmel'schen Maschinenfabrik angelegte Waschanstalten befinden, sind zugleich die Einrichtungen getroffen, um die Wäsche vollständig fertig abzuleisten. Ein Gesamtraum in der ersten Etage von der Größe der in Fig. 7 dargestellten Parterrelocale würde vollständig genügen zu einem mit Dampf zu heizenden und mit Trockenapparat versehenen Raume, ferner für Zimmer zum Wangeln und Plätten.

Aus dem angegebenen Bauschaffen wird es völlig einleuchten, daß die Wäsche durch die Behandlung der Waschwalke und durch die Spül- und Schleudermaschine ungleich weniger als durch die vorrichtigste Handwäscherlei leiden kann. Denn die letztere wird meist ein längeres und starres Reiben und das Auswringen der Wäsche bedingen, wogegen die Arbeit der Waschwalke nur in einem Kneten und die der Schleudermaschine in einem schnellen Herumwegen der Wäsche besteht.

Rechnet man zu den verschiedenen Uebelständen der Handwäscherlei den Aufwand für Seife, Brennmaterial, Löhne usw., so ergibt sich für die Benutzung einer Waschanstalt ein sehr günstiges Resultat.

Es follet hier zu waschen:

1 Pfund weiße Wäsche	6 Pfennige
1 „ brunette „	8 „
1 „ Vorhänge „	10 „

Was das Unternehmen selbst betrifft, so ist daselbe, als ein der Con- junctur und dem Risico wenig unterworfenes Geschäft, als eine sehr rentable Anlage zu bezeichnen. Das ausgezeichnete System der Waschmaschinen aus der Maschinenfabrik der Herren Oscar Schimmel und Comp. in Chemnitz, womit die erste derartige Waschanstalt versehen wurde und
sich so vorzüglich bewährt hatte, ist der Hauptgrund der so schnellen Verbreitung solcher Anlagen.

Die hier beschriebene Anlage wurde am 1. Mai 1867 eröffnet und hatte mit Schwierigkeiten mancherlei Art und namentlich mit Vorurteilen und Verächtlichungen zu kämpfen, welche letztere besonders von Seiten der sich beeinträchtigt glaubenden Wäscherinnen ausgingen. Dennoch konnte die baldige Erhebung der Vortheile und der großen Bequemlichkeit nicht ausbleiben. Der nachfolgende Rechnungsabschluß des ersten Betriebsjahres und die sehr baldige mehrseitige Nachahmung hier und in vielen anderen Orten zeugen die günstige Aufnahme dieser Anlage am deutlichsten.

Das Local derselben nebst Dampfmaschine und Wellenleitung ist ermiethet und zwar für den Preis von 320 Thalern jährlich.

Die nötigste Anschaffung war nun folgende:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 große Waßmachinen, Patent Dr. Schimmel u. Comp. á 400 Thlr.</td>
<td>800</td>
</tr>
<tr>
<td>1 kleine dreiteilige</td>
<td>250</td>
</tr>
<tr>
<td>1 Centrifugal-Trockenmaschine</td>
<td>250</td>
</tr>
<tr>
<td>1 Spülmaschine</td>
<td>70</td>
</tr>
<tr>
<td>Rohleitungen und Anschlussarbeiten circa</td>
<td>1000</td>
</tr>
<tr>
<td>Hiemen</td>
<td>130</td>
</tr>
<tr>
<td>Bodenplatte, Körbe, andere Warenstücken, Einrichtungsarbeiten circa</td>
<td>500</td>
</tr>
<tr>
<td>circa 3000</td>
<td></td>
</tr>
</tbody>
</table>

Einnahme.

(Eröffnung der Anstalt am 1. Mai 1867.)

<table>
<thead>
<tr>
<th>1867 Pfunde</th>
<th>Erlös.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mai 16270 gewaschene Wäsche, incl. Vorhänge</td>
<td>338 25</td>
</tr>
<tr>
<td>Juni 16996 gewaschene Wäsche incl. Vorhänge</td>
<td>357 20 6</td>
</tr>
<tr>
<td>33266 für die Zeit der Einführung</td>
<td>696 15 6</td>
</tr>
</tbody>
</table>

Einnahme.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Juli 16129 gewaschene Wäsche incl. Vorhänge</td>
<td>333 29 4</td>
</tr>
<tr>
<td>Aug. 21700</td>
<td>453 1</td>
</tr>
<tr>
<td>Sept. 16055</td>
<td>340 10 5</td>
</tr>
<tr>
<td>Okt. 17048</td>
<td>356 11 2</td>
</tr>
<tr>
<td>Nov. 22565</td>
<td>481 9 3</td>
</tr>
<tr>
<td>Dec. 18353</td>
<td>409 5 2</td>
</tr>
<tr>
<td>57946 Pfund</td>
<td>1246 25 7</td>
</tr>
</tbody>
</table>
1868.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>27199</td>
<td>559</td>
<td>7</td>
<td>—</td>
</tr>
<tr>
<td>Febr.</td>
<td>22313</td>
<td>483</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>März</td>
<td>28507</td>
<td>616</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>April</td>
<td>78019 Pfund</td>
<td>1658</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td>Mai</td>
<td>61994</td>
<td>488</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>Juni</td>
<td>20596</td>
<td>438</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Juni</td>
<td>18670</td>
<td>407</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>Juni</td>
<td>66169 Pfund</td>
<td>1329</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Zuzüglich 256018 Pfund — 5362 Thlr. 2 Ngr. 2 Pf.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seite für 2560 Thlr. Wäsche (pro Thlr. 11 Ngr. Eiweiss und 4 Ngr. Niegels Schwager)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Löhne an den Bächer</td>
<td>5</td>
</tr>
<tr>
<td>„ „ „ Spötler</td>
<td>3</td>
</tr>
<tr>
<td>„ „ „ Feuermann</td>
<td>3 15</td>
</tr>
<tr>
<td>„ „ „ Expedienten</td>
<td>4</td>
</tr>
<tr>
<td>52 Wochen à 15 15</td>
<td>806</td>
</tr>
<tr>
<td>Miete für Local, Maschine und Kessel, ohne Heizung</td>
<td>330</td>
</tr>
<tr>
<td>Kohlen, 52 Wochen à 8 Thlr.</td>
<td>416</td>
</tr>
<tr>
<td>diverse kleine Ausgaben</td>
<td>260</td>
</tr>
<tr>
<td>Zinss von 3000 Thlr. Anlage</td>
<td>150</td>
</tr>
<tr>
<td>10 Proc. Abnutzung von 3000 Thlr. Anlage</td>
<td>300</td>
</tr>
<tr>
<td>Bilanz</td>
<td>3542</td>
</tr>
</tbody>
</table>

| Einnahme | 5362 | 26 2 |
| Ausgabe | 3542 | |

Reingewinn | 1820 | 26 2 |

Bei Beschäftigung der Anstalt im ganzen Jahre, wie während der Monate Januar bis März 1868, ergibt sich hierauf ein jährlicher Reingewinn von nahezu 2800 Thlr. Die Leistungsfähigkeit der Anstalt beträgt nach den gemachten Erfahrungen aber 14 bis 15 Thlr. pro Tag, also ca. 85 Thlr. pro Woche und würde sich bei vorausgeschriebener Beischäftigung der Reingewinn noch bedeutend erhöhen. Die bei einem mäßigen Anlagekapital sehr gute Ertragsfähigkeit solcher Anstalten, das vorgängige System der Waschmaschinen und die präzise und schnelle Ausführung von Seiten der obengenannten Maschinenfabrik haben auch in kurzer Zeit eine bereits vielseitige Verbreitung sol-
cher Waschmaschinen hervorgehen. Chemnitz besitzt deren fünf, welche alle volle Beschäftigung finden.

Hiernach ist zur spezielleren Beschreibung der Maschinen-Construction überzugehen.

1. Die Waschmaschine ist durch Fig. 8 als Längenanricht und durch Fig. 9 als verticaler Län-
genanschritt dargestellt.

Aus diesen Figuren ist schon ersichtlich, daß diese Waschmaschine mit den längst angewandten Druck- oder Kurbelwalzen darin übereinstimmt, daß deren Hämmer nicht durch Daumen gehoben werden und dann frei-fallend mit Stoß oder Schlag wirken, sondern daß sie durch Kurbelbe-
wegung hin- und hergezogen und die im Waschtopf eingelegten Körper durch Drüden oder Kneten damit gleichmäßig bearbeitet werden.

Die Modifikationen, welche die Kurbelwalze durch die Schimmel'sche Maschinenfabrik erfahren hat und ihr patentiert worden sind, bestehen hauptsächlich in der Benützung der Vor- und Rückwärtsbewegung der Walzhämmer, wodurch diese Maschine doppeltwirken gestaltet worden, in der Beseitigung der Kurbelstangen und Substituierung von Geleislagern, in einem Regulirungsapparate u. u. es haben diese und noch andere Ver-
beesserungen ganz besonders dazu beigetragen, diese Maschine für den vor-
liegenden Zweck geeignet zu machen. Das Verdiensliche dieser Firma besteht aber hauptsächlich in der Erfindung, die Walzen zum Waschen der Wäsche zu benützen und dieser nützlichen Anwendung mit Ausbietung aller Kräfte nach allen Seiten hin Eingang zu verschaffen.

Diese Maschine besteht aus den gußeisernen Seitenwänden a, welche durch Rippen den Waschtump t aus Eichen- oder Rothbuchenholz tragen und einzelnliegen, und nach oben in bohmförmige Theile b auslaufen, um die Lager c für die durch Schrauben i höher oder tiefer zu stellende Welle d aufzunehmen, an welcher die Hammerstiele e hängen. Dieselben sind mit den Geleisen f verbunden; an diesen sind die Hammereinricht g und daran die hölzernen Hämmer h vergeschraubt. Die Geleise i nehmen die verschiebbaren Halslager r der Kurbeln K auf, welche zur möglichen Ausgleichung der Arbeit unter sehr stumpfem Winkel vereint sind und durch das Schwungrad q unterführt werden. Die Waschräume l sind von den Stumpewänden t umschlossen, durch die Deckel u zu verschließen und innerhalb durch Schubbreter n abgegrenzt, um keine Wäsche noch den Kurbeln hingelangen zu lassen. Die Seitenwände des Tumpes sind ebenfalls aus Holz, so daß die Wäsche überhaupt nur mit Holz in Beführung kommt. Die in den schmiedeeisernen Geleisen t auf- und nieder-
wärts gleitenden Lager r sind von Polcholz und werden mit Seifenwasser eingeschmiert, um die Anwendung des Deles auszuschließen.

Ist nun auf jeder Seite der Maschine je 25 Pfund Wäsche eingeglegt und die Maschine angelassen worden, so öffnet man den Hahn x, um in die quer durch die Wäschräume gebende kupferne Rohrleitung w, welche eine Reihe ziemlich engliegender Löcher enthält, warmes Wasser aus dem darüber befindlichen Reservoir strahlförmig auf die Wäsche fließen zu lassen. Durch Hinzugießen von aufgelöster Seife entwickelt sich durch die Hammerbewegung viel Seifenschaum, der in den verschlossenen Wäschräumen gehalten wird. Um bei dem zweiten Wäscherei den erforderlichen Dampf in die Wäschräume einzutreiben zu lassen, ist das ebenfalls durch Hähne verschiebbare Dampfrohr y angebracht.

Gemäßlicher werden für einmaliges Wäscherei 1500 Umläufe der Doppellursel ausreichend gefunden. Da nun jeder Hammer beim Um- gange einer Kurbel zweimal wirkt, so verrichten beide Hämmer zusammen 3200 Preßungen, welche, wie oben bemerkt, etwa eine Vierteltunde beanspruchen. Um aber die Arbeiter auf die richtige Zeit für das Herausnehmen der Wäsche aufmerksam zu machen, ist eine Zählervorrichtung z angebracht, welche zur bestimmten Zeit klingelt.

Die gebrauchte Seifenflüssigkeit wird durch die Spundöffnung o abgelassen.

Die Wäschräume sind 6 Fuß lang und 5 Fuß breit, und wiegt netto 25 Centner.

2. Die Spülmachine

in Fig. 10 und 11 dargestellt, ist ebenfalls eine in der Luchsfraktion schon längst angewendete Maschine. Sie besteht aus einem ovalen Fasche e, dessen mittlerer Teil von einem kastenförmigen Behälter d abgeschlossen und nicht wie der Vottich e mit Wasser angefüllt wird. Auf der Kasten- und Vottichwand lagert die Welle des Flügelrades a, welches durch Niemen.exeibe g bewegt wird. Durch ein Rohr x fließt während der Arbeit dem Vottich stets Wasser zu, welches durch ein durchlöchertes kupfernes Bandstück l nach einer kastenförmigen Zelle und über deren Band i durch den Abfluß h abfließen kann. Zum Ablassen des Wassers nach vollendetem Spülen dient die Schütte k.

Ist das Fach mit Wasser angefüllt, so werden die Wäscherstücke einzeln hineingeworfen, und indem sie vermittels des Schaufelrades in das Wasser niedergerührt und mit diesem in einen Kreislauf um den Behälter d versetzt werden, findet bei jedem Ablauf von reichem Wasser deren Aus- spülen statt.
Diese Maschine ist ca. 7 Fuß lang und nahe 6 Fuß breit.

Als Centrinfal-Trockenmaschine sind zwar die jetzt gebräuchlichen verwendbar, doch sind die von den Herren Schimmel und Comp. erbauten dem vorliegenden Zwecke angepaßt und sind dabei namentlich der Nebenstand ganz beseitigt, daß die Wäscherost- oder Delflecken erhalte.

Um auch den Bedürfnissen nach einer bequemen Waschmaschine für Handbetrieb zu entsprechen, hat dieselbe Maschinenfabrik die in Fig. 12 und 13 im Auf- und Grundriß verzeichnete Maschine konstruiert, welche sich vollständig bewährt. Wie leicht ersichtlich, beruht dieselbe auf gleichem Betrieb wie die vorher beschriebene Waschmaschine, nur werden die Waschhämmer b und c vermittels der Hebel e und f durch Hand in Bewegung gesetzt. Der Kasten a besteht aus Zinkblech, die Hämmer und Hebel aus Holz.

Auch das Waschverfahren ist ein ziemlich gleiches. Man weicht die Wäsche in lauem Wasser ein, windet sie ein wenig aus und reibt sie auf einem Tische mit Niedergleise ein. Hierauf wird sie in Partien von 8 bis 12 Hemden oder gleichviel anderer Wäsche zu beiden Seiten der Maschine eingelegt und nur so viel heißes Wasser hinzugegeben, als zur Entwicklung von Seifen Schaum nötig ist.

Nachdem man nun 10 Minuten lang langsam, mit nicht zu kräftigem Druck gearbeitet hat, wird die Wäsche herausgenommen, eine andere Partie in die Maschine gelegt, wie vorher behandelt und so fortgefahren, bis sämtliche Wäsche unter jedesmaligem Zugießen des erforderlichen heissen Wassers einmal durchgearbeitet ist.

Hierauf werden sämtliche Wäschestücke einzeln durchgezogen, etwa noch schmutzige, schwierige Stellen nachgerieben, worauf die ganze Wäsche in ein Faß kommt und mit tosendem Wasser übergesogen wird. (Das sogenannte Abbrühen.) Nach einer Viertelstunde wird die Maschine bearbeitet, an der man gießt den Stöpfl g öffnet und durch Hinzugießen reines heissen Wassers zugleich das Spülen bewirkt.

Von seinen Hemden geben 8 bis 12 Stück auf einmal in die Maschine, und wenn z. B. eine Person wäscht, eine zweite aber in dieser Zeit die Wäsche nachzieht, so können in einer Stunde von zwei Personen 2 Dutzend Hemden gewaschen werden.

Der Preis der Maschine ab Fabrik ist 14 Thaler — und 10 Rgr. für Verpackung.

Das Gewicht mit Emballage beträgt 70 Pfund.
Bemerkung. In welcher Ausdehnung sich die nach der oben gegebenen Beschreibung ausgeschiedenen Wäschmaschinen verbreitet, und welche Anerkennung die Behörden der betreffenden Waisenanstalten darüber ausgesprochen haben, wird sich derart durch deren ausgestellte günstige Zeugnisse, theils durch die Bemerkung hervorgehen, daß die Schimmel'sche Maschinenfabrik bis jetzt weit über 100 dieser Maschinen (Doppelmädelwalien) abgeliefert hat.

IX.

Gas-Rundbrenner mit Zugregulator; von Professor Dr. H. Meidinger.

Aus der badischen Gewerbezeitung, 1869, Nr. 1.

Mit Abbildungen auf Taf. 11.

In der Gasbeleuchtung nehmen die Rundbrenner mit Glaszylinder, die sogenannten Argandbrenner, den ersten Rang ein. Sie erzeugen die schönste Flamme und geben ein vollkommen ruhiges Licht. Sie werden deshalb überall, wo man seine Arbeiten ausführen, namentlich lesen will, den Flachbrennern vorgezogen. Ihre Schattenwirke besteht

Für Tuchfabriken hat die genannte Maschinenfabrik ihre Doppelmädelwalze (in unserer Dulle nach beigegebener Abbildung besprochen) schon seit Jahren in ziemlicher Anzahl geliefert, und es hat sich diese zum Verwalten seiner Tische, ganz zufällig aber zum Walzen von Tüll, Stoffen und Streumfähren ausgezeichnet bewährt. Die Ware wird leicht und vollständig erhalten, und eine vollständig gleichmäßige Bearbeitung schneller als mit den früher angewendeten Walzen erzielt.

Im Betriebe der Leihtung ist vergleichsweise zu bemerken, daß diese Maschinen ziemlich das Doppelte einer einfachen Kurbelwalze, etwas mehr als das Doppelte einer einfachen Cylinderwalze und beinahe das Dreifache eines Loches der alten Cylinderwalzen leisten. Eine einfache Kurbelwalze grüßt circa 1,3 Pferdekräfte, während die doppeltze durch Ausrüstung des Rückgangs, nur 1½ Pferdekräfte bei ziemlich doppelter Leistung gebraucht.

Auch über die Verwendung dieser Doppelmädelwalze in den Gerbereien sind bereits günstige Zeugnisse veröffentlicht worden. Ebenso wie die vorstehende Maschine wird die jetzt üblichen Walzfäße angewendet, entfernt circao das Dreifache eines solchen bei leichterem und bequemerem Bedienung, und es ist ein derartiges Walzen in der Tat auch bei größter Haube beim Einweichen und Entfalten dem alten Verfahren jedenfalls vorzuziehen."
wesentlich in der Anwendung des Zuglases, welches zuweilen springt
und dadurch Kosten verursacht. Der Handel, welcher bei etwas vorsichtiger Handhabung jahrelang hal-
ten, die Argandbrenner unterscheiden sich noch in einer Hinsicht wesent-
lieh von den Flachbrennern. Wenn man bei leichteren den Hahn mehr
zustellt, so fällt die Anfangs ziemlich ruhige breite Flamme zusammen
und wird sehr flackerig, so daß das Auge geradezu empfindlich angespitzt
nimmt, worüber wird; dabei ändert sich jedoch nicht wesentlich der Ruf-
effekt, d. h. das Verhältnis des verbrauchten Gases zur Helligkeit. Ent-
spielt z. B. einem Conium von 6 Kubikfüß der Stunde eine Helligkeit
von 14 Kerzen, so wird bei einem Conium von 3 Kubikfüß die Hellig-
keit noch nahe 7 Kerzen sein. Gleichwohl wird man, eben wegen des
unruhigen Lichtes, eine solche Regulierung nur selten anwenden können.
Stellt man bei einem Argandbrenner sogenannten Hahn zu, so bleibt
die allmählich kürzer werdende Flamme ruhig wie zuvor; jedoch vermin-
dert sich der Ruhieffekt beträchtlich, er sinkt auf die Hälfte und noch mehr
herunter; dem halben Conium entspricht also z. B. nur noch ein Drittel
der Helligkeit, dem viertel Conium ein Achtel Helligkeit. Die Regulierung
einer Argandflamme unter ihre höchste Helligkeit muß demnach als öko-
nomisch sehr unvortheilhaft gelten. Der Grund dieser verminderten
Helligkeit bei Zulassen des Gasbahnöses liegt darin, daß eine über-
reiche Menge Luft in das Gas einströmt und deshalb eine zu rasche
vollkommene Verbrennung ohne vorbereite Ausdehnung von festem Koh-
lenstoff erfolgt.

Durch ein niedrigeres Zugglas läßt sich diesem Nebel zum Theil
vornehmen, doch steht dieses Mittel natürlich nicht jedem Zugänglich
und in jedem gewünschten Grade zur Verfügung. Auch durch Bedecken der
oberen Cylinderglasöffnung vermittelt eines ringförmigen mehr oder
weniger ausgeschnittenen Bleches wuβte man den Zug zu vermindern,
ohne damit jedoch für alle Fälle einen Erfolg erzielen zu können; das
an unbequemem Orte angebrachte Mittel fand wenig Beifall.

Der Verflager hat eine einfach in bequemer Weise zu handhabende
Borrichtung erfunden, vermittelt deren die Luftströmung beliebig regul-
lirt und dadurch auch die Flamme auf ihre dem jeweiligen Gasverbrauch
entsprechende größte Helligkeit leicht gebracht werden kann. Bei dem
Argandbrenner gelangt innen wie äußeren Luft an die runde Flamme;
es genügt nun vollkommen, die Luftzuführ an dem einen Orte zu be-
schränken, um damit die Leuchtkraft der Flamme zu verstärken. Am be-
quemsten läßt sich dies durch innere Regulierung, und zwar in der fol-
genden Weise vornemen. Man bringt unterhalb der inneren Höhlung
einen Bügel mit Schraube an und legt in letztere eine Mutter ein, durch deren Umtrieb man die Höhlung vollständig schließen kann; durch Abwärtsdrehen ist man im Stande, einen beliebig großen ringförmigen Raum für die Einströmung der Luft herzustellen (s. Fig. 14). Strömt das Gas nicht seitlich in den Brenner ein, sondern von unten, wie bei den Stehlampen und Kronleuchtern (s. Fig. 15), so genügt es, in die Gabel einfach eine Schraube einzulassen. Es läßt sich nicht von vornherein bestimmen, welche Stellung der Regulirschraube zu geben ist; man dreht eben so lange hin und her, bis das Auge die größte Helligkeit wahrnimmt; jedes Kind vermag dies zu erkennen und auszuführen. Es ist sehr überflüssig zu sehen, wie bei stark zugeschlossem Hahn die Anfangs ganz niedere, lichtlose Flamme allmählich höher und diefer wird, sowie an Helligkeit gewinnt. Die Farbe des Lichtes wechselt dabei in etwas: das ursprünglich blendend, mehr bläulich Weiß geht in etwas rötlichen Ton über, der übrigens auch bei Personen wechselnd einwirkt. Seit Einführung dieser Regulivorrichtung reicht man in des Verfassers Familie mit einem Gasconsum von 3 bis 4 Kubitsfuß die Stunde aus, während man früher deren 4 bis 5 verbrauchte. Auch in einer anderen Hinsicht erwies sich die Einrichtung sehr günstig. Der Argandflammen sind vielen Leuten unerträglich heiß in der Nähe; die Höhe der Flamme wird nun beträchtlich vermindert, wenn durch den Regulator eine mehr lange rötliche Flamme hergestellt wird. Da der Glaszylinder weniger heiß wird, ist auch der Gefahr des Zerplatzens verringert. — Es wird zweckmäßig sein, die Regulirschraube etwas schwer gehend zu machen; indem man danach dann eine bestimmte Stellung gibt, ist zugleich dafür gesorgt, daß sie mehr als ein gewisses Quantum Gas, z. B. 3 Kubitsfuß die Stunde, verbrannt werden kann; denn sobald man den Gashahn weiter ausdrehnt, würde sofort die Flamme stark rübig aus dem Zylinder herausfliegen und einen sehr widerwärtigen Geruch erzeugen. Ein Argandbrenner mit solcher Zugregulierung muß also als ein wahrer Universal-Sparbrenner angesehen werden. Die Kosten der Vorrichtung dürften bei Massenfabrikation mit wenigen Kreuzern zu bestreiten sein, einen neuen Brenner also nur untersehentlich verheugen. Es ist noch hervorzubeheben, daß dieselbe durchaus nicht im Lauf der Zeit in Verwirrung geraten kann, es sei denn durch gewaltsame Verstörung, und daß in keiner Weise eine Gefahr mit ihrer Anwendung verbunden ist.

Wir lassen noch eine Tabelle mit unseren Versuchen folgen, woraus das Verhalten der Argandbrenner mit und ohne Regulirschraube auf Helligkeit und Gasverbrauch, sowie das entsprechende Verhalten der
Schnittbrenner deutlich erzielen werden kann. Der Argandbrenner hat 32 Löcher, sein Zylinder ist 25 Centim. hoch; sein äußerst zulässiger Conium ist 7 Kubitsfuß, dabei schlägt die Flamme jedoch schon zuweilen aus dem Glas. Der Schnittbrenner ist für 7 Kubitsfuß Conium bestimmt und stammt von Schwarzer in Elberfeld, dessen Form gegenwärtig als die beste angesehen wird.

<table>
<thead>
<tr>
<th>Lichtstärke in Normalverhältnis</th>
<th>Argandbrenner</th>
<th>Schnittbrenner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conium pro St. ohne Regulator.</td>
<td>Lichtstärke pro 1 Kubitsfuß.</td>
<td>Conium pro St. mit Regulator.</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>1.9</td>
<td>0,58</td>
<td>1,15</td>
</tr>
<tr>
<td>3,0</td>
<td>1,3</td>
<td>2,2</td>
</tr>
<tr>
<td>4,4</td>
<td>2,0</td>
<td>4,0</td>
</tr>
<tr>
<td>6,6</td>
<td>2,4</td>
<td>6,6</td>
</tr>
</tbody>
</table>

Es wurde endlich noch ein Vergleich des neuen Regulators mit dem Deckblech des Cylinders angestellt. In letzterem Falle wird durch Ver-
Draht, über Reinigung der Zinnerze von Wolfram.

X.

Über die Reinigung der Zinnerze von Wolfram; von Robert Oxland.

Mit Abbildungen.

Zinnerze kommen mit Wolframzusammen im Allgemeinen nur selten zusammen vor; findet aber ein solches Zusammenvorkommen statt, so ist die Menge des Wolframs häufig sehr bedeutend. Letzterer lässt sich mittels der gewöhnlichen Aufbereitungsmethoden, durch Rosten und nachheriges Verwaschen, vom Zinnerz nicht trennen, weil es durch bloßes Erhitzen nicht angegriffen wird, und da sein spezifisches Gewicht bedeutender ist als das des Zinnerzes (Zinnsteines), so bleibt er ungeachtet der

Durch diese Behandlung wird die Ausschleifung des Wolframs bewirkt, welche in der Weise erfolgt, daß die Wolframäure des Wolframs mit dem Rarvon der Soda sich verbindet, während gleichzeitig das frei gewordene Eisen und Manganory dul sich in Dryd verwandeln, dadurch aber spezifisch leichter werden und sich folglich bei der späteren mechani-
Fland, über Reinigung der Zinnerze von Wolfram.

Die Aufbereitung durch Verwaschen leichter entfernen lassen. Demnach
muß das Calciniren im Flammenten wohlerleicht ein oxydierendes Schmelzen
scheinen und das Feuer muß demgemäß regulirt werden. Die Charge darf
beim Ausziehen aus dem Ofen nicht breiförmig erscheinen. Noch in
heissen Zustande kommt sie in eine Reihe von Auslaugsämpfen, die
theilweise mit Wasser gesüßt sind, welche durch die Masse bis zum
Kochen erhitzt wird. Nach kurzem Verweilen der Masse in den Sämpfen
wird die inzwischen klar und hell gewordene Lauge vorschichtig abgegossen;
ist dieselbe concentrirt genug, so stellt man sie zum Kristallisiren hin;
wenig nicht, so wird sie erst noch eingedampft. Die dabei fallenden
schwächeren Lagun können anstatt des Wassers zum Extrahiren stärker
Chargen des calcinireten Erzes benutzt werden. Bei gehöriger Leitung
der Operation enthält die Flüssigkeit an zinnhaltinem Natron nur Spuren.
Noch Alkalisalpeter wird mit Vorteil dann angewendet, wenn
gläubte Arbeiter zur Verfügung stehen; die zuschlagende Menge desselben richtet sich nach dem Wolframgehalte des auszubereitenden Erzes.
Gleichzeitig wird Kohlenstoffzüge zugefügt, und zwar muß die Menge
desselben etwas größer sein als zur Desodorirung der in dem Salze
enthaltenen Schwefelsäure erforderlich ist; das Ganze wird im Ofen mit
einer Reductionsküme behandelt, bis es sich zum Rothglühcn erhitzt
hat. Hierauf wird die Flammente in eine oxydierende verwandelt und diese
wird so lange unterhalten, bis die Wolframsäure in Folge ihrer Ver-
bindung mit dem Natron den noch vorhandenen Schwefel verjagt hat.
Der Proceß erfordert etwa eine Stunde mehr Zeit, als die Behandlung
mit Kohlsaft.

Nach dem Ausbrüden aus dem Ofen wird die Masse ebenso be-
handelt wie vorher und nachdem alles Lösliche extrahirt worben, werden
die unlöslichen Theile der Charge aus den Sämpfen oder Auslaugsflämmern
ausgezogen und ohne weiter gepocht zu werden, einer Reihe von Ver-
wachslungen und Schlämmungen unterworfen, wobei die Gruppen oder
Schlieme von Zeit zu Zeit ausgeträufelt werden, so daß das gebildete
Eisen- und Manganybd abgeschlängt wird. — Die letzten Spuren von
diesen Drydten können schließlich durch mehrstündiges Digeriren mit
Salzsäure befejigt werden; es bleibt dann fast ganz rein ein Zinnstein
(Reines Zinnöyd, das „black tin“ der cornischen Bergleute) zurück,
welches beim Verschmelzen die beste Zinnforte gibt.

XI.

Ueber die von der Mansfeld'schen Ober-Berg- und Hütten-
Direction prämiirten Kupferbestimmungsmethoden.

Hr. Dr. H. Schwarz hat in diesem Journal Bd. CXCI S. 285
(zweites Februarheft 1869) eine „notbeherrungene“ Erwiderung auf die
von der Mansfeld'schen Ober-Berg- und Hütten-Direction (in demselben
Band S. 147) erlassene Abwehr veröffentlicht.

Diese Erwiderung erfordert noch einige Erläuterungen:

1) Es wird zugegeben, daß die Methode des Kupferilirrens mit
zanthogenaurinem Kali in der Trennung des Kupfers durch Ammoniak
eine Schattensite hat, welche durch gewisse Modificationen paralytirt
werden muß.

2) Hr. Dr. Schwarz sagt dann:

„Ich habe von der Mansfelder Gewerkschaft die Probeschische in
derben, nicht in gepulvertem Zustande erhalten und daran, schon
aus den Ausscheidungen des Bunttupferzerz es leicht den Unterschied
zwischen reinen und armen Erzen erkennen können. Wer zwingt
benn dazu, erst die Probe zu pulvern und dann das Urtheil über
größeren oder geringeren Reichthum der Schiefer zu fallen?“

Zuvorderst ist in dieser Hinsicht daran zu erinnern, daß Hr. Schwarz
bei seinem Verfahren nicht bloß reiche und arme, sondern reiche, mittlere
und arme Erze unterscheidet, mitdini drei Clasen macht, welche eine
verschiedene Behandlung erfordern. Abgesehen davon, muß bestritten
werden, daß es für gewöhnlich überhaupt möglich ist, einem Stief
Schiefer mit Sicherheit anzusehen, ob dasselbe viel oder wenig Kupfer
enthält. Selbst die in Betracht dieser Schiefer erlauterten Zeichen
ermöglichen dieser Anforderung nicht zu entsprechen. Die Schiefer sind
eben schwarz und mit einer außerordentlich seinen Speiche imprägnirt,
welche sich mit Hilfe der Loupe oder des Mikroskopes keinen Schluß
auf die Höhe des Kupfergehaltes gestattet, besonders auch weil die Erze
außer Kupfer noch andere geöweijselte Metalle führen, namentlich Nisser
und Blende. Wenn hint und wieder Ausscheidungen von Bunttupferzerz
vorkommen, so kann man solche Stücke vollends nicht zur reicheren Erze
reden, weil dann in der Regel das Kupferglas fehlt, und weil über-
haupt der größte Metallgehalt vorhanden zu sein pflegt, wo das Erz in
ganz seiner Speiche auftritt.

Wie aus der citirten Frage folgt, weiß Hr. Dr. Schwarz auch
nicht, daß die in das Laboratorium kommende Probe Substanz zerkleinert
seyn muß. Jede solche Probe ist das Ergebnis eines größeren Haus-
werkes von 4 bis 6 Centner, welches von mehreren Lachtern Streblänge
oder aus den Ortsdimensionen genommen wird und in Stücken von
verschiedenen Kubikfüßen Inhalt bis zur Staubform aus den Gruben zu
Tage kommt. Dieses Hauswerk erfordert notwendig eine mehrfache
Verjüngung durch die Kreuzprobe und dadurch eine Verfeinerung der
Maffe zu gleicher Korngröße, welche zuletzt bis zur feinsten Mehlsform
übergehen muß, damit man sicher ist, daß die zu untersuchende Substanz
den Durchschnitt des ganzen Hauswerkes repräsentirt.

Die bezügliche Frage des Hrn. Dr. Schwarz beweist also eine
vollständige Unkenntnis der in Betracht zu ziehenden Verhältnisse und
ist nichts weniger als geeignet die Gründe zu widerlegen, aus welchen
die Methode deselben als eine für die Praxis unbrauchbare bezeichnet
werden mußte.

3) Was die Vorprobe mit Cypantarium betrifft, so muß die Behaupt-
tung aufrecht erhalten werden, daß diese Zwischenarbeit in den meisten
Fällen mehrichtig ist. Hr. Dr. Schwarz gibt übrigens selbst zu, daß
er eine Erleichterung nicht eintritt, wenn die Schiefer zehnmalig sind; dieser
ist aber fast immer der Fall.

Die Angabe der durch Reise bekannt gewordenen Reaction des
rathbogenrahen Kalis aus Kupferoxydlösungen würde allerdings entbehrlich
gewesen seyn, wenn Hr. Dr. Schwarz dem prämierten Verfahren nicht
den Vorwurf der Combination bekannter Reactionen gemacht und ledig-
llich etwas ganz Neues erwartet, gleichwohl aber auf sein Verfahren
großes Gewicht gelegt hätte, welches nur bezüglich der Anwendung auf
die Probierkraft neu ist.

4) Wenn Hr. Dr. Schwarz ferner hervorhebt, daß dieselben Beamten,
denen es naturgemäß obliegen habe, die Arbeiten ihrer Concurrenten
der experimentalen Prüfung zu unterwerfen, zur Prämierung zugelassen
worden seyen, so ist bereits in dem in der Frey en i. s. s. Leitschrift
für analytische Chemie, erleses Heft von 1869, veröffentlichten Referat
Seite 5 ausdrücklich hervorgehoben, daß bei den fraglichen Prüfungen
nur völlig unbeteiligte Personen zugezogen worden sind. Diese Ver-
dämmigung wird mit hin, als eine entschiedene Umweltzweckgewiesen.
Ebenso ist es unmöglich, daß über die Arbeiten bewährter Männer
ohne unparteiische Prüfung zur Tagesordnung übergegangen worden sei.
Allerdings mußte es kein geringes Befreunen erregen, daß gerade
die von hervorragenden Männern der Wissenschaft eingegangenen Arbeiten
die Prüfung sehr leicht machten, weil dieselben Vorzüge enthielten,
welche in dem gewerkschaftlichen Laboratorium zu Eisleben schon seit Jahren ausgeführt worden sind.

5) Daß es ferner lediglich angemessen gewesen ist, die Concurranc bei der fraglichen Prämierung nicht zu befragen, beweist der Erfolg. Wollte sich aber Hr. Dr. Schwarz nur bei beschränkter Concurranc auf die Sache einlassen, so mußte er sich das vorher überlegen, und gar nicht als Preisbewerber auftreten.

Die Mansfeld'sche gewerkschaftliche Ober-Berg- und Hütten-Direction wird fernere Erwiderungen des Hrn. Dr. Schwarz, insofern sie ebenso wie die in Rede stehende auf mangelhafte Kenntniss der in Betracht kommenden Verhältnisse oder falschen Angaben beruhen, völlig unberachtet lassen.

XII.

Über die Verwertung des Chromalaunes; von F. Jean.

Aus den Comptes rendus, t. LXVIII p. 198; Januar 1869.

Bei meinen Versuchen zur Verwertung dieser Rückstände fand ich, daß wenn man ein Gemenge von 1 Aequiv. Chromalaun mit 3 Aequiv. Kohlenstoff zum Rotglühen erhitzt, eine Erhitzung stattfindet, welche durch nachstehende Formel ausgedrückt wird:

\[\text{K}_2\text{SO}_3 + \text{Cr}_2\text{O}_3 + 3 \text{SO}_2 + 3 \text{C} = 3 \text{SO}_2 + \text{K}_2\text{SO}_3 + \text{Cr}_2\text{O}_3 + 3 \text{CO}. \]

Rimmt man dagegen zur Erhitzung des Chromalaunes auf ein Aequiv. derselben Stoffe die 3. Aequiv. Kohlenstoff, so entwickelt sich weniger Schwefelige als im ersteren Falle und bei der Behandlung mit Wasser gibt der Rückstand Schwefelsalzim und unterschwefligeäures Kali an daselbe ab; auch muß das unter diesen Umständen entstandene Chromoxyd durch Auswaschen mit angefärbtem Wasser von dem in Folge seiner Verührung mit Schwefelsalzim entstandenen Schwefelchrom (\(\text{Cr}_2\text{S}_3 \)) befreit werden.
Meiner Anschauung nach verdient die Herstellung des Chromalaun's durch 3 Aequivo. Kohlenstoff den Vorzug vor der Behandlung mit 7 Aequiv. des letzteren, da sie weit rächer und ohne die Bildung von Schwefels

doch erfolgt.

Das Vorgehen zur Behandlung des Chromalaun's in fabrik-
mäßigen Massstäbe besteht somit einfach darin, das Salz zu pulverisieren, das Pulver mit der entsprechenden Menge Kohle innigst zu mengen und das Gemenge in einer aus feuerfestem Thon bestehenden Retorte zum

Rothglühen zu erhitzten. Die entwickelten Schwefelsäuredämpfe werden

durch eine Reihe von doppelt tubulirten Flaschen geleitet, welche entweder

destillirtes Wasser oder eine Lösung von Kohlenkaarem Natron oder von

Mehrsäure-Schwefelnatrium enthalten. Der Retortensproces ist beendet,

so bald die Entwicklung von Schwefelsäure aufhört.

Man nimmt dann den Deckel von der Retorte weg, zieht die aus

schweifelsaurum Kali und Chromoxyd bestehende Masse in einen gus-

seiternen Keßel, übergießt sie mit Wasser und erhitzt zum Kochen, um das

schweifelsaure Kali auszulösen; dann bringt man dieses Salz zum Krystallis-

ieren. Das zurückbleibende Chromoxyd wird auf Leimwandsilbern aus-

gewaschen und zur Beseitigung des von ihm zurückgehaltenen Wassers

aussgeglührt. Dieses Auswäscht sich leicht chemisch rein erhalten, indem

man es mit einer schwachen, doch heißen Lösung von kohlenkaarem

Natron wäscht, wodurch die legeten ihm noch anhaftenden Spuren von

Schweifelsäure beseitigt werden.

Das auf diese Weise erhaltene Chromoxyd hat eine zu matte Farbe,
als dass es in der Malerei oder in Zeugdrucke Verwendung finden

könte; dagegen ist es in Folge seiner Reinheit zur Fabrication von

doppelt-chromsaurum Kali vorzüglich geeignet.

XIII.

Chemische Untersuchungen über die hydraulischen Cemente; von

E. Freyn. (Zweite Mittheilung.)

Aus dem Comptes rendus, t. LXVII p. 1205; December 1868.

Die hydraulischen Cemente entstehen, wie Vicat nachgewiesen hat,

beim Brennen töniger Kalksteine. Der allgemeinen Annahme nach bil-

den sich in Folge der Einwirkung des Kalkes auf den Thon drei Salze,

nämlich: kieselsaurer Kalk (Kalkstitcat), kieselsaurer Thon-
erde-Kalk (Kalk-Thonerde-Silikat) und Kalkaluminat. Diese Ver-
bindungen sollen sich im Wasser nach Art des gebrannten Gipses hydrat-
ieren (b. h. Wasser chemisch binden), und dadurch das Erhärten der
hydraulischen Cemente veranlassen.

Die von mir vor einigen Jahren begonnenen Untersuchungen über
die Cemente bezwecken, diese Theorie der Hydraulicität auf experiemen-
tellem Wege zu prüfen.

Schon in meiner ersten Abhandlung 18 glaube ich nachgewiesen zu
haben, daß die Theorie der Hydraulicität, welche auf die Hydratierung der
Mörtel gegründet ist, sich nicht auf alle Verbindungen erstreckt, welche
in Folge der Einwirkung des Kalkes auf den Thon entstehen.

Ich stelle nämlich unter den verschiedenen Umständen auf synthetis-
chem Wege Kalksilicate und Kalkthonerde-Silicate dar und
wies nach, daß diese Salze sich nicht hydatisiren und in Verührung mit
Wasser niemals erhärten, wenn sie nicht freien Kalk enthalten. Auf
die schönen Versuche von Rivet und Chatonay, mich fügend, bewies
ich, daß unter allen Körnern, welche sich beim Brennen von thonigem
Kalkstein bilden, das Kalkaluminat der einzige ist, welcher die Eigenschaft
besitzt, in Folge seiner Hydratierung im Wasser zu erhärten.

Da nun beim Brennen thoniger Kalksteine nicht immer Kalkalumi-
nat entsteht, da sogar für manche Fälle die Entstehung dieser Verbindung
nicht sicher erwiesen ist, so galt es, bezüglich des Erhärtens der hydra-
ulischen Cemente eine Theorie aufzustellen, welche von den Ercheinungen
der Hydratierung (chemischen Bindung von Wasser) unabhängig ist.

Ich sprach mich nun darin aus, daß das Erhärten der Cemente von
einem ähnlichen Vorgange herrühren könnte, wie er beim Erhärtten der
Puzzolanen stattfindet, und daß die in den Cementen enthaltenen Sili-
cate auf den in denselben gleichfalls vorhandenen freien Kalk (chaux
grasse) wirken durften. Ich sprach diesen Gedanken mit einer gewissen
Zurückhaltung aus, weil ich zur Zeit meiner ersten Mittheilung so wenig
alle Eigenschaften der Puzzolanen, als ihre verschiedene Bildungsweise
kennt.

Nachdem ich aber die verschiedenartigen Umstände, unter denen
Puzzolanen entstehen, untersucht und den hohen Grad ihrer Hydraulicität
konstatirt habe, muß ich jetzt die auf die Hydratierung der Silicate ge-
gründete Theorie aufgeben und stelle dagegen die nachstehenden Prinzipi-
ien auf:

Ein hydraulischer Cement besteht stets aus zwei ver-

über die hydraulicischen Gesteine.

schiedenen Theilen, nämlich aus Puzzolane und aus freien Kalk (chaux grasse); folglich wird das Erhärten eines hydraulischen Gesteines immer durch einen „puzzolanischen“ Vorgang (phénomène pouzzolanoique) hervorgerufen.

Zur Begründung dieser Theorie bedarf es des Nachweises, daß beim Brennen thoniger Kalksteine wirkliche, langsam oder rasch erhärtende Puzzolane entstehen, daß das Erhärten der hydraulicischen Gesteine durch die Wirkung dieser Puzzolane auf den freien Kalk vollkommen erklärlich wird und daß die hydraulicischen Eigenschaften jener Gesteine verschwinden, wenn der puzzolanische Prozeß gehemmt wird.

Diesen Nachweis zu liefern, war der Zweck der experimentellen Untersuchungen, deren Resultate ich in dieser zweiten Mittheilung in gebräuchter Übersicht vorlege.

Zunächst werde ich nachweisen, daß die Bestandtheile des Thones allein, selbst wenn der Kalk beim Brennen nicht auf sie einwirkt, kräftige Puzzolane erzeugen können.

Bekannt ist eine Puzzolane ein Körper, welcher im isolirten Zustande auf das Wasser keine Wirkung ausübt, aber mit Aether geknetet, in Berührung mit Wasser eine steinartige Härte annimmt.

Thon in normalen, d. h. hydraulischen Zustande, zeigt niemals die Charaktere einer Puzzolane. Mit 20 Procent Kalshydrat gemengt, erhärter er in Berührung mit Wasser niemals; wird er aber bei einer geeigneten Temperatur gebrannt, so verwandelt er sich in eine Puzzolane, welche, indem sie auf Aether einwirkt, unter Wasser vollständig erhärter kann.

Ich benutze zu meinen Versuchen die sehr reinen feuerfesten Thone von Sorges und ein dem Norddepartement, welche 65 Kieselsäure, 25 Thonerde und 10 Wasser enthalten, deren Zulage zu den Körpern auf die Formel Al₂O₃, SiO₂, 2HO ausgedrückt wird, und wandelte sie durch Brennen in vortreffliche Puzzolanen um. Der Gehalt dieser Thone an fremdartigen Bestandtheilen ist unbedeutend, und, worvon ich mich durch zahlreiche Proben überzeugte, ohne Einfluß auf die hydraulicischen Eigenschaften der Verbindung.

Die „puzzolanische“ Eigenschaft gehört dem reinen hydraulischen Thon-
erdeisicate an und erfordert, um sich zu zeigen, keineswegs die Mitwirkung des Kalkes, wie dies mehrfach behauptet worden ist.

Dagegen wird die Umwandlung des Thones in Puzzolanen in hohem Grade beeinflußt durch die verschiedenen Bedingungen, unter denen sein Brennen stattfindet. Ein blohes Ausdrochen ist zu dieser Umwandlung unzulänglich; wird aber der Thon auf etwa 700° C., d. h. bis zum beginnenden Rotglühüben erhitzt, so verliert er sein Hydratwasser vollständig und erst dann verwandelt er sich in Puzzolan. Somit fällt die Entwicklung der puzzolanischen Eigenschaften im Thone mit der Austreibung seines Hydratwassers zusammen.

Ich habe ferner gefunden, daß der Thon durch fortgesetztes Erhitzen bis zum Rotglühüben, ja selbst durch mehrstündiges Brennen bei der hohen Temperatur eines Siemens'schen Ofens, seiner puzzolanischen Eigenschaften keineswegs beraubt, sondern daß deren Austreten dadurch nur verlangsamt wird.

Demnach hat man es in seiner Gewalt, durch Brennen bei verschiedenen hohen Temperaturen aus Thon allein Puzzolanen zu erzeugen, welche langsam oder rasch erhärten.

Welcher Vorgang findet beim Brennen eines Thones statt? Weil erlaubt, der Körper, welcher im hydratischen Zustande auf den Kalk nicht einwirkte, durch das Brennen die Eigenschaft, sich mit dieser Basis zu verbinden?

Diese wichtige Tatsache läßt sich leicht erklären. Auf die (von Chevreulstudirten) Reaktionen sich stützend, welche den Erscheinungen der Capillarraffinität zu Grunde liegen, nehme ich an, daß der Thon durch das Brennen eine Art von porösem Mineralgewebe wird, welches dem Kalk absondert kann. (Bekanntlich schreibt Chevreul das Erhärtung der hydraulischen Cemente schon seit langer Zeit der Capillarraffinität zu.)

Indem ich mich ferner auf die von Vicat so gründlich studirten Eigenschaften des Thones und auf die in meinen Abhandlungen über die Metallsäuren mitgetheilten Thatsachen stütze, erkläre ich die durch die Einwirkung der Wärme in den Thonen entstehenden hydraulischen Eigenschaften in anderer Weise.

Die beiden wesentlichen Bestandtheile des Thones, die Kieselsäure nämlich und die Thonerde, bestehen, sobald sie aus dem Thon abgeschieden sind, unbestreitbar, von Vicat nachgewiesene puzzolanische Eigenschaften. Nun läßt sich leicht dargethan, daß beim Brennen des Thones, wodurch demselben sein Hydratwasser entzogen wird, eine gewisse Menge Kieselsäure und Thonerde frei wird; denn wenn man Thon zum Roth-
glühen erhitzt, und ihn hernach mit Säuren behandelt, so wird ihm eine beträchtliche Quantität Thonerde entzogen, welche dieselben Säuren vor dem Glühen nicht auszulösen vermöchten.

Die Hitze macht also im Thone Bestandtheile frei, welche vor Einwirkung derselben mit einander verbunden waren. Da nun überdies durch directe Versuche erwiesen ist, daß die abgeschiedene Kieselsäure und Thonerde sich wie Puzzolanen verhalten, so wird aus diesen Thatsachen die Umwandlung des Thones in Puzzolane durch Einwirkung der Wärme leicht begreiflich.

Diese Zerlegung des Thones durch das Brennen kann nicht übersehen; sie steht mit einer großen Anzahl von Thatsachen, welche ich in früheren Abhandlungen erörtert habe, in vollkommenen Einlangen.

Der Thon ist nämlich ein hydratisches Thonerdezink; wie ich nachgewiesen habe, erstreben aber sehr viele hydratische Salze, in denen das Wasser constituirt ist und die sich durch bloße Entziehung derselben zerlegen; namentlich zeigt sich diese eigentlichumliche Eigenschaft bei den Salzen schwacher Säuren, der Metazinnsäure, Antimonösäre, Antimonigäsäre, Kieselsäure etc.

In einer meiner letzten Abhandlungen über die Bielatominkeit der Kieselsäure habe ich nachgewiesen, daß gewisse (lösliche) Alkaliflicate von der Zuzammensetzung MO, 3 Si O₃ + Aq, wenn ihnen ihr Hydratwasser durch Erhöhen entzogen wird, sich in eine unlösliche Kieselsäuremasse und in freies Alkal verwandeln, welches durch Wasser ausgesogen werden kann. Eine analoge Zerlegung erleidet auch der Thon beim Brennen; seine Bestandtheile trennen sich, im Momente der Deshydratisirung, von einander wie die erwähnten Alkaliflicate.

Es läßt sich demnach leicht begreifen, daß ein thöniger Kalkstein nach dem Brennen, wo die durch die Hitze von einander geschiedenen Bestandtheile des Thones sich in Gegenwart des Kalkes befinden, ein hydraulisches Produkt darstellt.

Diese Erklärung des Erhärtnes der hydraulischen Cemente würde jedoch unvollständig sein, wenn ich mich darauf beschränkt wollte, die Kieselsäure und Thonerde, welche in Folge des Brennens aus den Thonen ausgechieden wurden, eine puzzolante Rolle spielen zu lassen. Es ist nämlich unbestreitbar, daß beim Brennen eines thönigen Kalksteines nicht bloß eine Ausscheidung von Kieselsäure und Thonerde stattfindet, sondern auch die Bestandtheile des Thones sich mit dem Kalk verbinden; dies wird klar erwiesen durch die Wirfung der Salzsäure, welche vor dem Brennen des thönigen Kalksteines mit demselben keine Gallerte
gibt, nach dem Brennen aber eine reichliche Menge gallertartiger Kiesel-
säure aus demselben ausscheidet.

So gut binäre, nur aus Kiesel säure und Thonerde bestehende
Puzzolanen erhitzen, gibt es auch ternäre, welche Kiesel säure, Thon-
erde und Kalk enthalten; es können sich sogar noch complicirter zusam-
mengefeigte Puzzolanen bilden. Derartige, mehrere Basen enthaltende
Puzzolanen entstehen, wenn natürliche oder künstliche Gemenge von Thon
und Kalkstein einer hohen Temperatur ausgezett werden; zu dieser Classe
von Verbindungen gehören die natürlichen Puzzolanen.

Auch beim Brennen eines thonigen Kalksteines können zwei verschiede-
dene Arten von Puzzolanen entstehen; die einen reflektire bloß aus der
Veränderung, welche der Thon durch die Einwirkung der Hitze erleidet;
die anderen entstehen durch die Verbindung des Thones mit dem Kalk.
Diese beiden Arten von Puzzolanen müssen in Gegenwart des in allen
Cementen enthaltenen freien Kalkes natürlich das hydraulische Erhärten
dieser Mörtel veranlassen.

Zur Bestätigung dieser Theorie der Hydraulicität bedurfte es des
Beweises, daß alle hydraulischen Cemente wirklich aus zwei Theilen be-
stehen, aus freiem Kalk und aus einer Puzzolane. Ueberdies mußte dar-
gethan werden, daß das Erhärten dieser Cemente unter Wasser durch die
gegen seitige Einwirkung dieser beiden Körper bedingt wird.

Die nachstehenden Versuche, welche ich auf eine große Anzahl von
verschiedenen Cementen ausgeführt habe, scheinen mir diese Beweise in
gänzlicher Weise zu liefern.

Das Vorhandenseyn von freiem Kalk in einem Cement läßt sich
leicht erkennen, indem man den Cement mit den bekannten Löschmittel-
ern für den Kalk, wie Wasser, Zuckerwasser z. c. behandelt.

Um die puzzolantische Constitution eines Cementes zu erproben, be-
handle ich einen Cement von sehr kräftigen hydraulischen Eigenschaften
wie den von Pouilly, welcher im Wasser ebenso rasch erhärrtet wie
gebrannter Gips und dessen Hydraulicität einer Hydratisirung von Sil-
caten zugeschrieben worden ist — mit verdünnter Salsätter, von welcher
man soviel anwenden muß, daß der im Cement vorhandene freie Kalk
in Lösung gehen kann; doch darf die Säure nicht so concentrirt genom-
men werden, daß sie die in dem Cement enthaltene Puzzolane angreift.

Der Cement von Pouilly, auf diese Weise seines Gehaltes an freiem
Kalke beraubt, hat seine hydraulischen Eigenschaften gänzlich verloren;
der in der Säure unlösliche Antheil behält sich gegen Wasser ganz in-
über die hydraulischen Cemente.

different; er gelatinirt mit concentrirten Säuren und entfand durch die Verbindung der Kieselsäure mit Thonerde, Kalk und Gipseryd.

Obgleich nun dieser Körper, welcher von verdünnten Säuren nicht angegriffen wird, selbst keine hydraulischen Eigenschaften besitzt, so erhält er diese sofort, wenn er mit Kalk gemengt wird und er bildet dann einen Körper, welcher ganz ebenso starke Hydraulicität besitzt wie der Cement von Pouilly.

Man kann daher annehmen, daß der zu dem vorstehenden Versuche benutzte Cement ein puzzolanisches Gemenge ist, weil dessen hydraulische Eigenschaften vernichtet werden, sobald man ihn dem Kalkgehalt entzieht, während er seine Hydraulicität wieder erhält, sobald man ihn den durch verdünnte Säuren entzogenen Kalk zurückgibt.

Auf Grund aller dieser Thatsachen stelle ich die Theorie der Hydraulicität der Cemente in nachstehender Weise auf:

1) Jeder hydraulische Cement ist ein Gemenge von Puzzolane und Kalk. Sein Erbären wird durch die Einwirkung des Kalkhydrats auf die in ihm enthaltene Puzzolane, nicht aber durch die Hydratirung der beim Brennen des Rohmaterials entstandenen Silicate bedingt.

2) Die Puzzolanen besitzen eine sehr verschiedenartige chemische Zusammenlegung. Sie können aus Kieselsäure und aus Thonerde in gewissen allotropischen Zuständen, aus gebranntem Thon, aus einfachen oder doppelten Silicaten bestehen; die Magnesiaverbindingen lasset ich hier unberücksichtigt, weil die hydraulischen Eigenschaften derselben bereits in einer Abhandlung von J. Sainte-Claire Deville festgehalten worden sind. 19

Diese Anfichten weichen von den allgemein angenommenen bedeutend ab; ich will zum Schlusse noch den Einfluß derselben auf die Praxis besprechen.

Die bei der Verarbeitung der hydraulischen Cemente vorkommenden Fälle von Mißlingen schreibe ich der Ungewißheit hinsichtlich ihrer chemischen Zusammenlegung zu.

Jeder hydraulische Cement ist ein Gemenge von wandelbaren Be-

standtheilen; man kennt niemals die Natur der in ihm enthaltenen Puzzolane, welche doch seine wirkliche Qualität bedingen.

Um alle diese Unsicherheiten zu vemeiden, sollte man meiner Ansicht nach zur Fabrication der hydraulischen Cemente in der Folge künstliche Puzzolane von bestimmter chemischer Zusammenführung erzeugen und diese hernach mit den zweckentsprechenden Quantitäten von Arsuffa eu-

 ingen. Ich bin überzeugt, daß sich mittels dieses Verfahrens Resultate erreichen lassen, wie sie mit den gewöhnlichen Cementen bisher nicht erreicht worden sind.

Schon bei meinen Untersuchungen über die verschiedenen Arten der thonigen Puzzolane sind mir einige der selben vorgekommen, welche, weit entfernt von die Einwirkung von Magnesiaaschen in nachtheiliger Weise verändert zu werden, unter diesem Einflusse eine außerordentliche Härte erlangen. Ich hoffe daher, daß es mir im Verfolge meiner Untersuchungen gelingen wird, einen dem See- wasser widerstehenden hy-

draulischen Cement aufzufinden, den schon die Alten kannten und nach welchem unsere Ingenieure schon so lange suchten.

In meiner dritten Abhandlung über die hydraulischen Cemente werde ich meine Untersuchungen über die künstlichen Puzzolanen mit-

theilen.

XIV.

Die Zusammenfühzung und Analyse verschiedener Produkte, welche bei Verarbeitung der Rückstände der Soda- und Chlorkalk-

fabriken nach dem in Dienze angewandten Verfahren gewonnen werden; von Dr. E. Richters zu Waldenburg.

Ich theile nachstehend die Analysen verschiedener Produkte mit, welche bei Verarbeitung der Rückstände der Soda fabrikation, mit denen,
welche bei der Fabrication des Chloralkalis abfallen, erhalten werden, resp. vorzugsweise in Betracht kommen. Das bei der Ausarbeitung jener Maßstäbe befolgte Verfahren ist wesentlich das zu Dieuze in Anwendung kommende, welches bezüglich seiner rein chemischen wie technischen Seite Gegenstand einiger in diesem Journal veröffentlichten Abhandlungen gewesen ist. 20

Die Veröffentlichung der folgenden Untersuchungen dürfte bei dem großen Interesse, welches das oben erwähnte tief reiche Verfahren allerseits erregt, um so mehr gerechtfertigt sein, als die Anzahl der bisher mitgeteilten Analysen eine verhältnismäßig geringe ist, andererseits aber die Ergebnisse meiner Untersuchungen in einzelnen Punkten von freilich nur untergeordneter Bedeutung, mit den bisherigen Angaben nicht übereinstimmen.

Wie es mir von Interesse zu sein scheinen, habe ich die bei der Analyse befolgte Methode, bei deren Auswahl die Mittel und Bedürfnisse der Technik in erster Reihe berücksichtigt wurden, in aller Kürze angeführt.

1. Die Sodarückstände.

1 1/2 — 2 Pfdr. der graufarbten frühen Rückstände wurden unmittelbar nachdem sie die Laugereife verlassen hatten, auf einem Trichter mit kaltem Wasser ausgewaschen, bis die absteigende Flüssigkeit transparent blieb, und der Trichter mit kalt Wasser ausgewaschen, bis die absteigende Flüssigkeit sich nicht mehr trübte. Auf einer erwärmten porösen Chamotteplatte ausgebreitet, waren sie nach 1/4 Stunden staubtrocken, so daß sie zu einem sehr locker, außerordentlich leicht beweglichen Pulver von hellgrauer Farbe zerrrieben werden konnten.

Die nachfolgend mitgeteilten Analysen beziehen sich auf Rückstände, welche zu verschiedenen Zeiten der Fabrik entnommen wurden, also verschiedenen Schmelzen angehören.

In 100 Gewichtsteilen des vorerwähnten Pulvers wurden gefunden:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>a.</th>
<th>b.</th>
<th>c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schweiftecalcium (CaS)</td>
<td>37,62</td>
<td>38,04</td>
<td>39,10</td>
</tr>
<tr>
<td>Schweifteisen (FeS)</td>
<td>1,88</td>
<td>1,75</td>
<td>2,01</td>
</tr>
<tr>
<td>unterschwefligauer Kalk (CaO, SO2)</td>
<td>2,69</td>
<td>3,02</td>
<td>2,35</td>
</tr>
<tr>
<td>schwefligauer Kalk (CaO, SO3)</td>
<td>0,74</td>
<td>0,31</td>
<td>0,63</td>
</tr>
<tr>
<td>fichtenauer Kalk (CaO, CO2)</td>
<td>23,18</td>
<td>22,24</td>
<td>24,02</td>
</tr>
<tr>
<td>schwefelauer Kalk (CaO, SO3)</td>
<td>1,68</td>
<td>1,01</td>
<td>1,38</td>
</tr>
<tr>
<td>Kalk (CaO)</td>
<td>6,49</td>
<td>7,00</td>
<td>7,25</td>
</tr>
<tr>
<td>Thonerde (Al2O3)</td>
<td>2,11</td>
<td>2,02</td>
<td>2,00</td>
</tr>
</tbody>
</table>

Nach eingetretener Dyrpation der feuchten Richtigände, welche sich nach dem von Mond angegebenen Verfahren 21 sehr leichtleumig läst.
erhält man durch Extraction mit Wasser: 1) eine gelb gefärbte Lauge (eaux jaunes, Hofmann); 2) einen festen Rückstand, welcher so lange einer erneuten Drydation und AUSLAUGUNG unterworfen wird, als man noch gelbe Lauge erhält (eaux jaunes oxydées).

II. Die gelben Lagen.

Nach dem nachfolgenden mitgetheilten Verfahren läßt sich a) die Menge des Polysulfures bildenden, b) des als CaS und CaS₃ HS vorhandenen Schwefels und c) die Unterschwefligen Säure bestimmen, was in den meisten Fällen für die Praxis ausreichet. Die Ausführung nimmt zwar einige Zeit, aber nur wenig Mühe in Anpruch. Wollte man nebenbei das Mond'sche Verfahren ausführen, so erhielte man alle zur Berechnung der Zusammenfügung der Lauge notwendigen Zahlen.

100 Kubikzentimeter Lauge werden in einem Röhchen von circa 300 R. C. Inhalt, welches mit einem doppelt durchbohrten Kork und dem nötigen Glasrohr versehen ist, in ca. 4—5 Stunden durch einen mächtigen Kohlenfäurestrom zerlegt (CaS⁵ + HO + CO² = CaO, CO² + S⁴⁻ + HS, und CaS, HS + HO + CO² = CaO, CO² + 2 HS). Die Zersetzung ist vollendet, sobald Bleipapier von dem entweichenden Gas ab nicht mehr geschwärzt wird. Man filtrirt ab und bestimmt in dem Filtrat S⁴'O² maßanalytisch durch Jod (o). Der geäppelte Kohlen säure Kalk und Schwefel wird mit Sälfhäre behandelt, bis ersterer gelöst ist; man sammelt den Schwefel auf einem gewogenen Filter, trocknet bei 90° C. und wiegt (a). 20 R. C. Lauge werden mit 100 R. C. Wasser verdünnt und in einen mit Glasstopfen verschließbaren 1/2 Literkolben gebracht; man fügt aus einer Bürette 1/10 ammonialkalische Silberlösung hinzu, bis auf weiteren Zuflug derselben nach starren Umhüllten fein
Niederichtlag mehr erfolgt. Die Titration läßt sich leicht mit einem
Ueberschuss von 0,2 K. C. vollenden. Aus der Menge der verbrauchten
Silberlösung wird die Menge des Schwefels berechnet, welcher auszu-
lash von Säure als HS entweicht (CaS und CaS, HS). — Die folgenden
Zahlen sollen weder dazu dienen, die durchschnittliche, als vielmehr die
aufereinander wandelbare Zusammenfassung der Laugen zu zeigen.

1 Liter Lauge enthielt: 23

<table>
<thead>
<tr>
<th>Spec. Gewicht</th>
<th>Polysulfurat</th>
<th>Schwefel bei der Zersetzung</th>
<th>Schwefel als</th>
<th>(S,^2,O,^2) vorhanden.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in der Lauge</td>
<td>bildender Schwefel</td>
<td>mit Säuren als HS</td>
<td>entweichend.</td>
</tr>
<tr>
<td>1) 1,045</td>
<td>3,37 Grm.</td>
<td>4,02 Grm.</td>
<td></td>
<td>8,25 Grm.</td>
</tr>
<tr>
<td>2) 1,050</td>
<td>9,00</td>
<td>7,38</td>
<td></td>
<td>8,25 Grm.</td>
</tr>
<tr>
<td>3) 1,043</td>
<td>3,38</td>
<td>3,48</td>
<td></td>
<td>8,25 Grm.</td>
</tr>
<tr>
<td>4) 1,068</td>
<td>12,95</td>
<td>4,57</td>
<td></td>
<td>8,25 Grm.</td>
</tr>
<tr>
<td>5) 1,072</td>
<td>3,88</td>
<td>2,57</td>
<td></td>
<td>8,25 Grm.</td>
</tr>
<tr>
<td>7) 1,084</td>
<td>10,21</td>
<td>4,69</td>
<td></td>
<td>8,25 Grm.</td>
</tr>
<tr>
<td>8) 1,079</td>
<td>11,04</td>
<td>5,78</td>
<td></td>
<td>8,25 Grm.</td>
</tr>
</tbody>
</table>

III. Die erschöpftenjen Rüchstände.

Die ersten Rüchstände, welche nach fortgesetzter Dypbatation und Aus-
langung zuletzt übrig bleiben, sind, wenn sie einige Zeit der Luft aus-
gesetzt gewesen sind, frei von Schwefelcalcium und enthalten nach Hof-
mann 66,2 Proc. CaO, SO\(_3\), 1,3 CaO, CO\(_2\), 21 CaO, 7 (Al\(_2\)O\(_3\), Fe\(_2\)O\(_3\)),
1,5 Manganovulurold (Mn\(_2\)O\(_4\)), 3 Proc. unlösliches. — Wenn die ers-
chöpften, zur weiteren Verarbeitung auf Lauge nicht mehr brauchbaren
Rüchstände die angegebene Zusammenfassung besitzen, so können sie unschädlich
haft statt des Kaltes, resp. Gypses, mit Vortheil zur Dünung verdan-
wendet werden.

Auffallenderweise zeigten aber die in der chemischen Fabrik zu Sarau
gesammelten Rüchstände eine von der obigen völlig abweichende Zusammen-
setzung. Sie bestanden selbst nach Jahren langem Liegen an der
Luft, wie die unten stehenden Analysen zeigen, vorwiegend aus schweflig-
saurer und fosstenlaurem Kaff, und enthielten nur verhältnismäßig
geringe Mengen schwefelauren Kaff. Hauptsächlich wegen des großen
Gehaltes an dem erzogenen Salze, dessen Vorhandensein im Boden
jede Vegetation zerstört, war es nicht möglich denselben als Düngemittel

23 1, 2, 5 und 7 sind Laugen, welche nach der ersten, die übrigen, welche nach
der zweiten Dypbatation der Rüchstände erhalten wurden. — Die Gaben, wie die
Art der solche vorteilhaft der gesättigt mittheilung des Herrn. Chemisters Bähler,
früher zu Sarau.

Zusammenfassung der Rückstände im lufttrockenen Zustande.

<table>
<thead>
<tr>
<th>1) Farbe weiß mit einem</th>
<th>2) Farbe grauweis,</th>
<th>3) Farbe wie bei 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stich in's Graue, etwas gelblich.</td>
<td>45,63 CaO, CO₂</td>
<td>53,02 CaO, CO₂</td>
</tr>
<tr>
<td>45,63 CaO, SO₄</td>
<td>27,92 CaO, SO₄</td>
<td>22,41 CaO, SO₄</td>
</tr>
<tr>
<td>6,29 CaO, S₂O₅</td>
<td>1,69 CaO, S₂O₅</td>
<td>0,56 CaO, S₂O₅</td>
</tr>
<tr>
<td>4,59 CaO, SO₃</td>
<td>6,22 CaO, SO₃</td>
<td>10,61 CaO, SO₃</td>
</tr>
<tr>
<td>9,51 HO</td>
<td>7,74 HO</td>
<td>8,45 HO</td>
</tr>
<tr>
<td>3,50 unlöslich</td>
<td>4,75 unlöslich</td>
<td>4,85 unlöslich</td>
</tr>
<tr>
<td>93,37</td>
<td>101,74</td>
<td>100,39</td>
</tr>
</tbody>
</table>

IV. Das oxybire Schwefelmangan.

Die neutralisierten Manganschmierflüssigkeiten wurden in gemauerten, mehr flachen als hohen Bassins mit der aus den Rückständen der Soba gewonnenen Lauge gefällt. Der Niedererfall setzte sich bald ab; er wurde, nachdem die überstehende Flüssigkeit abgelassen worden war, dreimal ausgewaschen und hierauf vermittels Rettenpumpen in Holzbohle gebracht; nachdem er einigermaßen trocken geworden, würde er über Holzrahmen zu kleinen zugesinterten Stücken gespritzt, welche sich bald oxybirt, so daß nach einiger Zeit kein MnS mehr vorhanden war. Nachstehend die vollständigen Analysen dreier verschiedener Fällungsprodukte:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>abgäßig 9,76 Proc.</td>
<td>abgäßig 3,40 Proc.</td>
<td>abgäßig 9,71 Proc.</td>
</tr>
<tr>
<td>19,97 MnO₃</td>
<td>25,85 MnO₃</td>
<td>18,88 MnO₃</td>
</tr>
<tr>
<td>12,79 MnO</td>
<td>14,55 MnO</td>
<td>10,76 MnO</td>
</tr>
<tr>
<td>0,35 FeO₃</td>
<td>0,40 FeO₃</td>
<td>0,55 FeO₃</td>
</tr>
<tr>
<td>5,82 CaO</td>
<td>1,37 CaO</td>
<td>6,40 CaO</td>
</tr>
<tr>
<td>Spur NaO</td>
<td>Spur NaO</td>
<td>0,57 NaO</td>
</tr>
<tr>
<td>3,70 S₂O₃</td>
<td>0,40 S₂O₃</td>
<td>1,34 S₂O₃</td>
</tr>
<tr>
<td>1,59 Cl</td>
<td>0,73 Cl</td>
<td>0,65 Cl</td>
</tr>
</tbody>
</table>

V. Die nach dem Abbrößen des ordierten Schwefelmangans verbleibenden Rückstände.

Die Niederäscharge a und c wurden im Schwefelverbrennungsofen abgetöpf. a gab 67.5 Proc., c 59.2 Proc. Roßgut, von nachfolgender Zusammensetzung:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO</td>
<td>27.76</td>
<td>24.72</td>
</tr>
<tr>
<td>CaO</td>
<td>8.00</td>
<td>9.73</td>
</tr>
<tr>
<td>NaO</td>
<td>1.18</td>
<td>0.87</td>
</tr>
<tr>
<td>S</td>
<td>42,88</td>
<td>41.68</td>
</tr>
<tr>
<td>Cl</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Mn2+O\textsubscript{3}</td>
<td>10.94</td>
<td>11.37</td>
</tr>
<tr>
<td>Fe2+O\textsubscript{3}</td>
<td>4.90</td>
<td>6.84</td>
</tr>
<tr>
<td>Fe3+O\textsubscript{3}</td>
<td>0.66</td>
<td>0.68</td>
</tr>
<tr>
<td>Sand</td>
<td>3.05</td>
<td>2.50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>99.37</td>
<td>99.48</td>
</tr>
</tbody>
</table>

Bergleicht man die Gesamtmenge des Schwefels in dem lufttrockenen Niederäscharge mit ebem derselben in dem entsprechenden Röstgut, so ergibt sich, daß bei a) 75.8 Proc., bei c) 80.7 Proc. derselben beim Abbrößen zu \(\text{SO}_3 \) verbrannt, und als solche in die Bleitannern gelangten, Zahlen, welche mit den von Hofmann angegebenen vollkommen übereinstimmen.

Ich will zum Schluß eine Beobachtung mittheilen, welche mir von einiger praktischer Bedeutung zu sein scheint. Man maß die Bemerkung, daß der weisentlich aus Schwefel und Schwefelmangan bestehende Niederäschar in dem Falle eine besonders große Neigung zur Selbstentzündung zeigte, wenn derselbe verhältnismäßig viel Schwefeleisen beigemengt enthieilt. Die vorherige Fällung des Eisens aus der Mangansättigung erscheint daher in mehrfacher Beziehung als empfehlenswert: Man erhält außer einem reinen Manganoxyd (auf dessen Gewinnung übrigens in dem vorliegenden Falle aus verschiedenen Gründen kein sehr großes Gewicht gelegt wurde) einen Niederäschar, welcher die oben angedeutete Úbbe Eigenschaft nicht zeigt, und beißt außerdem in dem Schwefeleisen das Material, durch dessen Zunahme zu den frischen Rückständen es möglicherweise gelingt nach vollendeter Auslaugeung der
leisten eine Waffe zu erhalten, welche, wie Hofmann angibt, vor-
wiegend aus schwefelsaurem, statt, wie meine Analysen zeigen, aus
schwefligsaurem Säure besteht.
Das Röntgut o), sowie der Niederschlag b) lieferte mir das Material
zu weiteren Versuchen, welche ich im nächsten Heft dieses Journals mit-
theilen werde.

XV.

Ueber das von Designolle erfundene neue Schieß- und
Sprengpulver; von A. Payen.

Die Einführung der Sprengladungswaffen bildet einen außerordentli-
chen Fortschritt in der Kriegskunst; nach der Verbesserung der Waffen
handelt es sich jetzt um die Vervollkommnung des Motors, d. h. um die
Erfindung neuer Pulverarten, deren Wirkungen den Bedürfnissen der
heutigen Artillerie entsprechen.

Diese wichtige Frage wurde von Designolle in ihrer ganzen All-
gemeinheit aufgefaßt und nach siebenjährigen unablässigen Versuchen
scheint ihm eine praktische Lösung der Aufgabe gelungen zu sein.

Bei dem gegenwärtigen Standpunkte der Artillerie muß man vier
Pulverarten unterscheiden:
1) Musketenpulver;
2) ein raoch wirrendes Kanonenpulver für die Geschütze mit kurzer
Scheibe;
3) ein langsam wirrendes Kanonenpulver für die Geschütze mit
langer Scheibe;
4) ein Sprengpulver für die Torpedos und die Projektile, welche
die Rolle eines Minenofens zu spielen haben (Explosionsprojectile).

Es ist unmöglich, die ballistische Kraft des jetzigen Pulvers durch
Abänderung der relativen Verhältnisse seiner Bestandtheile zu vermehren.

Durch Vervollkommnung der zum Pulverquarz des Eages dienen-
en Vorrichtungen, somit durch innigeres Mischen der Bestandtheile des
Pulverquarzes ist es gegenwärtig gelungen, die den Projectilen durch das
gewöhnliche schwere Pulver ertheilte Anfangsgegendwindigkeit zu verneh-
men. Doch ist dieser die Geschwindigkeitszunahme nicht sehr bedeutend.

Anwendung schwerer Mühlesteine anstatt der Stempfmühlen bei der
Fabrication des jeft in Frankreich für das Mustergewehr von 1866 gebräuchlichen Musketenpulvers.)

Die mit Mühlensteinen fabrizierten Pulversorten haben größere Sprengkraft als die früheren in Stampföhlen bereiteten, ohne daß sie eine viel größere Stärke besitzen.

Das pitrinaure Kali als Basis des designolle'schen Systemes der Pulverfabrication.

Der Hauptvorteil dieses Systemes besteht in der Möglichkeit, eine bestimmte Reihe Pulversorten zu fabrizieren, welche bezüglich ihrer Wirkung zwischen den Grenzen 1 und 10 variieren.

Man stellt mit derselben Basis zwei ganz verschiedene Pulverorte dar, von denen die eine, ein Sprengpulver, bei gleichem Gewicht, die zehnfache Kraft des jetzigen Pulvers besitzt (dieses Pulver ist kürzlich bei der französischen Marine zum Füllen der Torpedos und der Explosions- projectiles eingeführt worden); die andere Sorte ist ebenso stark als das jetz gebräuchliche Pulver, wirft jedoch weit weniger zerschmettern.

Selbstverständlich lassen sich zwischen diesen beiden Grenzen 1 und 10 beliebig viele Stufen anordnen, welche den Geschossen ebenfalls verschiedene Geschwindigkeiten mittheilen.

Kurz, Designolle hat die Aufgabe gelöst, bei bekannter Länge der Seele des Geschützes, bei bekanntem Durchmesser der Seele, und bei bekanntem Gewicht des Projectiles und der anzuwendenden Pulverladung, ein Pulver herzustellen, welches dem Projectile eine im voraus bestimmte Anfangsgeschwindigkeit zu erteilen vermag.

Vorteile des mit pitrinaurem Kali fabricirten Pulvers.

1) Vermehrung der ballistischen Kraft, ohne Vermehrung der Sprengkraft;
2) die Wirkungen des Pulvers können, bei gleichbleibender Basis, zwischen den Grenzen 1 und 10 regulirt und abgeändert werden;
3) die Verbrennungsgeschwindigkeit des Pulvers läßt sich beliebig reguliren;
4) die ballistische Kraft des Pulvers läßt sich ohne Abänderung der Fabricationsmethode vermehren;
5) Regelmaßigkeit in der Wirkungsweise (die Projectile haben stets dieselbe Anfangsgeschwindigkeit von 1 bis nahe 2 Meter; diese Thatsache ist Folge der Fabricationsmethode);
6) Entbehrlieht des Schwefels, wodurch die bei der Verbrennung des gewöhnlichen schwarzen Pulvers auftretenden Schwefelkalium- und
Schweifelwassersstoffdämpfe vermißt werden (welche in den Cäfematten und in den niedrigen Batterien der Kriegsschiffe für die Gesundheit der Mannschaft gefährlich werden können);

7) Unschädlichkeit des neuen Pulvers für Metalle (Eisen, Kupfer, Messing etc.), indem es dieselben gar nicht angreift;

8) fast vollständige Vermeidung des Pulverrauches, welcher bei dem neuen Pulver nur aus mehr oder weniger mit kohlenstoffreitem Kali und Kaliumoxyd beladenem Wasserstoffdampf besteht.

Designolle läßt gegenwärtig in der tätigen Geschäftsgießerei zu Voucheb bedeutende Mengen seiner neuen Pulversorten fabriciren: Musketenpulver, raff und langsam wirrendes Kanonenpulver, und Sprengpulver für Torpebos und Explosionsprojektile.

Zusammenstellung der Pulversorten mit piftrinsaurem Kali als Basis.

Das Sprengpulver wird aus nur zwei Bestandtheilen zusammengesetzt, nämliche aus piftrinsaurem Kali und aus Kalijalpeter, das Musketen- und Geschützpulver dagegen aus drei Substanzen, aus piftrinsaurem Kali, Kalijalpeter und Kohle.

Borgänge bei der Herstellung des piftrinsauren Kalis.

Nach zahlreichen Untersuchungen gelang es Designolle diesen Vorgang festzustellen und nachzuweisen, daß der Verbrennung des piftrinsauren Kalis zwei ganz verschiedene Fälle in Betracht zu ziehen sind:

1) Das piftrinsaure Kali brent an freier Luft ab, und dann bildet sich bei seiner Verbrennung feste Cyanwassersstoffsaure und Stickstoffyd (welches letztere sich an der Luft zu Untersalpetersäure oxydiert); in diesem Falle wird der Vorgang nach Designolle durch nachstehende Formel dargestellt:

\[C\text{II}H\text{III}NO\text{IV}O + KO = N + NO\text{II} + 4CO\text{II} + H\text{C}\text{II}N + HO + KO, CO\text{II} + C\text{II} \]

Piftrinsaures Kali
Blasenflasche

2) Das piftrinsaure Kali verbrennt in einem Gefäßrohre, also in einem verschlossenen Gefäß und in diesem Falle befindet sich unter den Verbrennungsproducten weder Cyanwassersstoffsaure noch Stickstoffyd; der Verbrennungsprozeß wird dann durch nachstehende Formel ausgedruckt:

\[C\text{II}H\text{III}NO\text{IV}O + KO = 3N + 5CO\text{II} \text{ } + 2H + O + KO, CO\text{II} + C\text{II} \]

Diese Formel wird bei der Zusammenstellung der Säure zu Grunde gelegt.
Verfahren bei der Darstellung des neuen Pulvers.

Hierauf wird der Saug mittels einer hydraulischen Presse verdichtet (galletage), und zwar je nach der zu erzielenden Verbrennungs geschwindigkeit (welche im umgekehrten Verhältnisse zum Drucke steht) bei einem Drucke von 30,000 bis 100,000 Kilogramm. Dann wird der Saug mittels einer besonderen Maschine gekrönt, gesiebt und nach den bei der Fabrikation des gewöhnlichen schwarzen Pulvers üblichen Verfahren geglättet (polirt) und getrocknet.

Das von Designolle befolgte Verfahren bleibt bei allen Pulversorten dasselbe; nur die Menge der Menge des künstlichen Käses. Der Erfindung zufolge darf man für Musketonpulver nicht über 20 Proc. pitris-

saurer Kali nehmen; zu Kanonenpulver nimmt man, je nachdem man ein langsam oder schnell wirkendes Pulver erhalten will, 8 bis 15 Proc. pitrisaurer Kali.

Gesichtliches über die Pitrisauré und das pitris-
sauré Kali.

Im Jahre 1788 gelang es J. H. Haußmann, einem Chemiker und Fabrikan ten in Colmar (Elzach), bei seinen unter suchungen über die Wirkung der Salpetersäure auf Indigo aus den Produkten der Reaction eine sehr bitter schmeckende, hellgelbe, kristallinische Substanz abzuscheiden, welche er Indigobitter nannte.

Einige Jahre später, im Frübol des Jahres III, erhielt Belter bei Behandlung von Seide mit Salpetersäure dieselbe Substanz. Am 17. April 1809 trug Chevreul über das Indigobitter oder Beltersche Bitter (mit dessen Untersuchung auch Proust, Fourcroy und Kau-

Ungeachtet dieser Untersuchungen blieb die Zusammensetzung des

Erst Laurent hat aber die richtige Formel für die Zusammenlegung der Kohlenstoffsaure gefunden. Er zeigte nämlich, daß die Kohlenstoffsaure ein Abkömmling der Phenylsäure ist und daß man sie als Phenylsäure betrachten kann, in welcher 3 Äquiv. Wassersstoff durch 3 Äquiv. Unteralpetersäure ersetzt sind, daher er sie „Trinitrophenylsäure“ benannte.

Die Phenylsäure, welche in den Fabriken der „Pariser Gesellschaft für Gasbeleuchtung und Heizung“ im Großen dargestellt wird, bildet gegenwärtig das Haupt-Rohmaterial für die Fabrication der Pikrinauren (wie diese Substanz jetzt allgemein genannt wird) und der pikrinauren Salze.

Der Gedanke, das schwarze Schießpulver durch pikrinaures Kali zu erreichen, ist nicht neu; schon Welter sagt bezüglich dieser Substanz:

Eigenschaften des pikrinauren Kalis.

Dieses Salz kristallisirt in kleinen, schön goldgelben, ziemlich hart glänzenden Prismen, welche dem zwei- und eingesiederten Kristallegeme angehören. Es ist in Alkohol unlöslich, löst sich aber in 260 Theilen kalten (bei + 15° C.) und in nur 14 Theilen siedenden Wassers.

Bis hier war das pikrinaure Kali sehr teuer. In der letzten Zeit jedoch nahm John Cassell ein, einer seiner geschicktesten Fabrikanten chemischer Produkte, die Untersuchungen von Laurent über die Einwirkung der Salpetersäure auf die Phenylsäure wieder auf, vervollkommnete das Verfahren zur Fabrication der Pikrinauren und erzeugte chemisch reines pikrinaures Kali zu einem so billigen Preise, daß das
neue Pulver nicht merklich höher zu stehen kommt als das gewöhnliche schwarze Schießpulver. Sieht man die Wirkungen des erstenen und seine ballistische Kraft in Betracht, so ist nach Designolle es nicht zu bezweifeln, daß die Anwendung des neuen Pulvers eine beträchtliche Erleichterung ermöglicht.

Designolle und Tafthellaz liefern außerdem verschiedene Sache zu Buntseufnern; so z. B. zu:

<table>
<thead>
<tr>
<th>Material</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>goldgelb</td>
<td></td>
</tr>
<tr>
<td>pitritinaes Ammoniak</td>
<td>50</td>
</tr>
<tr>
<td>Feuerharz</td>
<td>50</td>
</tr>
<tr>
<td>pitritinaes Selen</td>
<td>48</td>
</tr>
<tr>
<td>Grünfeuer</td>
<td></td>
</tr>
<tr>
<td>pitritinaes Ammoniak</td>
<td>52</td>
</tr>
<tr>
<td>salpetrauror Barut</td>
<td>54</td>
</tr>
<tr>
<td>Rothfeuer</td>
<td></td>
</tr>
<tr>
<td>pitritinaes Ammoniak</td>
<td>46</td>
</tr>
<tr>
<td>salpetrauror Streonit</td>
<td></td>
</tr>
</tbody>
</table>

Miscellen.

Richard's Apparat zur Verhütung der Dampfkegel-Explosionen.

Dieser Stift ist wiederum der Länge nach durchbohrt und mit einer Seidenschlinge überhalb des Benützungsloches versehen, so daß sobald Dampf durch das Benützungsloch hinein durch diese Seitenöffnung des Stiftes ausgetreten ist, durch die Seidenschlinge. Der Tafthellaz wird in einen Flaschen gebracht und von unten aufgefüllt. Sobald das Rohr einen zu hohen Stand erreicht hat, drückt sich der Tafthellaz durch das Trichterloch in den Kessel und erzeugt einen so hohen Schall, daß der Kesselwärter augenblicklich von dieser Explosion aufmerksam gemacht wird.
Dadurch wird dies aber verlängert und muß sich, da das untere Ende unbevog- lich befestigt ist, mit seinem oberen Ende, dem Benitfuge, von dem ebenfalls unbevog- lichen Benitfuge entfernen und dem Tampp den Sutrit für Priepe gesattelt. Es lange die zum Apparat führenden Pobre nicht verkopf sind, muß ein zu niedriger Wasserdunst sich je nach durch Priepe verwischen, und empfiehlt sich der Apparat außerdem durch seine große Einfachheit.

Clavel's Verfahren zum Schärfen von abgenützten Feilen und Raspen.

Woll man einzelne, weniger abgenützte oder niedergeschleifte Stellen oder Theile der Feile vor den Einwirkungen des Säurebades schützen, so werde man ein auf 300 Teile erwärmtes Gemenge von Weinöl mit gelbem Lack, zu gleichen Theilen geschi- mojen, oder einen Eichlackstift an, welche die Wirkung der Säuren widerschied. Immerhin darf die Eintauchung in das Säurebad erst 30 bis 40 Stunden nach dieser Application stattfinden. Woll man im Gegenteil, eingetiefe zu sehr hervorragend ge- schiebte Stellen tief erschaffen, so muß man, nötig zu unterscheiden, in demselben Theilschmelzen, welche die Wirkung der Säuren widerschied, immerhin darf die Eintauchung in das Säurebad erst 30 bis 40 Stunden nach dieser Application stattfinden. Woll man im Gegenteil, eingetiefe zu sehr hervorragend ge- schiebte Stellen tief erschaffen, so muß man, nötig zu unterscheiden, in demselben Theilschmelzen, welche die Wirkung der Säuren widerschied, immerhin darf die Eintauchung in das Säurebad erst 30 bis 40 Stunden nach dieser Application stattfinden. Woll man im Gegenteil, eingetiefe zu sehr hervorragend ge- schiebte Stellen tief erschaffen, so muß man, nötig zu unterscheiden, in demselben Theilschmelzen, welche die Wirkung der Säuren widerschied, immerhin darf die Eintauchung in das Säurebad erst 30 bis 40 Stunden nach dieser Application stattfinden.

Colloodium als Schutzmittel gegen das Anlaufen von Silberwaaren.

Die Reizung des Silbers zum Anlaufen und die dadurch bedingte unwillige Reinigung der fertigen Gegenstände hat sich seit mehreren Jahren mit verständlichen Verfahren zur Hebung dieses Uebels bestätigt, doch bisher immer erfolglos. Die heutigen, feinen Tintenlieben einen gelben Ton hinter sich; auch Wafer- gläser, ferner Maufern und sonstige Chemikalien erweisen sich als unbrauchbar. Endlich war ich, obgleich, in der Bemühung des Koloidills ein Mittel gefunden zu haben, welches die Überflüss der Tinten, plattierten versilberten, neusilberten in Gegen- stände, längere Zeit vor Anlaufen schützt, und sowohl bei polierten Objekten, als
ausgesuchten, welche schon man weiß, wie kalt, hergestellt sind, angewendet werden kann, da das Collodium bekanntlich wasserhell und farblos ist.

Die photographierbar mit Silber beschlagenen Gegenstände werden etwas erwärmt (weil sonst Fliis-Salz getrieben), und dann das Collodium mit einem elastischen Pinzett aufgetragen, jedoch so sorgfältig, daß alle Rillen mit Collodium überkleidet sind; diese Gegenstände, welche überbrüht wurden, laufen in kurzer Zeit an so ausfliessender an. Auch ist es nicht rathsam, die Gegenstände öfter als einmal zu überpinseln.

Nicht giftiges Verfassungsmaterial.

Neues in der Hochglasaarbeit.

Neber die Wirkung des Sonnentlichtes auf Schweißeffektstoff; von D. W o e w, Assistent am Laboratorium des City College in New-York.

Wird reiniger Schweißeffektstoff längere Zeit der Einwirkung des Sonnentlichtes ausgesetzt, so färbt es sich gelblich. Zur näheren Untersuchung der auf diese Weise hervorgerufenen Veränderungen wurde eine größere Menge der gedachten Substanz in
zusammengesetzten Glaströben den Sonnenstrahlen exponirt. Es sind eine allmähliche
Versteifung statt, indem ein brauner, unlöslicher Körper entstand, welcher so sehr an
den inneren Röhrenwandungen haftete, daß er selbst durch heftiges Schütteln von
denselben nicht losgelöst werden konnte. Durch diesen Umweg wurde eine weitere
Einwirkung der Sonnenstrahlen verhindert, und in Folge davon hörte die Ver-
estaltung auf.

Zum Röhen gleichzeitig Wasser vorhanden, so wird die Abänderung des
verwandten Versteifungsproduktes am Glase verhindert und man erhält eine größere Menge
bevorzogener Körper. Nach zwei bis drei Monate langer Exposition wurden die Rö
ren geöffnet. Das Wasser zeigte schwach lauerte Reaction und wies, nachdem es
neutralisiert und konzentriert worden, deutlich reducirend auf Silber- und Quecksilbersole.
Offensichtlich hatte sich eine Spur von Formyläure (Amiensäure) gebildet, entsprechend
dem Ausdruck: 24

\[CS_2 + 2H_2O = CH_3O_2 + H_2S + 8. \]

Beim Filtern blieb der neugebildete braune Substanz auf dem Filter zurück,
dürfend das Filter treten, im Schwefelsäurestoff gelöstem Schwefel enthielt. Bei
neuerer Untersuchung fand sich, daß diese Verbindung in jeder Beziehung dem von mir
vor zwei Jahren entdeckten Koblenz füufizid entsprach. Sie war unlöslich in
Wasser, Alkohol, Äther, Chloroform, Schwefelsäurestoff und Deter, ließ sich
der Verbindung in einer siedenden Acetonslösung. Beim Erhitzen in einem Glaströbchen
blieb sie unmittelbar in ihrer Bestandtheile zeitig: der Schwefel unlöslich und
Koblenz festgehalten blieb zurück.

Wird Schwefelsäurestoffkäufers Kali (Kaliimethylcarbonat) in konzentrierter Lösung
der Einwirkung des Sonnenlichtes ausgelegt, so ist es dadurch bestrahlte Veränderung
so gering, daß sie kaum wahrgenommen werden kann; wird dagegen die Lösung von
Muriatamalgam behandelt, so findet eine Reduktion zu niedriger Schwefelsäures
Januar 1869.)

Über die Albertotypie; von W. Simpson.

W. Simpson schreibt hierüber in den Photographic News:

"Wir empfangen einen wichtigen Nachrichten über Albert’s neues Druckverfahren,
welche allen, welche dessen wunderbar schöne Resultate sehen, von größtem Interesse
sein werden. Das Verfahren scheint mit dem von Leefley zu Woburn and Marsch
als Neuwelt zu haben.

Wir schreiben uns darüber aus Paris: Ich bin in der Lage, Ihnen einige,
weann auch unveröffentlichten Mittheilungen über Albert’s französisches Patent machen zu
können.

Eine dicke Glasplatte, etwa 1/8 Zoll dick, wird mit folgender Lösung übergossen:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser</td>
<td>300 Teile</td>
</tr>
<tr>
<td>Eiweiß</td>
<td>150</td>
</tr>
<tr>
<td>Gelatine</td>
<td>15</td>
</tr>
<tr>
<td>doppelt-dromfahrtes Kali</td>
<td>8</td>
</tr>
</tbody>
</table>

Die hiermit bestrichene Platte wird getrocknet, schwarzes Tuch dazwischen gelegt, und etwa
zwei Stunden dem Licht ausgesetzt. Sobald wird sie mit einer Lösung von Gelatine
und doppelt-dromfahrtes Kali übergossen. Die und miutberiteten Verbindungen nache
Mittelung enthalten ebenfalls einen Fehler, die Vorrichtung lautet:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gelatine</td>
<td>300 Teile</td>
</tr>
<tr>
<td>doppelt-dromfahrtes Kali</td>
<td>100</td>
</tr>
<tr>
<td>Wasser</td>
<td>180</td>
</tr>
</tbody>
</table>

Nicht wahrnehmbar soll es statt 180 heissen: 1800 Teile. Die Platte wird mit
der Lösung überzogen, getrocknet und unter einem Negativ belichtet. Die Strahlen
müssen senkrecht aufsitzen. Nach hinreichender Belichtung wird die Platte gewaschen,
und dann wie ein lithographischer Stein behandelt, b. h. mitfels einer Rolle mit fetter
Karte befest und in der lithographischen Presse verfeinert.

\[C = 12; O = 16; S = 32. \]
Im unseren Leben das ganze Verfahren klarer vorzugehen, wollen wir hier das Verfahren von Tzsch, und das Princip, worauf sich dieses und Albert's Verfahren gründet, durchgehen.

Eine Platte wird mit Gelatine und Chromsalz überzogen, getrocknet, und unter einem Negativ belichtet. Dann wird sie mit kaltem Wasser gewaschen, nicht um einen Theil der Gelatine zu entfernen, sondern nur um das Chromsalz zu entfernen, und die Gelatine zu befrischten. Wie voll belichtete Theile der Platte, den tiefsten Schatten entsprechend, fast ganz unlöslich, und nehmen das Wasser nicht auf; die weniger belichteten Theile nehmen etwas Wasser an, da sie nicht vollkommen unlöslich geworden; die gar nicht vom Licht getroffenen Stellen, also die höchsten Lichter, absorbiren das Wasser. Die so vorbereitete Platte wird nun wie ein lithographischer Stein behandelt. Wenn man mit einem, mit lithographischer Farbe chargirten Roulett darüber geht, haftet die Farbe an den vollbelichteten tiefen Stellen gut, an den höchsten Lichtern, ihrer Feuchtigkeit wegen, gar nicht, und an den Halbtönen mehr oder weniger, je nach dem Grade ihrer Feuchtigkeit. Man erhält also einen genauen Abdruck des Negatifs auf der Platte, und kann hiervon durch Auslegen von Papier und geeignete Verjüngung Abzüge herstellen.

Die Eigenthümlichkeit der so erhaltenen Abzüge besteht darin, daß die Abjungen vom Licht zum Schatten nicht in einem fortlaufenden Ton, sondern in eine überaus helle Erhebung, auf dunkel gefärbt, von ganz verschiedenartigem Uebergangs, von dem Licht und Weise, wie die Gelatine des Wassers absorbirt und abläuft, bewirkt werden. In den Tzsch'schen Bildern ist dies ganz, wenn auch sehr sein, vorhanden; in einigen von den Albert'schen Copien ist es so, daß man sich durch die Leute nicht unterscheiden kann, ob es vom Bild oder der Tonsur des Papieres herrührt. Der Feil der Tzsch'schen Verfahren war der, daß die ganze Gelatineebnet beim Drucken zu sehr kräftig, so daß nicht mehr als 50 bis 70 Abzüge davon gemacht werden konnten. Wie es heißt, ist das Verfahren soweit verbessert, daß bis zu 200 Abdrücke einer Platte erhalten werden können. Herr Albert verbessert, 1000 Abzüge von einer Platte drucken zu können; ob dies nun durch die Unterlage von Gelatine, Eise und Chromsalz möglich gemacht wird, oder auf eine andere noch nicht bekannte Weise, darüber können wir keine Auskunft geben.

Tzsch legt viel Gewicht auf die Anwendung doppelf-chromiatirter Salze; wir glauben indessen nicht, daß das Resultat hierdurch wesentlich beeinflußt wird.

Das Princip, auf dem diese Verfahren beruhen, ist keineswegs neu. Poitevin hat es vor dreissig Jahren deutlich beschrieben.

Wir geben seine Mittheilungen nach der Specification seines englischen Patentes, vom 16. April 1856, worin es heißt:

indem ich die Methode des lithographischen Druckes, wobei die angefeuchtete Oberfläche mit einer fetten Tinte überzogen wird, anwende." (Photographisches Archiv, 1869 Seite 106.)

Photographischer Kupferdruck.

Bright's Lichtmesser.

Praktische Anwendung der sensiblem Flammen.

Leuchtgasflammen, welche mit seinen langen Flamme brennen, haben bekanntlich die interessante Eigenschaft, dass sie gegen Geräusche sehr empfindlich sind: sie verlieren sich und werden breit, so oft in dem Raume, in welchem sie sich befinden, ein Geräusch erzeugt wird. Diese Eigenschaft benutzte Dr. Barrett zur Construction eines Instrumentes, das vielfach praktisch angewendet werden kann.

Zur qualitativen Söthrohranalyse.

Reagens, und erhitzt ganz allmählich, ansanges mittels einer Weingeisslamme, zuletzt mit Hilfe des Kohlrevers, bis jede Säureoxydenlösung aufgetrieben hat, worauf die Reaction vollständig vor sich gegangen ist. Man beobachtet dann die Farbe, welche das Reagens angenommen hat. Einige von den empfindlichsten Reactionen sind die nachstehenden:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Farbe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisen</td>
<td>heller oder dunkler braun; in manchen Fallen schwarz</td>
</tr>
<tr>
<td>Blei</td>
<td>gelblich braun</td>
</tr>
<tr>
<td>Kupfer</td>
<td>grün</td>
</tr>
<tr>
<td>Mangan</td>
<td>heller oder heller purpur rot; schwarz</td>
</tr>
<tr>
<td>Nickel (NiSO₄)</td>
<td>heller oder heller purpur rot; schwarz</td>
</tr>
</tbody>
</table>

Die Mittheilung der Resultate ausführlicherer Untersuchungen behält sich der Verfasser vor.

Chemische Untersuchung der zum Gerben angewendeten Polcurea; von Carl Schaper.

Unter diesem Namen erhielt der Professor Wittstein von Herrn Apotheker Leyboldt in St. Jago de Chile, an der verschiedensten anderen Natursalzen, eine Erhebung, welche auf einem Cordilleren-Grate in Chile, 12 – 14,000 über dem Meere, aus dem sie umgebenden Porphyre hervortretend und von Melaphyre begleitet, in ungeheurer Menge vorkommt und dort häufig zum Gerben angewendet wird.

Die ist ein fahmutig gebeiztes, isoderes kriechig-flüssigmittel, häufig zusammenziehender schmelzender Polvere.

Bis zu 1200 C. erhitzt, verliert sie 13,560 Proc. am Gerben, welche in Wasser bestehen.

Die quantitative Analyse lieferte folgende Resultate:

A. Einzelne Bestandtheile.

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kali</td>
<td>0,332</td>
</tr>
<tr>
<td>Natron</td>
<td>0,332</td>
</tr>
<tr>
<td>Kalk</td>
<td>2,597</td>
</tr>
<tr>
<td>Magnesia</td>
<td>1,506</td>
</tr>
<tr>
<td>Mauererde</td>
<td>2,807</td>
</tr>
<tr>
<td>Eisenoxyd</td>
<td>0,400</td>
</tr>
<tr>
<td>Chlor</td>
<td>0,049</td>
</tr>
<tr>
<td>Schwefelsäure</td>
<td>14,474</td>
</tr>
<tr>
<td>Kieselsäure</td>
<td>1,795</td>
</tr>
<tr>
<td>Mauererde</td>
<td>2,007</td>
</tr>
<tr>
<td>Eisenoxyd</td>
<td>6,700</td>
</tr>
<tr>
<td>Schwefelsäure</td>
<td>3,330</td>
</tr>
<tr>
<td>Kieselsäure</td>
<td>49,900</td>
</tr>
<tr>
<td>Wasser</td>
<td>13,560</td>
</tr>
</tbody>
</table>

Summa 100,000

B. Die Salze des in Wasser löslichen Theiles im neutralen Wasser stehenden Zustande.

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kali</td>
<td>0,641</td>
</tr>
<tr>
<td>Natron</td>
<td>0,656</td>
</tr>
<tr>
<td>Kalk</td>
<td>6,308</td>
</tr>
</tbody>
</table>

25 Nebst einer nicht Mangane.
<table>
<thead>
<tr>
<th>Komponente</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwefelsäure Magnesia</td>
<td>3,910</td>
</tr>
<tr>
<td>Natrium</td>
<td>9,722</td>
</tr>
<tr>
<td>Kalium</td>
<td>1,100</td>
</tr>
<tr>
<td>Chlorid</td>
<td>0,084</td>
</tr>
<tr>
<td>Gesamt</td>
<td>22,394</td>
</tr>
<tr>
<td>Freie lösliche Sulfat</td>
<td>1,735</td>
</tr>
<tr>
<td>Gesamt</td>
<td>24,189</td>
</tr>
</tbody>
</table>

C. Die einzelnen Bestandtheile und Salze des in Wasser löslichen Theiles in Procenten.

<table>
<thead>
<tr>
<th>Bestandtheile</th>
<th>a.</th>
<th>b.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KO</td>
<td>1,4</td>
<td>1,4 KO + SO₄³⁻</td>
</tr>
<tr>
<td>NaO</td>
<td>1,4</td>
<td>2,7 NaO + SO₄³⁻</td>
</tr>
<tr>
<td>CaO</td>
<td>10,7</td>
<td>26,1 CaO + SO₄³⁻</td>
</tr>
<tr>
<td>MgO</td>
<td>5,4</td>
<td>16,1 MgO + SO₄³⁻</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12,0</td>
<td>40,2 Al₂O₃ + 3SO₄³⁻</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1,6</td>
<td>4,6 Fe₂O₃ + 3SO₄³⁻</td>
</tr>
<tr>
<td>Cl</td>
<td>0,2</td>
<td>0,4 NaCl</td>
</tr>
<tr>
<td>SO₄³⁻</td>
<td>59,9</td>
<td>92,6</td>
</tr>
<tr>
<td>SiO₃²⁻</td>
<td>7,4</td>
<td>7,4 SiO₃²⁻</td>
</tr>
<tr>
<td>Gesamt</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Aus der Zusammenstellung des in Wasser löslichen Theiles der Polonuren ist leicht ersichtlich, daß derselbe in der Tat als eine natürliche Weizgerbeisge anwendet werden kann. (Wittstein's 8terjahrsschrift, Bd. XVIII, Heft 2.)

* * *

Leipzig, Quadr und Händel.

Die allgemeine Anerkennung wird dem Unternehmen nicht fehlen. Monatlich erscheint eine Nummer im Umfang von 2 ½ — 3 Bogen; mit dem Schlußjahr wird ein ausführliches Sach- und Namen-Register über den Inhalt des ganzen Jahrganges geliefert und in besonderen Bänden sollen neu erschienene, in sich abgeschlossene Werke aufgeführt und beprochen werden.

Bei schöner Ausstattung ist der Preis ein mäßiger (3 Thlr. pro Jahrgang).
XVI.

Centrifugal-Regulator von Professor W. Thomson in Glasgow.

Nach Engineering, Januar 1869, S. 1.

Mit Abbildungen auf Tab. III.

Dieser Regulator ist zunächst bestimmt zur Regulierung der Geschwindigkeit kleiner Motoren, wie sie bei verschiedenen Versuchen in chemischen und physikalischen Laboratorien, für Vorlesungen etc. in Verwendung kommen, für Zeitmesser, telegrafische Instrumente (Morfe'sche Apparate) etc.

Als regulierende Kraft wird die durch eine Geschwindigkeitserhöhung vergrößerte Centrifugalkraft von Schwungmassen benutzt, ohne jedoch dieselben eine Vergrößerung ihres Abstandes von der Drehachse zu gestatten; die gesteigerte lebendige Kraft wird durch geeignet hergerichtete Reibungswiderstände aufgezehrt und hiermit die Gleichförmigkeit der Bewegung erzielt.

Wie aus Fig. 39 und 40 ersichtlich ist, sind M, M die zwei Schwungmassen (Cylindersegmente), welche an den steifen Armen H (Fig. 40) um die senkrecht stehende Welle S rotiren. Der kräftige Ring R — aus Kanonenguß und 12 Zoll innerem Durchmesser —, in der Ebene der Mittelpunkte der Massen M, M horizontal angeordnet, verhindert ein Auswärtsgehen derselben. Die bei der normalen Geschwindigkeit entwickelte Centrifugalkraft wird durch den Zug der zwei kräftigen Gußstahlseilen P, P aufgehoben, indem dieselben durch die Verbindung mit den Segmenten M, M auf dieselben einen Zug nach der Höhe ausüben; der Abstand der Feder von dem Schwungsmittelpunkt von M beträgt 5 Zoll.

Die fiven Stifte F begrenzen den Spielraum, innerhalb welchem die Massen M, M dem Zuge der Feder P, P nach Innen folgen könnten. Arbeitet nun ein mit diesem Regulator ausgestatteter Motor mit beschleunigter Geschwindigkeit, so wird zunächst die entstehende Centrifugalkraft vom M die Zugkraft der Feder P zu überwinden suchen; bei einer kleinen Zunahme über die normale Geschwindigkeit wird jene größer als diese, und die Segmente M, M drücken gegen den fiven Ring R. Zwischen den Gleitflächen entsteht Reibung, welche um so größer wird, je größer die Zunahme an Geschwindigkeit ist; es wird somit der Neben...
schuβ der motorischen Kraft durch diese Reibung ausgezehrt und die Ge-
schwindigkeit innerhalb bestimmter Grenzen erhalten.

Das Gewicht der Bleisegmente M beträgt an dem der Verjümmelung
Institution of Engineers in Scotland vorgelegten Musterexemplar
je 26 Pfund; die erwähnten Federn P, P sind durch Correctionssternen
so stellbar, daß jede Masse M für sich — die andere wird dabei mit
einem Bindfaden festgehalten — gegen den Ring drückt, wenn der Re-
gulator eine Geschwindigkeit von 120 Umdrehungen per Minute erreichte.

Der Schwungsmittelpunkt von M steht nahezu 4 1/2 Zoll von der
Drehachse ab, so daß die Centrifugalkraft M für die angegebene Ge-
schwindigkeit 1,84 mal das Gewicht (26 Pf.) also 48 Pfund betrug,
D. i. auch die Größe der Zugkraft der abjustierbaren Feder P. Ueber-
schreitet die Geschwindigkeit die normale um 1/8 Procent, so wird jede
Masse M mit dem Druck von 0,19 Pfund an den Ring R angedrückt
und für den Reibungskoefficient 0,105 beträgt die Reibung 1/80 für beide
Segmente 1/8 Pfund, wirksam in der Entfernung von 1/2 Fuß von der
Drehachse. Die ausgeführte Arbeit beträgt somit pro Umdrehung
1/8 Fußpfund.

Eine einfache Modification, welche vom Professor Fleming Zentin
an dem beschriebenen Regulator vorgeschlagen wurde, soll dieselben zu
einem verwendbaren Dampfmaschinenregulator umwandeln. Nach diesem
soll der Ring R frei beweglich, also um die Regulatorachse drehbar sein.
Eine Feder oder ein Gewicht sucht ihn stets im entgegengesetzten Sinne
der Drehung der Achse zu bewegen und den Dampfsutritt zu vergrößern.
Wird aber der Ring bei vergrößerter Geschwindigkeit in Folge der ent-
stehenden Reibung von den Schwungraffen bewegt, so erfolgt durch
gereignete Übertragung eine Verminderung des Dampfsutrittes. F. B.

XVII.

Dynamometer von Heinrich King, Ingenieur in Glasgow.

Nach Engineering, Februar 1869, S. 121.

Mit Abbildungen auf Tab. III.

In Fig. 9—13 sind zwei Dynamometer dargestellt, wie sie vom
Ingenieur King in Glasgow construirt werden.

Die Wirkung des in Fig. 9—11 gezeichneten Dynamometers
gründet auf dem Satz, daß die von einem Niemen R übertragene Kraft P gleich ist dem Unterschiede der Spannungen (T und t) des führenden und des geführten Riemenpaarjes, somit die Arbeit aus dem Produkt dieser Kraft P = T – t in die auf gewöhnlichem Wege zu bestimmende Geschwindigkeit v gefunden wird.

Die beiden Niemenenden R₁ R₂ sind nun durch eine hufeisenförmig gebogene, entsprechend kräftige Stahlfeder S verbunden, wie dies aus Fig. 9 und 10 zu entnehmen ist, ähnlich wie aus Fig. 11, so daß dieser Federapparat an der Bewegung des Niemens Theil nimmt. Je nachdem die Spannung im Niemen die größere T oder die kleinere t ist, wird diese Feder an dem offenen Theil auseinander oder zusammengezogen. Die in Folge der Kraftübertragung P um T – t erhöhte Spannung t wird durch eine Sperrradanlage auf eine Theilscheibe ersetzt gemacht, indem das Sperrrad bei dem Auseinanderziehen der Federenden um einige Zähne weiter gerückt wird, während der Sperrregel beim Zusammengelenken der Enden der Feder los zurückgleitet.

Unter der Voraussetzung, daß die Theilung an der Theilscheibe in richtigen Verhältnisse mit der Kraftübertragung steht, ist die Berechnung der Größe der legteren allerdings sehr einfach. findet man z. B. die mittlere Differenz der Spannungen T und t mit 100 Pfund und ist die Geschwindigkeit 330 Fuß per Minute, so ist die übertragene Arbeit 100 × 330 = 33,000 Fußpfund oder eine Watt'sche Pferdekraft.

Morton's Ausblas-Condensator.

Kreises von dem Radius gleich dem Abstand des Gewichtes vom Drehpunkt des Hebels bildet. 28
Das Gewicht des dient nur zur Ausgleichung des Übergewichtes des längeren Hebelarmes.

Z. B.

XVIII.

Der Ausblas-Condensator von Alexander Morton in Glasgow.

Nach dem Engineer, 1869 S. 9 und 132; Engineering, 1868 S. 557; Mechanics' Magazine, 1869 S. 101; Artizan, 1869 S. 2.

Mit Abbildungen auf Tab. III.

In der Versammlung der Scottish Institution of Engineers zu Glasgow vom 25. November v. J. berichteten Professor Macquorn Rankine über den von Alexander Morton construirten Ausblas-Condensator (ejector-condenser), sowie über die mit derselben angestellten Versuche, welche sich für die praktische Verwendung dieses Apparates so günstig erwiesen, daß derfelbe eine rasche Einführung bei den Dampfmaschinen finden dürfte.

Der in Fig. 1 im Längsschnitt dargestellte Ausblas-Condensator besteht der Wirkung nach aus drei concentrisch in einander geschobenen Köhren, welche mit conischen geformten Mundstück B>, B< und C, versehen sind. Die äußerste Körbe D erweitert sich von dem Schlund C, aus nach der Heißwassereinander hin trompetenartig nach einer parabolischen Curve; sie leitet das heiße Wasser ab, welches falt durch die Rohrleitung B in den Condensator gehoben wird. Die Rohrstüphen C, C führen den verbrauchten Dampf aus den beiden Zylindern der

28 Die Begründung der Wirkungsweise dieses — übrigens nicht ganz neuen — Dynamometers ist einfach folgende: Das Rad A (Fig. 14) überträgt auf jenes B die Kraft P; der Druck auf die Käse H des Zwischenrades ist dann 2P und dieser wirkt im Abstand r am füglichen Hebelarm, während das Gewicht G im Abstand X das Gleichgewicht hält (Fig. 15), somit die Gleichung gilt

\[2P \cdot r = G \cdot X \ldots 1 \]

Während einer Umdrehung überträgt aber die Scheibe resp. das Rad A die Arbeit

\[L = P \cdot 2 \pi r \ldots 2 \]

Aus 1 folgt

\[\pi G \cdot X = P \cdot 2 \pi r \]

Somit ist die während einer Umdrehung übertragene Arbeit

\[L = \pi G \cdot X = \frac{2 \pi X \cdot G}{2} = \text{dem halben Produkt aus dem Gewichte } G \text{ in der Umfang des mit dem Abstand } X \text{ als Radius gezogenen Kreises (in Zufu ausgedrückt). Z. B.} \]
Verfusdampsmaschine in den Apparat in einer aus der Figur deutlich entnehmbaren Weise ab.

In Folge der bei den ersten Versuchen gemachten Erfahrungen versuchte Morton den Condenfator mit der von dem Hebel G (Fig. 2) stellbaren hohlen Regulirspindel A und einem Ventilkolben F, welcher durch eine Spiralsfeder geöffnet wird, wenn das Vacuum im Cylinder abnimmt. Mittels der Spindel A kann die Stärke des Injections-Wasserstrahles genau regulirt, selbst augenblicklich unterbrochen werden, worauf die Maschine mit Hochdruck weiter arbeitet. Wird das Vacuum im Condenfator auf irgend eine Weise, z. B. durch Öffnen eines Hahnes und hierdurch gesattigten Luftteintritt vermindert, so wird ein Dampfstrahl durch den Ventilkolben, die Röhre E und die Spindel A eingelassen und das Vacuum wieder hergestellt; beim regelmäßigen Betriebe der Maschine schliesst aber F den centralen Dampfstrahl ab.

Die in Fig. 3 und 4 beigefügten Indicator-Diagramme zeigen, daß sich das Vacuum ziemlich gleichmässig erhalten hat.

Uebergehend zu Kantine's Bericht über die angestellten Versuche, mögen zu deren Verständnis dessen einleitende Bemerkungen vorausgeschickt werden.

Die Versuche wurden an einer Maschine von 24 indicierten Pferdekräften mit zwei Cylindern von 10¼ Zoll Durchmesser und 18 Zoll Kolbenhub vorgenommen. Die Umdrehungszahl betrug 73 bis 140 pro Minute und das Manometer wies 30 bis 40 Punkte Ueberdruck pro Quadratzoll nach. Ueberdies wurde die Menge des Condensationswassers, dessen Temperaturänderung genau gemessen und dadurch das Mittel geboten den ganzen Dampfverbrauch zu berechnen und zu vergleichen mit der in nützliche Arbeit umgesetzten Dampfmenge, welche die abgenommenen Indicator-Diagramme angeben.

Zur richtigen Beurtheilung der Wirksamkeit des neuen Condenfators muß erwähnt werden, daß die Umstände bei der Prüfung insofern ungünstig waren, als die Kaltwassergleitungsrohre nicht genügend weit war, so daß die Maschine von Zeit zu Zeit abgestellt werden mußte, um die Kaltwasserleitung zu füllen.

Hinsichtlich des Prinzips der Wirkung des Morton'schen Condenfators und dessen Vergleich mit den üblichen Einspritzcondenfatoren bemerkt Kantine Folgendes:

Bei jedem Condenfator mit Einspritzung strömt das kalte Wasser

27 Alle Maße und Gewichte sind in englischen Einheiten ausgeübt, ebenso die Temperaturgrade nach Fahrenheit angegeben.
mit ungefähr 43 bis 44 Fuß Geschwindigkeit pro Sekunde in das Vacuum ein; mit noch größerer Geschwindigkeit entweicht der Ausblasdampf aus den Cylindern in den Conden­sator. In den gewöhnlichen Conden­satoren wird diese Geschwindigkeit des Wassers und des Dampfes vollkommen ausgehoben und ihre lebendige Kraft in Bewegung der in der Cisternen befindlichen Flüssigkeit und schließlich der Wärmezweckung umgesetzt. Zur Entfernung des Wassers, der Luft und des nichtcondensierten Dampfes aus dem Conden­sator wird eine Luftpumpe nützlich. Die zum Betriebe einer guten Anlage derselben nützliche Kraft ist erfahrungsgemäß gleich-zu-gehen einem Gegendruck auf die Kolbenfläche von \(\frac{1}{2} \) bis \(\frac{3}{4} \), im Durch­schnitt von 0,6 Pfund pro Quadratgoll; dieser Krafteverlust entsteht nur durch die Ventri­kulation der Arbeitsmenge, welche in dem nach dem Con­den­sator strömenden Dampf und Waffersstrahl enthalten ist. Bei dem Ausblas-Conden­sator erleiden diese Flüssigkeiten keine solche Störungen und ihre lebendige Kraft ist hinreichend, ohne Anwendung einer Pumpe alles Wasser, Luft und etwa nichtcondensierten Dampf aus dem Conden­sationsraum,—als solcher gilt der zwischen dem Mundstück \(B_1 \) und dem Schlund \(C_1 \) enthaltene Raum,—durch das Abzugsrohr \(D \) nach der Heizwa­fferscisterno zu besorgen und hierbei die Betriebskraft einer Luft­pumpe zu erparen.

Bei dem in Fig. 1 dargestellten Apparat hieß das Waffers aus dem Reservoir durch die Röhre \(B \) nach dem von unten zulaufenden Mundstück \(B_1 \), dessen Öffnung nahezu gleich ist jener des Einspritzrohrs eines gewöhnlichen Conden­sators einer gleich starke­ne Maschine, nämlich \(\frac{1}{250} \) der Kolbenfläche. Das Kaltwaffersmundstück umgibt ein zweites und ein drittes ähnlicher Gestalt, in welche der Retour­dampf aus den Cylindern eintritt. Die Öffnungen der Mundstüde erweitern sich gegen das Ab­zugsrohr \(D \) hin. Die Geschwindigkeit des Wassers hängt natürlich vom Vacuum ab; aber dem eintretenden Strahl stellt sich kein anderes Hindernis entgegen als die Neigung an den Mundstücken; er behält hin­fällig lebendige Kraft, um sich gegen den äußeren Druck aus dem Vacuum herauszubewegen. Durch den Ablasdampf wird diese lebendige Kraft und damit das Vacuum constant erhalten, so lange die Maschinen in Bewegung sind. Wird dieselbe unterbrochen, so behauptet sich das Vacuum trotzdem eine Zeitlang, indem durch die Regular­spindel ein centraler Dampfstrahl eingeleitet werden kann, der die Neigungserleucht des Waffers an den Mundstücken überwindet. Dieser Umstand ist von Vor­tteil für Schiffsmaschinen während den Manövrieren im Hafen, wobei ein continuirliches Vacuum erhalten bleiben kann.

Um auf die Versuchsresultate zu kommen — die Wirkung der
Condenlation wurde sowohl durch Vaccummeßerr als auch durch Indica-
tor-Diagramme (Fig. 3 und 4) unterfützt, — so waren diese im Durch-
schnitt folgende:

Nach beiden Prüfungarten zeigte der linksteitige Dampfverdunst, welcher in den Raum zwischen B_{1} und B_{2} ausblieb, ein vollkommenes Vaccum als der andere, mit dem äusseren Mundstück C_{4} communicirende Cylinder.

Mittleres Vaccum in follen Quecksilber
- in Pfunden pro Quadratzoll: 24,5
- in Atmosphärlicher Druck: 14,75

Mittleres Vaccum in den Cylinderen unter dem Kolben nach den Diagrammen in Pfunden pro Quadratzoll:
- 10,70

Daß der mittlere Gegendruck auf dieNachseite des Kolbens
Ps. pro Quadratzoll: 4,05

Dieser Gegendruck schwankte bei den verschiedensten Versuchen zwischen 3 und 4 1/2 Pfunden pro Quadratzoll. Resultate wie sie ebenso gut bei gewöhnlichen Condensatoren erzielt werden. Daraus folgt, daß der neue Condensator den ausbliebenden Druck mindestens ebenso gut condensirt und das Vaccum des Condensationswassers (Luft, eventuell Dampf) ebenso genügend bewirkt, während die zum sonstigen Betriebe der Luft-
pumpe notige Kraft erspart wird.

Im Obigen wurde schon ein Nebenstand bei den angestellten Ver-
suchen hervorgehoben, nämlich die geringe Weite der Kaltwasserleitung-
röhre (gewiß auch der Mangel der Regulirpinde und des Ventilfolbens, welche sich eben in Folge der Versuche für nützlich erwiesen); ein weiterer Nebenstand lag an der Versuchsmaschine, an dem Mangel aller Verpackung und Uberbautung, wie unter solchen Umständen ein beträchtlicher Theil des Dampfes in den Cylinder condensirt, aber beim Herausgang des Kolbens wieder in Dampf überging und dabei Wärme aus dem Dampf-
kegel in den Condensator abließte, ohne Arbeit zu verrichten; dadurch wurde die Wirksamkeit des Condensators überflüssig beeinflußt.

Wie auch schon angedeutet und aus der Tabelle zu entnehmen ist, hat Professor Na kine den totalen Dampfverbrauch aus der Erhöhung der Temperatur des Condensationswassers berechnet und daraus gefun-
den, daß derselbe 2 1/2 mal größer war als die Dampfmenge, welche nach den Indicator-Diagrammen in den Cylindern Arbeit verrichtete.

Bei Vermeidung der angegebenen Nebenstände wäre zuversichtlich eine Steigerung der Wirkungsfähigkeit dieses Condensators erwartet werden.
Zusammenstellung der Dimensionen der Versuchsmaschine und der Resultate der mit Morton’s Ausbläse-Conden- sator angestellten Versuche.

<table>
<thead>
<tr>
<th>Dampfstoßenquerschnitt</th>
<th>80 Quadratzoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolbenhub</td>
<td>1,5 Fuß</td>
</tr>
<tr>
<td>Kaltwassermundstück B, Durchmesser</td>
<td>0,9 Zoll</td>
</tr>
<tr>
<td>Querschnitt</td>
<td>0,638 Quadratzoll</td>
</tr>
<tr>
<td>Kaltwasserreservoir, Querschnitt $8 \times 3\frac{1}{2}$</td>
<td>28 Quadratzoll</td>
</tr>
<tr>
<td>mittlere Saughöhe</td>
<td>5,25 Fuß, 5,25 Zoll</td>
</tr>
<tr>
<td>Wasseraufzugsröhere D, Durchmesser des Schindes C</td>
<td>0,9375 Zoll</td>
</tr>
<tr>
<td>Querschnitt</td>
<td>0,690 Quadratzoll</td>
</tr>
<tr>
<td>Durchmesser der Dehnung</td>
<td>3,0 Zoll</td>
</tr>
<tr>
<td>Querschnitt</td>
<td>7,07 Quadratzoll</td>
</tr>
<tr>
<td></td>
<td>0,0491 Quadratzoll</td>
</tr>
</tbody>
</table>

Dampf ausgusse pro Minute 11,48 Kubikfüß 716,4 Pfund

<table>
<thead>
<tr>
<th>Geschwindigkeit im Mundstück B</th>
<th>pro Secunde</th>
</tr>
</thead>
<tbody>
<tr>
<td>pro Secunde</td>
<td>0,01913</td>
</tr>
<tr>
<td>pro Secunde</td>
<td>0,00443</td>
</tr>
</tbody>
</table>

| Entsprechende Geschwindigkeitshöhe resp. Druck pro Quadratzoll | 29 Fuß resp. 12,57 Pfund |
| Hierzu Saughöhe | 5,25 " " 2,275 |

Daher ganze Hubhöhe	34,25 Fuß resp. 14,845 Pfund
Zylinder Temperatur (Jahrhunderte Grade)	470
Mittlere Arbeit pro Minute beim Heben und Fortreiben des Wassers (abgelesen von der Reibung) 716,4 X 34,25	= 24587 Pfund oder Indikator-Feindruck 0,744
Mittlerer Barometerstand 30,06 Zoll Quecksilber, resp. 14,75 Pfund pro Quadratzoll	

<table>
<thead>
<tr>
<th>Versuchsreihe</th>
<th>Rechter Zylinder</th>
<th>Linfter Zylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Nummer der Diagramme</td>
<td>1</td>
<td>2,34 u. 5</td>
</tr>
<tr>
<td>Umdrehungszahl pro Minute</td>
<td>130</td>
<td>93</td>
</tr>
<tr>
<td>Dampfspannung (Uberdruck in Pfennig pro Quadratzoll)</td>
<td>34</td>
<td>32 bis 88</td>
</tr>
<tr>
<td>Dampfspannung, absolute</td>
<td>48,75</td>
<td>46,75 bis 52,75</td>
</tr>
<tr>
<td>Vakuum um. Atmosphärendruck, *</td>
<td>12,03</td>
<td>12,4</td>
</tr>
<tr>
<td>Pf. pro Quadratzoll</td>
<td>11,54</td>
<td>12,1</td>
</tr>
<tr>
<td>Vakuum, absolutes</td>
<td>2,72</td>
<td>2,35</td>
</tr>
<tr>
<td>Mittlerer Gegendruck</td>
<td>3,21</td>
<td>2,65</td>
</tr>
<tr>
<td>Absoluter Druck beim Austritt</td>
<td>4,25</td>
<td>3,12</td>
</tr>
</tbody>
</table>

* Die erste Angabe gilt für den linfteren, die zweite für den rechten Cylinder.
<table>
<thead>
<tr>
<th>Versuchsreihe</th>
<th>Rechter Cylinder</th>
<th>Linter Cylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ursprünglicher absoluter Druck</td>
<td>42,75</td>
<td>32,75</td>
</tr>
<tr>
<td>Mittlerer effektiver Druck</td>
<td>15,25</td>
<td>9,85</td>
</tr>
<tr>
<td>Mittlerer absoluter Druck</td>
<td>19,50</td>
<td>14,55</td>
</tr>
<tr>
<td>Temperatur des absteigenden Wassers</td>
<td>86,5</td>
<td>39,5</td>
</tr>
<tr>
<td>(in Gradentzehnten)</td>
<td>80,5</td>
<td>33,5</td>
</tr>
<tr>
<td>Erhöhung der Temperatur des Wassers</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(ursprüngl. von 470°F)</td>
<td>88,0</td>
<td>41,0</td>
</tr>
<tr>
<td>Wärmeverlust durch das pro Minute absteigende Wasser in Calorien</td>
<td>28298</td>
<td>29372</td>
</tr>
<tr>
<td>Kalorienwärmeinheit in Fützen per Minute</td>
<td>23999</td>
<td>31522</td>
</tr>
<tr>
<td>Druck auf einem Kolben in lbf.</td>
<td>390</td>
<td>420</td>
</tr>
<tr>
<td>Indicirte Arbeit eines Cylinders</td>
<td>1220</td>
<td>788</td>
</tr>
<tr>
<td>Auflagepunde pro Minute</td>
<td>1186,4</td>
<td>1842,4</td>
</tr>
<tr>
<td>Indicirte Arbeit bei der Cylinder</td>
<td>475800</td>
<td>330900</td>
</tr>
<tr>
<td>in Pferdestärken</td>
<td>551600</td>
<td>661920</td>
</tr>
<tr>
<td>" ausgedrückt in Calorien</td>
<td>1233</td>
<td>858</td>
</tr>
<tr>
<td>Totaler Wärmeverbrauch pro Minute in Calorien</td>
<td>29531</td>
<td>50488</td>
</tr>
<tr>
<td>Wirkungsgrad der Maschine</td>
<td>0,042</td>
<td>0,037</td>
</tr>
<tr>
<td>Dampfverbrauch durch den Indicator angezeigt in Kolben pro Minute</td>
<td>433</td>
<td>467</td>
</tr>
<tr>
<td>Volume eines Pfundes Dampf in Kolben</td>
<td>35</td>
<td>43</td>
</tr>
<tr>
<td>Gew. der vorhergehenden Dampfmenge in Pfundn</td>
<td>12,4</td>
<td>4,9</td>
</tr>
<tr>
<td>Temperatur des Dampfes am Ende des Hubes (Gr. Jahr)</td>
<td>197</td>
<td>187</td>
</tr>
<tr>
<td>Wärme, welche in 1 Pfund dieses Dampfes enthalten ist, von der Temperatur (470°F) des absteigenden Wassers an gerechnet</td>
<td>1087</td>
<td>1086</td>
</tr>
<tr>
<td>Wärmemenge in dem kondensierten, durch den Indicator angezeigten Dampfquantum (über 470°F gerechnet)</td>
<td>13479</td>
<td>12162</td>
</tr>
<tr>
<td>Wärmeverlust durch das absteigende Wasser (wie oben)</td>
<td>28298</td>
<td>29372</td>
</tr>
<tr>
<td>Wirscher Dampfverbrauch in Pfundn pro Minute, aus der Wärme des absteigenden Wassers berechnet</td>
<td>26,0</td>
<td>27,0</td>
</tr>
<tr>
<td>Verhältnis zwischen dem wischen kondensierten und dem indicirten Dampfverbrauch</td>
<td>2,10</td>
<td>2,41</td>
</tr>
<tr>
<td>Erspart an Arbeit in Pfundn pro Minute durch Wegfall der Luftpumpe, wenn dafür 0,6 Pfund Belastung pro Quadratzoll</td>
<td>37440</td>
<td>40320</td>
</tr>
<tr>
<td>Kolbenfläche (160 Quadratzoll) gerechnet wird</td>
<td>26784</td>
<td>30816</td>
</tr>
<tr>
<td>Deggleiden in Indicator-Pferdestärken</td>
<td>1,13</td>
<td>1,22</td>
</tr>
<tr>
<td>0,81</td>
<td>0,93</td>
<td>0,94</td>
</tr>
</tbody>
</table>
Hieraus ergeben sich folgende Durchschnittsresultate:

- Mittlere Ersparnisse an Arbeit durch Wegfall der Luftpumpe in Indikator-Pferdekräften: 1,0
- Mittlere Leistungsfähigkeit der Maschine in Indikator-Pferdekräften: 24,0
- Mittlerer Gegendruck in den Cylindern in Pfunden pro Quadratzoll: 4,05
- Mittleres Vakuum in den Cylindern pro Quadratzoll: 10,6
- Nach dem Condensforbarometer in Pfunden pro Quadratzoll: 12,0
- Infolge Überschaukel: 24,5

Von der indirekten Leistung kommt ungefähr ⅔ aus dem Vakuum in den Cylindern. Temperatur des kalten Wassers in Grad C: 47
- Mittlere Temperatur des ablaufenden Wassers: 86,5
- Mittlere Annahme der Temperatur: 39,5

Soweit gehen die bis jetzt bekannten gewordenen Versuchsresultate; weitere Versuche unter Berücksichtigung der gewonnenen Erfahrungen werden folgen. Diese sollen dann sichern, ob die Anwendung des neuen Condensators auch bei großen Maschinen, etwa mit Kolbendurchmesser von 80 Zoll, sich praktisch bewähren wird, woran Mankeine nicht zweifelt.

Da der Apparat nur vom Retourdampf betrieben wird, so stellen sich die Kosten derselben erheblich niedriger als die der gewöhnlichen Condensatoren; Morton gab etwa ⅓ derseits für seinen Apparat an und bemerkte dabei, daß das Vakuum unter günstigeren Verhältnissen auf 27 und 28 Zoll gestiegen, ja noch höher zu erwarten sei, wenn trockener Dampf verwendet würde.

Auch den Wasserverbrauch hält Morton nicht für größer als sonst, was aber Mankeine und Howden aus dem Grunde nicht zugeben, weil das ablaufende Wasser bei Morton's Condensator nur 86½° F. hatte, während für ein gleiches Vakuum bei Einpriz-Condensatoren die Temperatur des Condensationswassers circa 120° F. beträgt, was nur durch die geringere Menge des Einprizwassers, welches also höher erwärmt werde, zu erklären sei. Richtige Vergleiche werden sich nun nach Anbringung der Regulierpindel, durch welche die Stärke des Injectorwasserkrabels genau regulirt werden kann, nach weiteren Versuchen anstellen lassen. Kirk hält den neuen Condensator durch die mit demselben erzielbare Gewichtsverminderung der Condensatoren für sehr vortheilhaft für Schiffsanlagen; bei dieser Anwendung ist auch der Umstand von großem Vorteil, daß Morton's Condensator nicht notwendigerweise in tiefern Punkte liegen muß. Auf den günstigen Umstand der Erhaltung eines continuirlichen Vakuums beim Manövrieren der Schiffsanlagen im Hafen wurde schon oben hingewiesen.

In der Erklärung, daß Morton's Condensator als eine neue und
wichtige Verbesserung der Dampfmachine zu betrachten sey, stimmten Prof. Rankine, Prof. Thomson und viele Fachleute überein.

In wie weit aber die in Fig. 5 figürte Modifikation und Anordnung des Morton’schen Condensators an Locomotiven praktisch ist, muß die Erfahrung lehren. G und H bezeichnen die Ausblasröhre, welche in die Mundstücke I und J auslaufen; letzteres umhüllt erstere. Der Ausblasdampf des einen Cylinders erzeugt ein zeitweises Vacuüm in dem Ausblasraum des anderen, und dann umgekehrt beim Hubwechsel.

Zu der Ernährung der Eingang erwähnten Vereines nahm der Ingenieur Barclay aus Kilmarnock die Priorität der Erfindung des Ausblas-Condensators für sich in Anspruch. Auf die hierbei vorgenommenen interessanten Entwicklungsschritte des Condensators kommen wir zurück.

XIX

Regulator zur Erhaltung einer gleichförmigen Dampfspannung in Dampfsleitungen, von Wadsworth und Caswood in Blackburn.

Mit einer Abbildung auf Tab. III.

In vielen Fällen, in welchen Dampf zur Heizung etc. verwendet wird, findet die Erzeugung desselben unter höherem Druck als seine Verwendung statt. Ein Dampfspeicher in Verbindung mit einem Sicherheitsventil wird zumeist als Regulierungsmittel verwendet, das jedoch stets Unannehmlichkeiten darbietet. Ganz abgesehen von der erforderlichen unangenehmsten Beaufsichtigung treten hierbei Dampfspeicher ein, welche, vielleicht nicht von Belang, doch immerhin lästig sind. Zur automatischen Regelung der Dampfverteilung sind schon verschiedene Anordnungen getroffen worden und sie lieferten auch in der Verwendung ganz zufriedenstellende Resultate. Der von Wadsworth und Caswood konstruierte Apparat beruht auch auf keinem neuen Prinzip; was ihn aber

28 Man lebe die Beschreibung des Dampfverteilers von Tulpin und Séraphin in vorhergehenden Heften dieses Journals S. 3.
der Berücksichtigung werth macht, sind 1) die geringen Dimensionen und 2) die Leichtigkeit der Handhabung desselben.

Der in Fig. 38 in 1/4 der wirklichen Größe dargestellte Längsschnitt zeigt einen Dampfvertheiler für eine Leitung von 29 Millimeter Durchmesser; die Größe desselben beträgt nicht erheblich mehr als die eines gewöhnlichen Hahnes. Der am unteren Theile angebrachte Hebel hat eine totale Länge von 400 Millimeter und kann nach Belieben, also den Umständen entsprechend, in horizontaler Ebene gestellt werden. Die Untersuchung des Apparates kann sehr leicht bewerkstelligt werden, sowie für dessen gleichförmige Wirksamkeit eine viermonatliche Erfahrung spricht.

Der von dem Dampfkessel kommende Dampf tritt durch A ein, paßt die beiden Deffnungen, in welchen sich die Ventile S und S', besehen, und gelangt weiter in die Dampfsortleitungsrohre B, entsprechend expandirt.

Der Drehpunkt des Belastungshebels ist G; das Gewicht K dient zur Ausgleichung des Gewichtes des längeren Hebelarmes, während das bewegliche Gewicht P je nach der zu erzielenden Dampfspannung in der Niederleitung B in den verschiedenen Einschnitten am Hebelsehe aufgehängt wird.

Um dem zu erreichen die Zwecke stets zu entsprechen, muß die Wirksamkeit dieses Dampfvertheilers unabhängig seyn von der ursprünglichen Dampfspannung, was geschieht, wenn die dem Drucke ausgesetzten Ventilkörperringquerschnitte vollkommen gleich sind; eine Bedingung, deren Eintreffen zunächst geprüft werden soll, falls der Apparat nicht regelmäßig wirkt. Eine geringe Abweichung beeinflußt nicht wesentlich die Spannung des expandirten Dampfes, dessen Spannung dann nicht genau jener gleich wird, welche sonst der betreffenden Gewichtslage am Hebelsehe entspricht.

Beim ersten Anblick der Abbildung erscheint es auch möglich, daß Dampf leicht zwischen dem Kolben T, und der Cylinderwand entweichen kann, was jedenfalls ein ernstliches Bedenken gegen die Anwendung dieses Apparates hervorrufen müßte, indem der Spindel C, C, ohne Stopfbüchse durch den Schraubenkopf M hindurchgeht, also einen kontinuierlichen Dampfaustritt gefäthten könnte. Indes erweist sich dieser gefürchtete Uebelstand bei dem seit vier Monaten im Etablissement von Dollfus-Mieg und Comp. in Verwendung stehenden Dampfverthei-
Baker's Bolzen.

93

Zum Herausnehmen und Untersuchen der Ventile lässt man die Deckschraube V, welche den Apparat oben drosseldicht verschließt.

Die Dampfeinströmungsoffnung bei A ist mit einem leicht zugänglichen und zeitweilig zu reinigenden Sieb bedeckt, um allenfallsige fremde Theile vom Apparat abzuhalten, da sie sonst dessen Spiel leicht beeinträchtigen könnten.

Im Uebrigen empfiehlt sich nach den gewonnenen Erfahrungen dieser sehr einfache Apparat, welcher ganz aus Rußguss hergestellt ist.

XX

Baker's Bolzen mit excentrisch stehendem Kopfe.

Nacht Engineering, December 1868, S. 548.

Mit Ablösungen aus Tab. III.

Wenn in gewissen Fällen (z. B. beim Leckwerden eines Schiffes) Platten aus Metall oder aus anderem Material, welche nur von einer Seite zugänglich sind, provisorisch verbunden werden sollen, so kann die in Fig. 16, 17 und 18 dargestellte Anordnung von Berth sehn.

Der Bolzen h mit dem excentrisch stehenden Kopf K wird durch das excentrisch gebohrte Loch eines metallenen oder hölzernen runden Zwischenstückes f gesteckt (Fig. 17 und 18); das kann dieses Futter f auch aus einem anderen, eben geeigneten Material genommen werden.

An der Verbindungsstelle der Platten P, P' wird sodann ein rundes Loch von einer dem Durchmesser von f entsprechenden Weite gebohrt und der Bolzen mit dem Futter durchgesteckt; hat man den Bolzen um 180° gedreht, und damit aus der Stellung Fig. 17 in jene Fig. 16 gebracht, so wird die Mutter m angezogen.

Diese Anordnung ist hauptsächlich für Schiffsunfälle berechnet, wo bei das Futter f aus Holz genommen wird, welches im Wasser ausschwillt und die Bohrung nicht ausfüllt.

Z. Z.
XXI.

Zündhölzsenschneidmaschine von Charles und Comp. in Bordeaux.

Aus Armengaud's Génie industriel, Februar 1869, S. 281.

Mit Abbildungen auf Tab. III.

Bevor wir auf die Beschreibung der in Figur 6, 7 und 8 in 1/8 wirklicher Größe dargestellten Maschine eingehen, mögen einige statistische Angaben von Heim. Peligot im Recueil de la Société des ingénieurs civils angeführt werden.

Nach diesen steht sich der tägliche durchschnittliche Verbrauch an Zündhölzchen in Frankreich per Kopf auf 6, in England auf 8 und in Belgien auf 9 Stück heraus. Nimmt man für Europa im Mittel 6 Stück pro Kopf und Tag an, so beträgt der tägliche Verbrauch zweitausend Million Zündhölzchen.

Das mittlere Gewicht derselben schwankt bedeutend. Von den in Frankreich zumeist verwendeten „allumettes à la livre“ gehen 3000 auf 1 Kilogramm, während von jenen größentheils in Oesterreich und Schweden erzeugten 8000 bis 10,000 Stück das gleiche Gewicht haben. Rechnet man im Durchschnitt 6000 auf ein Kilogramm, so stellt sich der tägliche Verbrauch auf mehr als 300,000 Kilogramme. Mit Rücksicht auf den bei der Erzeugung sich ergebenden Abfall beträgt für Zündhölzchen der Fabriker Verbrauch an geeignetem Holz über 400,000 Kubikmeter. Die Zahl der in Europa mit der Fabrication beschäftigten Arbeiter schätzt Peligot auf 50,000 und den Werth des Fabricates auf mehr als 250 Millionen Franken.

Die Herstellung der Zündhölzchenpäne (Drähte) erfolgt auf verschiedene Arten. Auf Hobelschneiden werden die Hölzer mit einem breiten Hobelzahn zerschnitten, der sich in der Länge in parallele Schichten und dann in einer daraus senkrechten Richtung in Holzdrähte von quadratischem Querschnitt zerhöhnt.

Hierbei läßt man zeitweilig die Späne aus einer gemeinschaftlichen Unterlage von Holz stehen, indem man den Schnitt nicht ganz hindurchführt.

Zur Erzeugung runder, ovalförmiger oder schonirter Zündhölzchen dienen besondere Zündhölzchen-Hobel, deren schmale Eise statt der Schneide einige trichterartige, an der engen Öffnung scharfkantige, dicht unter der Sohle liegende Röhrchen von entsprechender Gestalt besitzen.

Fig. 6 stellt die Seitenansicht, Fig. 7 den Grundriß und Fig. 8 einen Querschnitt nach der Linie 1, 2 der Fig. 6 in ½ wirkl. Größe dar.

Die Zuführwalze C ist für gelagert, dagegen kann sich die Walze C' in Folge der Birkung des Zuggewichtes c (15 Kilogramm) mit einem konstanten Druck gegen das vorgeführte Holz andrücken. Das Messer H, welches das Holz in Schichten schneidet, erhält eine auf- und abgehende Bewegung durch den Hebel D und die mit der gekröpften Hauptwelle in Verbindung stehende Kurbelstange D'. Wie aus Fig. 6 und 8 ersichtlich ist, sitzt das Messer H an dem Bügel h; die Tiefe des Niederganges ist durch die Mutter und Gegenmutter m veränderlich und richtet sich nach der Halbbarkeit des Materiales. Der unterste Holzschnitt bleibt aber auf eine gewisse Dicke unverändert, damit die Drähte auf einer gemeinschaftlichen Unterlage bleiben.

Während dem Schneiden drückt die horizontale Blechplatte F durch die Spiralsfedern s, s auf die obere Holzfläche, während sich die Blech-

schielen j. j. beim Eintritt und j' j' an der Austrittsstelle an die Seiten-
flächen anlegen; in dieser Absicht, und um sich nach den verschiedenen
Holzfärbigen gebürig anzulegen, bilden die Spiralsfedern I und I' auf die
Schienen j. j'. Zwischen den genannten Führungsschielen liegen noch
die in Fig. 7 punktiert angegebenen und mit G bezeichneten Leitfischen
mit der Spiralsede g.

Es wird somit zunächst der Holzblock in parallele, an einem Ende
zusammenhängende Streifen und hierauf in senkrechter Richtung in voll-
ständig regelmäßige und gut geschnittene Holzdrähte quadratischförmigen
Querschnittes zerteilt, welche sämtlich an dem unteren Ende durch eine
dünne Holzrichte vereinigt bleiben.

J. B.

XXII.

Wheeler und Wilson's verbesserte Stückzieber für
Nähauschinen.

Nach dem Engineer, November 1868, S. 400.

mit Abbildungen auf Tab. III.

Die frühere Einrichtung des Stoffziebers an Wheeler und Wil-
son's Nähmaschinen ist bekannt. Die Schiebähe sind mit einem Hebel
in Verbindung, von dem eine senkrechte Platte absteht, gegen welche der
Excenter neben der Riemenscheibe bei seiner Drehung drückt und so den
Transporteur waagrecht vorschiebt; eine Spiralseder bringt die Rückbe-
wegung hervor. Das Heben bewirkt die Mantelfläche des Excenters,
während der Transporteur durch das eigene Gewicht (oder auch durch
den Zug einer Feder) niedergesehen. Die Stichlänge hängt von dem größte-
ren oder kleineren Rückgang des Schiebehelbs ab, welcher durch einen
Hebel oder eine eccentricisch gelagerte Scheibe begrenzt wird.

Der Transporteur, Fig. 19 und 20, ist deselbe geblieben, doch
erfolgt dessen Bewegung in einer anderen aus der Abbildung zu entneh-
menden Weise. Der Bügel y y in Verbindung mit der Platte 14 und
der Schiebähne 11 ist auf die Hauptwelle aufgesetzt und ruht mit dem
Theile U auf einem Excenter, wird somit bei der Drehung desselben
gehoben.

An dem Bügel f'ßt der drehbare Arm 13, welcher sich mit dem
oberen Ende gegen die unregelmäßig geformte Seitenfläche der Rolle R
anlegt, indem das Ganze dem Zug der Spiralseder 12 folgt. Bei der
Drehung der Rolle wird somit der Transporteur zur rechten Zeit vorgehoben, während er mit dem Bügel y, gehoben ist. Die Spiralfeber bewirkt den Rückgang und fördert auch den Niedergang des Transporteurs.

An dem gegabelten Ende des Armes 13 sitzt die Schraube 10, welche an dem Schenkel des Bügels drehbar aber unverrückbar gelagert ist. Durch Drehung dieser Schraube nach rechts oder links wird die Stichlänge größer oder kleiner, je nachdem eben das obere Ende des Armes 13 weiter oder näher zur Drehungslinie steht.

XXIII.

Ausbreitmaschine für Lenge; von Paul Heilmann in Mülhausen (Elsah).

Nach Armengaud's Genie industriel, Februar 1869, S. 82.

Mit Abbildungen auf Tab. III.

Durch verschiedene vor dem Drucke vorgenommene Operationen werden die Gewebe mehr oder weniger derartig verzogen, daß die Schußfäden nicht gerade liegen und die Stücke an verschiedenen Stellen eine etwas verschiedene Breite haben, da sie ungleich eingeht.

Diebstem Umstände sucht man durch eine Streifung in der Breitenrichtung abzuhelfen, mittels Handarbeit oder besser auf besonderen Ausbreitmaschinen. Unter diesen sind seit längerer Zeit solche benannt, welche den Stoff in allen Punkten seiner Breite gleichzeitig angreifen, um eine Dehnung in der Querrichtung zu erzielen, welche auch aus dem Grunde nötig wird, um einer Stoffgattung, sej sie nahezu fertige Handelsware oder ein erst zu bedruckendes Halbfabricat, eine durchaus gleiche Breite zu geben.

Nach diesem Princip ist die Streifmaschine für Gewebe konstruiert, welche sich W. Ree in England im Jahre 1856 patentieren ließ; 30 bei derelben geht der Stoff zwischen zwei Walzen hindurch, deren Oberflächen eine abwechselnde Reihe ringsförmiger Wulst und Vertiefungen darbieten, wobei die Ringe oder Wülste der einen Walze in die Vertiefungen der anderen eingreifen. Mit dem zu streichenden Fabricat geht

30 Dingler's polyt. Journal Bd. CXVII S. 2. 7
ein Gewebe aus Kautschuk oder sonstigem elastischem Material zugleich zwischen den beiden Walzen hin und her; dieser Mitläufer schiebt den Stoff vermöge seiner Elastizität und verursacht, dass er besser abs durch das einfache Durchgehen durch die Walzen ausgehebelt und in der Breite gestreckt wird. Die Kautschukhülle war in Form eines endlosen Tuches um die untere Walze gelegt und bewegte sich langsam in der Richtung des Stoffganges.

Heilmann's Ausbreitmaschine war schon in Paris im Jahre 1867 durch die Firma J. Ducommun und Comp. in Mulhausen ausgestellt. 31 Herr C. Burnat sagt in seinem Berichte im Bulletin de la Société industrielle de Mulhouse, t. XXXVIII p. 375, über die allgemeine Einrichtung dieser Maschine Folgendes:

Unter dieser Voraussetzung wird beim Näheransell des cannelirten Walzen der Kautschukmantel eine Ausdehnung erleiden, welche sich gleichmäßig auf das durch die Walzen gehende Gewebe erstrecken wird; bei immer grösser werdender Umäherung der Walzen kann schliesslich die Ausdehnung des Zuges bis zum Reiben dieselben in lauter parallele Längsstreifen fortgesetzt werden. Die Dehnung des Gewebes erfolgt um so nachhaltiger, je flacher der Kautschukmantel ist und wenn derselbe gleichzeitig auf der Walze sich verschrieben kann.

Von der oben genannten Firma wurden seit 1865 bereits 30 Maschinen dieser Art geliefert und haben sich alle Stinnen in günstiger Weise über deren Wirkungsfähigkeit ausgeprochen. 32 (In eingelagen...)

31 Kieß und Kieß, Beiträge zur Spinnerei-Mechanik, S. 78.
Fällen hat die Maschine den Zweck, die Steifigkeit des appetitiven Gewebes zu mildern, auch demselben eine schwache Glätte zu erteilen. Eine am Schlusse beigefügte Tabelle gibt für verschiedene Versuche die Zunahme in der Breite an; im Mittel soll man folgende Grenzen in der Breitenzunahme einhalten:

a) bei einem Durchgang bei gebrochter Raure 20 bis 25 Millimeter.
 " " " gebliester " 25 bis 30 "

b) bei zwei Durchgängen im Durchschnitt 50 bis 60 "

Von dieser Ausdehnung bleibt jedoch nach Verlauf der weiteren Appreturoperationen nur ungefähr ¼ erhalten; auch hat dieselbe keinen Einfluß auf die Länge des Gewebes, wenn dasselbe in dieser Richtung gehörig gepannt bleibt.

Die nähere Einrichtung der Maschine von Heilmann ist in Fig. 41 bis 43 zu entnehmen. Der zu dehnende Stoff geht von A aus und der gedehnte wird entweder bei B ausgewidmet oder bei B' in Falten gelegt.

Im ersten Falle bewegt sich die Druckwalze C mit Hälfte des Niemens auf den Scheiben s und c (Fig. 42); im zweiten Falle geht der Niemen von s auf p an der Drehachse der Legeworrichtung P. An der Achse der unteren Walze hängt seit die Scheiben s und F und lose F', sowie weiter seit das Getriebe r, welches die Bewegung auf r' an der Achse der oberen Walze überträgt.

Die Walzen R, R' sind, wie gesagt, aus Gussseiten und cannelirt, wie dies im Schnitt Fig. 43 ersichtlich ist. Die Walze R ist mit dem Kautschukmantel überzogen, welcher sich unabhängig von der Walze über deren Oberfläche verschrieben füllt, da er an den Ring g (zu beiden Seiten) angebunden ist. Durch die Verbindung des Ringes g mit der hohlen Schraubenspindel h und der Mutter k kann der Kautschuk stets genügend gepannt werden.

Durch die Kurbel M, die Regelräder n, n' und n, n, sfern die Leitpinbeln V, V können die Lager der Oberwalze parallel verhoben werden und hiermit der Abstand der oberen Walze von der unteren, welche für gelagert ist, die gewünschte Größe erhalten. Um eine gewisse
elastische Verbindung zu erreichen, sind die unbeweglichen Muttern i, i der Leitspindeln V, V mit Rautschlußunterlagen am Geijelle befestigt.

Theoretische Lieferung der Maschine pro Stunde: 9 bis 10 Stücke zu 100 Meter Länge.

<table>
<thead>
<tr>
<th>Nr. bis</th>
<th>Gewebegattung</th>
<th>Zustand des Gewebes</th>
<th>Zahl der Durchgänge</th>
<th>Breite des Gewebes vor dem Durchgang</th>
<th>Breite der Maschine</th>
<th>Erfolgte Dehnung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60 Gänge, 19 Schußfaden</td>
<td>Gebraucht, nicht appretiert</td>
<td>1</td>
<td>760</td>
<td>785 bis 790</td>
<td>25 bis 30</td>
</tr>
<tr>
<td>2</td>
<td>Bettaf 50</td>
<td></td>
<td></td>
<td>850</td>
<td>875</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>60 Gänge, 20 Schußfaden</td>
<td>dito</td>
<td></td>
<td>750</td>
<td>785 bis 775</td>
<td>20 bis 25</td>
</tr>
<tr>
<td>4</td>
<td>60 Gänge, 20 Schußfaden</td>
<td>gebraucht, nicht benetzt</td>
<td>2</td>
<td>780</td>
<td>810 bis 815</td>
<td>30 bis 35</td>
</tr>
<tr>
<td>5</td>
<td>Bettaf 50</td>
<td>dito</td>
<td></td>
<td>830</td>
<td>860</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>60 Gänge, 19 Schußfaden</td>
<td>Weiß, nicht appretiert</td>
<td>1</td>
<td>860</td>
<td>870 bis 875</td>
<td>10 bis 15</td>
</tr>
<tr>
<td>7</td>
<td>Bettaf 50</td>
<td>Nach dem zweiten Durchgang</td>
<td></td>
<td>750 bis 760</td>
<td>780 bis 790</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>dito</td>
<td>Nach dem zweiten Durchgang</td>
<td></td>
<td>780 bis 790</td>
<td>800 bis 810</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>60 Gänge, 19 Schußfaden</td>
<td>Gebraucht, nicht appretiert</td>
<td>1</td>
<td>830</td>
<td>850 bis 860</td>
<td>40</td>
</tr>
</tbody>
</table>

Bemerkungen zu Nr. 1. Das Gewebe riss nach mehreren Wiederholungen nach einer erzielten Dehnung (in der Breitenrichtung) von 30 Millimeter.
2. Zeigte keine Spur eines Risses.
3. Das Gewebe ging nach dem Kalandern, Benetzen und Zusammenlegen auf die Breite von 770 bis 775 Millimetern ein.
4. Das Gewebe hatte nach dem Kalandern, Benetzen und Zusammenlegen eine Breite von 800 bis 810 Millimeter, aber die Steifigkeit war gänzlich verloren und das Gewebe sehr weich.
Delabar, über das Aëlloskop und das Bathometer.

Nr. 5. Nach dem Kalandern und Zufammenlegen war die Breite nach dem zweiten Durchgang 870 Millimeter.

Die totale Ausdehnung betrug 40 bis 45 Millimeter.

6. Die totale Ausdehnung in der Breite erreichte bei zweimaligem Durchgang 50 Millimeter.

7. Totale Ausdehnung nach zwei Durchgängen: 55 bis 60 Millimeter.

Nach dem Apparieren, dem Kalandern und Zufammenlegen war die Breite 780 Millimeter.

Ein ganz gleiches Stück, in der Maschine nicht gedehnt, sonst gleich behandelt, erlangte nur die Breite von 770 Millim.

F. B.

XXIV.

Notizen über zwei neue physikalische Apparate; von Conrector Delabar in St. Gallen.

Mit Abbildungen auf Tab. III.

1. Das Aëlloskop oder der Sturmanzeiger von H. A. Clum.

Dieser Apparat ist das Resultat einer 25jährigen Arbeit, welche der Erfinder, H. A. Clum in Rochester (New-York), auf die Constraction desselben und die Versuche damit verwendet hat, und dient dazu, wie schon sein Name sagt, die Stürme im Voraus anzuzeigen, zugleich aber auch, um die geringsten Aenderungen in der Spannung und Dichtigkeit der atmosphärischen Luft bemerklich zu machen. In dieser Beziehung

Die Einrichtung dieses ganz neuen Apparates zeigen die Fig. 44 bis 48, wovon Fig. 44 eine Ansicht des ganzen Apparates, Fig. 45 einen Verticallschnitt und Fig. 46 — 48 einzelne Details darstellen. Hiernach besteht der Apparat in einer Combination einer gewöhnlichen, jedoch sehr vergrößerten Quecksilbersäule C mit einigen (nämlich fünf) ballonartigen dichten Gefäßen E, E aus sehr dünnem Metall, die mit schwach gepreßter Luft (im Betrage von etwa 3000 Kubikzoll) gefüllt und dicht verschlossen sind. Diese Gefäße sind so mit einander verbunden, daß sie mittels der Stangen m, m in dem festen Quecksilbergefäss B, B, welches in dem Fuße A, A angebracht ist, als ein Ganzen sich auf- und abbewegen können. Dieselbe Bewegung macht auch der Schwimmer j im Gefäß C mit, welcher mit der Stange k, k, wie die Stangen m, m, in das große Quecksilberbassin G, G des Gefäesses B, B hinabreicht. Dadurch wird das Ganze sich dem äußeren Druck entsprechend im Gleichgewicht erhalten.

Die erwähnte auf- und abgehende Bewegung wird alsdann gleichzeitig mittels einer Zahnstange N, welche dieselbe ebenfalls mitmacht, auf die Achse n eines eingespannten Zahnradchens o und damit auf den Zeiger z des Zifferblattes M, welches im Durchmesser 10 Zoll steht und dem Umfang nach in 1000 Theile eingeteilt ist, übergetragen.

Die Ursache der horizontalen Bewegung des Schwimmers ist dabei nichts Anderes als der aerostatische Auftrieb, welcher sich mit den Aenderungen in der Spannung und Dichtigkeit der äußeren atmosphärischen Luft selbst stetig ändert. Bei zunehmender Dichtigkeit der äußeren Atmosphäre wird nämlich auch der Auftrieb größer und in Folge dessen muß der Schwimmer steigen, während im umgekehrten Falle, wenn die Dichtigkeit der Atmosphäre geringer wird, auch der Auftrieb geringer wird und der Schwimmer sinken muß. Auf diese Weise wird jede auch die kleinste Schwankung der Atmosphäre am Instrument mitgemacht und am Zifferblatt angegeben.

Dasselbe kann daher auch als Barometer benutzt werden und zwar als das genaueste und empfindlichste, welches man sich nur denken
kann. Seine Hauptaufgabe besteht indessen in der Anwendung als Néelstopp oder Sturmanzeiger.

Da nämlich den Stürmen immer auch entsprechend starke Schwankungen und Erschütterungen in der Atmosphäre und selbst bis auf weite Strecken hin vorausgehen, welche vom Apparat sofort auch angezeigt werden, so kann er, wie man sieht, als Mittel dienen, die nach einer gewissen Richtung hin sich fortentwickelnden Stürme schon im Voraus anzuzeigen, so daß man dadurch in Verbindung mit dem elektrischen Telegraphen in Stand gebracht ist, sich gegen deren verheerende Wirkungen vorzuziehen und möglichst sichergestalten.

Es leuchtet ein, welch großer Nutzen solche Apparate namentlich für den Seebund und die Schiffahrt überhaupt leisten können und wie wichtig dieselben daher für die Seehäfen und Observatorien, besonders der Niederlande sind.

2. Das Bathometer oder der Tiefenmesser von S. E. und G. L. Morse.

Ein anderer interessanter Apparat der nordamerikanischen Abteilung auf der letzten Pariser Welt-Ausstellung war das Bathometer oder der Tiefenmesser von S. E. und G. L. Morse in Paris (New-Jersey), dessen Neueste vorzüglich darin besteht, daß man damit ohne Hülfe einer Leine die Tiefe des Meereswassers bestimmen kann.

Die Einrichtung dieses Apparates, welchen Fig. 49 darstellt, ist folgende: In einem Glasgefäß A, B, welches etwa 5—6 Zoll lang und so weit ist, daß es, außer dem darin befindlichen Körpern einen leeren Raum von ungefähr 5 Rubikzoll enthält, ist eine kleinere eingetiefelte Glasröhrchen C, D, die etwa 7—8 Zoll lang, 1/2 Zoll weit und unten und oben offen ist, eingelegt. Diese letztere ist nahe am oberen Ende etwas aufgebogen und aufgerieben und in einen Stöpsel gesteck, der gerade in die Öffnung des ersten Glasgefässes paßt. In dieses wird dann

Ist alles dafs auf die angegebene Weise gehörig vorbereitet, so werden die mit einander verbundenen Röhren in ein Blechgefäß g, g eingehängt, welches oben mit einigen losehn Glasflaschen F, F, F und unten mit einem schweren Körper P und seitlich mit einem Einschütt Q, Q versehen ist. Als dann füllt das Wasser nicht nur das Gefäß A, B, sondern auch die Glasröhröe C, D vollständig aus.

Wird der Apparat nun aber in das Meerwasser eingehängt, so wird der Kautschuksaft beim Niederdrüden durch den zunehmenden äußeren Druck des Meervassers zusammengedrückt und in Folge dessen das in demselben eingeschlossene Wasser in die eingeführte Röhre C, D und durch deren untere Deßnung in das umgebende Gefäß A, B getrieben, so daß das Wasser hierin eine dem äußeren Druck gleich innere Spannung erhält. Die größte Spannung erlangt es natürlich, wenn der Apparat die tiefste Stelle des Meeres oder See's erreicht hat. Zu Moment, wo dieses gescheicht, stößt ein vorragender Zapfen O auf den Meeresgrund oder den Boden und löst dadurch einen Hebel H, K aus, wodurch das Gewicht P los wird und herausfällt. Da als dann der hydrostatische Auftrieb um dieses Gewicht größer geworden ist, so bewegt sich der ganze Apparat plötzlich wieder in verticaler Richtung bis zur Oberfläche des Wassers, wo er durch das Signal S auf der hervorragenden Spitze des Blechgefässes g, g leicht bemerkt und aufgefangen werden kann.

Während des Aufsteigens findet wiederum die nöthige Wirkung statt. Der äußere Druck des Wassers auf den Kautschuksaft nimmt ab und erreicht an der Oberfläche wieder die anfängliche normale Spannung. Die Spannung des im Gefäß A, B eingeschlossenen Wassers treibt daher das Quecksilber entsprechend in der eingefügten Glasröhröe in die Höhe und aus dem Stand dieser Höhe, welche an der Scala abgelesen werden
kann, kann nun auf die Tiefe des Meervassers geschlossen werden, auf welche der Apparat eingefunken war.

Bei Wassertiefen welche 500 Fuß nicht übersteigen, kann der Apparat empfindlicher und wirtschaftiger gemacht werden, indem man eine kleine Menge Luft oder sodann ein elastisches Gas in das Gefäß A, B, worin das Wasser und Quecksilber eingeschlossen sind, bringt.

Um den Apparat für einen neuen Versuch vorzubereiten, genügt es, denselben einfach umzukleben, wodurch die eingeschlossenen Flüssigkeiten wieder auf den ursprünglichen Stand zurückgebracht werden.

XXV.

Der Ellershauzen-Proceß zur Schmiedeeisen-Erzeugung.

Aus der österreichischen Zeitschrift für Berg- und Hüttenwesen, 1869, Nr. 12.

Es werden auch im Martin'schen Stahproceß, wie er jetzt bei Samuelson und Comp. in Middlesborough in Nord-England mit dem ziemlich unreinen Cleveland-Eisen mit Erfolg betrieben wird, wohl aus dieselben Grunde reiche Eisenerze zugeschlagen. Der im Nachfolgenden näher zu besprechende Ellershauzen'sche Proceß scheint aber zu zeigen, daß eine sorgfältig ausgearbeitete Beimischung von reichen Eisenerzen es ermöglicht, ein Roheisen, das wegen seiner Unreinheit bei der gewöhnlichen Stahlfabrikation gar nicht verwendet werden kann, mit Leichtigkeit und Sicherheit aus gutes Schmiedeeisen zu verarbeiten.

Der Proceß wird in den Werke der Herren Schöpper und Comp. in Pittsburg, wo er, unter des Erfinders eigenen Leitung eingeführt, schon seit Monaten in regelmäßiger und erfolgreichem Betrieb ist, in folgender Weise durchgeführt.

Man verarbeitet dafsicht in einem gewöhnlichen Kohlschöpfen eine
Ueber den Eilershausen-Proceß zur Schmiedeisen-Erzeugung.

Erzbeschaffung, die zur Hälfte aus guten Erzen von Lake Superior und vom Iron Mountain (Missouri), zur anderen Hälfte aber aus sonst wegen ihres Schwefelgehaltes unbrauchbaren Erzen aus Canada besteht. In den letzterwähnten Erzen ist der Eigentümer deutlich sichtbar und offenbar in großer Menge vorhanden.

Mehrere mit Masen ausgekleidete Ausflussstücke für das Eisen sind vorgesehen zum schnellen Auseinandernehmen während der Operation, wenn dies für notwendig erachtet wird.

Sind die Kästen des Mischungstisches gefüllt, so wird der äußere hohe Tischrand, welcher die Außenwände der Mischungsfässen bildet, hinweggenommen und die Kästen, deren jeder etwa 20 Pf. wiegt, vom Tische herabgezogen. Je vier von den so erhaltenen Mischungstüchen werden zusammen in einem Rüdels- oder sonstigen Flammofen auf eine mäßige Weißhitze gebracht. Sie schmelzen dabei nicht, da sich ihre Höfeiennatur bereits während des Anheizens verloren hat. Sie werden dagegen rasch weich und lassen sich nach etwa halbfündigem Heizen leicht aufbrechen und ballen. Es werden aus den vier Kuchen acht Luppen gesetzt, welche wie gewöhnliche Buddelluppen gezänt, gequetscht und direkt ausgewalzt werden. Das erhaltene Product ist aber in diesem Fall nicht das, was man meint unter Roheisene versteht,
sondern es ist ein zum unmittelbaren Verkauf geeignetes Schmiedeeisen von guter Qualität und schönem Ansehen im Neueren wie im Bruch.

Nachdem dieser Prozeß an mehreren Werken in Pittsburg mit gleich entschiedenem Erfolg versucht und eingeführt war, wurden die Eisenfabrikanter der östlichen Landesteile daraus aufmerksam.

Die Menge des zu verarbeitenden Erzes hängt natürlich von dessen Gehalt an freien Eisenoxyden oder Drydulcen ab, oder vielmehr von der Menge Sauerstoff, welche in dem Erze an Eisen gebunden und mit demselben zu freien Dryduln verbunden ist. Die Erzverwendung wird auch bei verschiedenen Hoheitsangaben verschieden sein müssen. Doch verliert man, daß ein nicht gar zu großer Nebelzusatz an Erz den Prozeß nicht beeinträchtigt, da das Zuwiel im Squeezer (Quetscher) als Schlafe entfernt werde.

Über das Ausbringen ist mir bis jetzt noch nichts Näheres bekannt. Manche sagen, daß die Gleichförmigkeit der Produkte noch einiges zu
wünschen übrig lasse. Versuche, die an unserem Werke bevorstehen, sollen über diese Punkte näheren Auskunft geben.

Es hat sich eine Gesellschaft großer Industrieller und Finanzleute, mit dem Hauptsitz in Pittsburgh, gebildet, mit einem bereits gezeichneten Capital von einer Million Dollars, zur vollständigen Durch- und Ein- führung des Prozesses im Großen.

Obgleich der Prozeß für die Vereinigten Staaten, wo sich sehr viele sehr reiche, wenn auch nicht immer schwefel- und phosphorfreie Magnet- und Rotteisensteine vorfinden, vielleicht von größerer Bedeutung ist, als für viele andere Länder, so werden ihm obige Vorteile doch vielleicht eine ausgezeichnetere Verbreitung verschaffen, wenn nicht etwa bei längerer Erfahrung damit auch Schattenseiten davon hervortreten. Ich zweifle nicht, daß auch reiche stark geröstete Spatteisensteine mit Vorteil zur Mischung verwendet werden können.

XXVII.

Bessemer's verbessertes Verfahren zur Stahlsfabrication.

Aus Engineering, November 1868, S. 478.

Mit Abbildungen auf Tab. III.

Dieses Verfahren besteht in gewissen Änderungen des gewöhnlichen Bessemerverfahrens, deren Zweck ist, Gußstahl zu erzeugen, indem man den geringeren Rotteifenorten bessere Rotteifenorten (wie dies selten jetzt zum Bessemern verwendet werden) in ständigem Zufluhe beitüchtigt.

Bei der Ausführung dieser Verbesserungen wendet Bessemer eine Birne (Converter) aus starkem Eisenblech an, deren beide die Zapsen tragenen Seiten abgeplattet sind. Diese Zapsen beziehen aus Gußeisen und sind mit breiten, gerippten Flanschen versehen, mittels deren sie mit den Seiten der Birne fest verbunden werden können. Die Birne hat ferner zwei Windläden, welche um ungefähr einen Viertelskreis von einander entfernt sind, so daß die Düsen, wenn sie in diesen getrennten Windläden auf einen mit den Zapsen der Birne zusammentassenden Punkt gerichtet werden, beinahe rechtwinkelig zu einander stehen. Der Theil der Birne, in welchen die Düsen aus jedem Windläden gerichtet
werden, kann etwas ausgeweitet sein, so daß er eine Vertiefung oder einen Herd bildet; die beiden Vertiefungen oder Herde, mit welchen die Birne versehen ist, werden durch einen aus Ganister angesetzten niedrigen Damm von einander getrennt. Der bequemere Unterschiedung wegen wollen wir den ersten kleineren Herd mit A, den zweiten größeren mit B bezeichnen. Der erste Herd kann mit „Bulldogg“ oder Rotheisenstein gesättigt werden, wie dies bei Puddelöfen üblich ist; die übrigen Theile der Birne sättig man mit Ganister. Die Birne wird, wie gewöhnlich, mit passenden Öffnungen zum Einlegen von Düsen in das Thonfutter versehen; ebenso mit Seitenöffnungen, durch die eine eisere Brechstäbe zur allensfalligen Bearbeitung der Charge eingeführt werden kann.

Zumeist bringt Bessemer noch andere Öffnungen zum Einlegen von Düsen an, durch welche letzteren gewisse flüchtige Substanzen in das Metall eingespritzt werden. Endlich ist die Birne noch mit einer größeren Öffnung versehen, durch welche Metall und Brennmaterial eingebracht und wieder entfernt werden können.

Unsere Abbildungen geben mehrere Ansichten von einem derartigen Stahlerzeugungssapparat. Fig. 21, 22 und 23 sind verticale Durchschnitte nach der Linie C, D der Fig. 24, welche die Birne im Querschnitte darstellt.

In diesen verschiedenen Figuren bezeichnet a den aus Schmiedeeisenplatten angesetzten äußeren Mantel; b die gußeisernen gerippten Papfenlantschen, welche an den Seiten der Birne befestigt sind; der Theil b* dieser Plätschen bildet eine hohe Ahspe oder einen hohen Papfen, welcher die Birne trägt und in den auf Säulen C* angebrachten Lagern c ruht; d ist das aus Ganister bestehende Futter, welches auch zum Theil aus Rotheisenstein oder anderem zu diesem Zwecke gebräuchlichen Material angesetzt werden kann. A und B sind die beiden vornhin erwähnten Höhlungen oder Herde, bei d* durch einen seichten Borsprung des Futters getrennt; jede derelben hat einen Windkanal e ist der Windkanal für den Herd A und hat aus feuerstrinem Thon bestehende Düsen r, r; s ist der mit eben solchen Düsen s, s versehene Windkanal für den Herd B; g und h sind die mit der hohen Ahspe der Birne comunicirenden Windzuführungsröhren (die Verbindung wird durch gewöhnliche Stopfstückchen vermittelt, so daß das Gefäß um seine Ahspe bewegt werden kann, ohne daß die Röhren in Unordnung geraten). Die den Gebläsewind dem Windkanal e zuführende Röhre dient auch dazu, im erforderlichen Falle Dampf zuzulassen, und zwar mittelst zweier Hähne, wovon der eine mit einem Dampfzellet oder Dampfübersetzer, der andere mit dem die gerechte Luft enthaltenden Reservoir communiciert.
cirt, so daß während des Prozesses entweder Luft oder Dampf, oder ein Gemisch von beiden eingeblasen werden kann.

Nachdem die Birne auf gewöhnliche Weise mittels eines Kohlefeuers angewärmt und Feuer und Cinders aus ihr entfernt worden, wird sie in eine zur Aufnahme des flüssigen Eisens geeignete Stellung gebracht. Dann beschließt man den Herd A mit etwas Staub, Hammerstahl, Rotheiesenstein oder anderem beim Puddeln gebräuchlichen Material, und sticht eine Charge von dem zu verarbeitenden flüssigen Roheisen geringer Sorte in dieselbe ab. Die Birne hat in diesem Zeitpunkte die in Fig. 23 angegebene Stellung, wobei das Niveau des flüssigen Metalles (vor dem Beginn des Prozesses) unterhalb der Düsen liegt. Hierauf wird ein Strom von Dampf oder gepreßtem Binde in den kleinen Herd A eingeblasen und nun die Birne so gefüllt, daß das Eisen in den Herd fließt (wie in Fig. 22 ersichtlich), und der Wind auf dasselbe einwirkt. Es muß bemerkt werden, daß die Düsen des kleineren Herdes A kleinere Dimensionen haben und in geringerer Anzahl vorhanden sind, als bei dem gewöhnlichen Bessenerprozesse.

Sobald der Arbeiter den Prozeß weit genug gediehen erachtet, dreht er die Birne und stellt aus einem danebenliegenden Ofen eine Charge flüssiges Eisen in sie ab; dieses Rohmaterial muß von guter Qualität sein, etwa ein gutes graues Hämatitroheisen oder eine andere Sorte, vonflüssigweise eine solche, welche etwas Mangan und genug Kohlenstoff enthält. Dann wird die Birne so gedreht, daß beide Chargen in den zweiten oder größeren Herd B fließen, welcher also die in Fig. 21 ausgegebene Stellung erhält. Die Düsen dieses Herdes sind größer und zahlreicher, als die des ersten, so daß ein kräftiger Windstrom durch die Metallschmelze hindurchgepreßt und die Temperatur so erhöht werden kann, daß die erste Charge vollständig einschmilzt und sich mit der zweiten verbindet. Dann kann das in Stahl verwandelte Metall sofort in eine Gießpflanne abgetrieben werden; Bessemer zieht es indessen vor, die Doppelcharge vor dem Abziehen vollständig zu entbehren und ihn dann eine bestimmte Quantität von flüssigem manganhaltigem Rohmaterial zuzuführen, wie dies bei seinem gewöhnlichen Verfahren üblich ist.

Um die rasche Abnutzung der zum Einschmelzen von Stabeisen oder Stahl dienenden Ofen zu verhüten, empfiehlt Bessemer die Gewölbe und die anderen der Hitze am meisten ausgelegten Theile aus Kohlesiegeln (oder aus Ziegeln mit Zwischenkanälen) herzustellen, in denen kalte Luft circulirt; letztere erhitzt sich dadurch und kann zur Speisung der Defen selbst benützt werden.

Beider Ausführung dieses Systems verwendet Bessemer vorflüssige Ziegel von der in Fig. 27 angegebenen Form, deren Seiten sich verjüngen, so daß sie zur Construktion von Gewölben benützt werden können; ihre Verbindungsweise zu einem solchen ist in Fig. 28 angegeben. Sie bilden mehrere Züge oder Luftkanäle m, n, welche sich von einem Drinandende bis zum anderen erstrecken, so daß ein Luftstrom entweder durch sie hindurchgepreßt oder mittels einer Ehe angestoßen werden kann. Die Vorzüge einer solchen Einrichtung in Bezug auf Haftbarkeit des Bau- materials sind einleuchtend.
XXVII.

Neue Birnen zum Bessemerfrischen, construirct von A. E. Holley und J. B. Pearse, Ingenieure in Swatara (Urodamerika).

Aus Engineering vom 19. Februar 1869, S. 133.

Mit Abbildungen auf Tab. III.

Alexander A. Holley, Ingenieur der Pennsylvania Steel and Iron Company in Harrisburg (Bereinigte Staaten) und John B. Pearse haben sich in England kürzlich ein neues Verfahren zur Construction von Umwandlungsgefässen (Birnen, Kipföten) für den Bessemerproceß patentiren lassen, dessen Hauptzweck die Erleichterung der Reparaturen des Futters dieser Apparate ist. Die gewöhnlich aus feuerfesterem Ton angefertigten, zylindrisch geformten und mit longitudinalen Windöffnungen (Öffnungen) versehenen Formen, sowie das feuerfeste Futter des unteren Theiles der Birne, in welchen die Formen eingesetzt werden (der sogenannte Boden), verbrennen gewöhnlich so stark, daß nur sich so rasch ab, daß sie nach fünf bis sechs Stunden ausgewechselt werden müssen.

Das bisher am meisten gebräuchliche Verfahren bestand darin, die Formen aus dem Futter herauszuschlagen, neue von außen her in die alten Einstellungen einzuziehen und das Futter um dieselben auszubessern und zwar entweder auf die Weise, daß man gekörnutes feuerfestes Material, mit Wasser zu einem halbflüssigen Brei angerührt, durch die Mündung der Birne eingesetzt und diesen Brei sich um die Formen herum festsetzen und erhärten läßt, oder indem man die Birne so weit erkalten läßt, daß ein Arbeiter hineinträufchen und darin das Futtermaterial um die Formen festsetzen kann. Nach dem ersteren Verfahren läßt sich ein guter Boden nur schwierig herstellen; die zweite Methode erfordert viel Zeit und vermindert das mit einem gegebenen Apparate zu erziehende Ausdrücken.

In vielen Fällen wendet man einen beweglichen Doppelsoden, Fig. 29 und 30, an. Fig. 29 stellt den Durchschnitt von unteren Theilen einer Birne dar, Fig. 30 den Durchschnitt eines solchen Doppelsodens mit den Formen A, A und dem Windfassh B. Nachdem der alte Boden mit den Formen und Diesen aus der Birne (Fig. 29) herausgenommen worden, wird ein neuer Boden (Fig. 30) mit den vorher festgekämpften und ausgetrockneten Windformen eingesetzt. Beim Herausnehmen des alten Bodens kommt es zuweilen vor, daß von dem Futter D
an den Seiten der Birne Theile mit weggerissen werden, und zuweilen bleibt auch ein Stück vom alten Futter am Boden hängen und muß dann herausgeschlagen werden; beim Einziehen des neuen Bodens muß in diesen Fällen ein unregelmäßiger und ofters ziemlich großer Raum mit feuerfestem Material ausgefüllt und abgeglichen werden. Dies kann aber erst nach genügendem Erkalten der Birne geschehen. Wollte man einen solchen unregelmäßigen großen Raum mit feuerfestem Material in Form von halbsüßigem Brei ausziehen, so würden, ebenso wie in dem oben erwähnten Falle, wenn das Material zum Umgießen der Formen benutzt wird, unansehnliche Stellen entstehen.

Ein anderes Verfahren ist aus Fig. 31, dem Durchschnitt einer Birne, ersichtlich. Zur Ausführung derselben wird der ganze obere Theil der Birne E an der Verbindungsstelle F, G abgehoben; dann können die alten Formen herausgeschlagen und von außen her neue eingewechselt und festgestampft werden, während die Birne noch sehr heiß ist. Dieses Verfahren ist jedoch mit dem großen Übelstande behaftet, daß nach dem Wiederausziehen der oberen Hälfte der Birne die Verbindungssstelle sich nur mit großer Schwierigkeit gut abdichten läßt, wenn der Apparat nicht hinlänglich erkalten ist.

Holley's Verfahren zur Herstellung einer guten, dichten Verbindung zwischen dem beweglichen Boden und dem Futter des Birnenkörpers ist aus Fig. 32 und 33 ersichtlich. Fig. 32 ist ein Durchschnitt vom unteren Theile einer Birne und Fig. 33 der Durchschnitt des dazu gehörenden beweglichen Bodens. Wenn beim Abnehmen des alten Bodens eine unregelmäßige Dehnung zurückbleibt, wie C in Fig. 29, so setzt Holley in dieselbe eine Lehre H (Fig. 32) ein, und befestigt dieselbe mit drei oder vier Bolzen I, L. Dann stampft er den zwischen der Lehre H und dem Futter D befindlichen leeren Raum J, J mit feuerfestem Material voll und nimmt nun die Lehre hinweg. Der bewegliche Boden (Fig. 33) wird auf die Weise angefertigt, daß zunächst die Windformen eingestellt werden, woraus man die Lehre K um sie herumlegt, die leeren zwischenräume mit feuerfestem Material vollstapft und die Lehre wieder abnimmt. Das Innere der letzteren hat entweder denselben oder einen etwas größeren Durchmesser, immer aber die gleiche Gestalt wie das Auge der Lehre H, so daß der Boden (Fig. 33) beim Einziehen in den unteren Theil der Birne genau oder beinahe genau in die Dehnung oder den Stup D, J des Futters D (Fig. 32) hineinpast. Auf diese Weise wird die Verbindungsfuge zwischen dem Boden und dem Futter geschlossen. Zur Erzielung eines möglichst vollkommenen Schlusses überzieht Holley ferner die Seiten L, L des Bodens vor dem Einziehen.
mit einem Teige von feuerfestem Thon, oder er gießt nach dem Auswechseln des Bodens einen halbstündigen Brei von gemahltem Quarze in und feuerfestem Thone in die Birne, worauf diese in der gewöhnlichen Weise getrocknet und vorgewärmt wird, und dann zum Gebrauche fertig ist.

Die Arbeiter können außerhalb der heißen Birne stehen und das feuerfeste Material I feststampfen. Um sie vor der vom Futter ausstrahlenden Wärme zu schützen, so daß sie die Reparaturen auszuführen im Stande sind, während die Birne innen rothglüht, wendet Holley eine Art von Schirm M, N (Fig. 32) an, welcher am besten aus zwei Scheiben von Eisenblech angefertigt wird, zwischen denen ein mit Luft gesättigter Raum bleibt. - Auch läßt er in manchen Fällen den Boden dann auswechseln, wenn die Birne sich in umgekehrter Stellung befindet, d. h. wenn ihr Boden nach oben gerichtet ist, so daß die Arbeiter das Fütterungsmaterial um die Form direct einstampfen können und der aus dem Inneren des Apparates austretenden Hitze nicht so ausgesetzt sind. Zu diesem Zwecke wird die Lehre H', Fig. 35, mittels des Stabes P central in dem Boden der umgedrehten Birne aufgehangt und dann das feuerfeste Material unmittelbar in den Zwischenraum J' eingefüllt, falls das Futter D' so weit wegbrochen ist, daß das eingefüllte Material durch J' hindurch in die Birne eindringt, wird der Boden auf irgend eine zweckmäßige Weise verschlossen, z. B. durch den in Fig. 37 im Grundriß abgebildeten Schieber R, welcher in einem mit Handgriff versehenen Eisenblech von geeigneter Form besteht und in einen der Räume S eingefüllt wird, so daß er auf dem an der Lehre H' hängenden Ringe a ruht. Mittels der Handhabe schiebt ein Arbeiter den Schieber so an das Futter, daß dadurch der untere Theil des ringsformigen Raumes J' verschlossen wird. Sobald der oberhalb des Schiebers befindliche Raum vollgestampft ist, wird der Schieber weggezogen und auf einen anderen Theil des Ringes a gelegt, bis der ganze leere Raum vollgestampft ist.

Um durch das Wegnehmen des alten Bodens entstandene Deffnung möglichst regelmäßig und glatt zu machen, so daß sich die Lehre H' hineinpassen läßt, und zur Auffüllung des Zwischenraumes J' nur wenig feines Füttermaterial nötig wird, ist es für manche Fälle zu empfehlen, aus dem Futter zum Einlegen der Lehre ein passendes Stück auszuschneiden, wozu man sich eines Messers C, Fig. 34, bedient, welches an dem Handhebel b befestigt ist; der Stützpunkt des letzteren dreht sich auf einer zu diesem Zwecke quer über den Boden der Birne gelegten Stange e. Durch Auf- und Niederbewegen des Handels ist ein Arbeiter, indem er das Messer gleichzeitig um den Mittelpunkt d in einem Kreise weiter-
führt, im Stande, die Dehnung im Futter ziemlich eben und regelmäßig auszuführen.

Eine andere Einrichtung des beweglichen Bodens, welcher Holley in manchen Fällen den Vorzug gibt, ist in Fig. 31 abgebildet, wo die Verbindungsstelle zwischen Futter und Boden innerhalb des Windkastens B' liegt. In den oben näher beschriebenen Figuren 32 und 33 ist diese Verbindung oberhalb des Windkastens hergestellt worden, so daß der letztere mit dem Boden zusammen abgenommen werden kann und die Communication mit dem aus den Zapfen der Birne in den Windkasten führenden Windleitungsrohre g und g' unterbrochen wird, sobald man einen Boden auswechseln, folglich wieder hergestellt werden muß, wenn ein neuer eingesetzt wird. Bei der in Fig. 32 und 33 dargestellten Einrichtung ist für jeden Doppelboden ein besonderer Windkasten erforderlich, und der Boden muß mit dem Windleitungsrohre g' stets in der selben Stellung eingesetzt werden, wenn das Rohr g richtig passen soll; in Fig. 31 dagegen besteht der Doppelboden einfach aus einer Platte k, oder den beiden Platten k und n, den Windformen A, A' und dem letzteren umgebenden feuersfesten Material f; dieser Doppelboden kann abgenommen werden, ohne daß es nötig ist das Windzuführungsdrehe g' und den Windkasten B' wegzunehmen, und ebenso läßt er sich wieder einsetzen, ohne daß man auf das Windleitungsrohre Rücksicht zu nehmen braucht. Die Platte k muß ganz dicht an den Boden des Windkastens anschließen, so daß kein Wind entweichen kann und zu diesem Zwecke ist es zu empfehlen die innere Seite der Flansche n mit dem oberen Theile des Randes p der Platte k ganz dicht zu verbinden.

Zur Befestigung des Bodens in seiner richtigen Stellung, benutzt man am besten Schrauben h, Fig. 31, deren Köpfe durch die Wandungen j des Windkastens hindurchgehen, so daß sie leicht zugänglich sind. Holley bringt ferner an seinen Birnen Dehnungen an, durch welche man von außen den Boden und die Windformen beobachten kann, wenn der Apparat heiß ist. Diese Dehnungen sind so eingerichtet, daß, wenn eine derselben verschlossen ist, ihre Verbindungsstelle mit dem Futter von außen deutlich wahrgenommen und abgedeckt werden kann. Diese Einrichtung ist aus den Figuren 31 und 36 ersichtlich; die ersteren gibt den Durchschnitt einer auf ihren Zapfen in aufrechter Stellung ruhenden Birne; die letztere den Durchschnitt des oberen Theiles oder der „Nase“ der Birne, welche sich in umgekippter Stellung befindet, so daß der Theil T des Futters eine beinahe horizontale Lage hat.

In dem oberen Theile der Birne ist eine Dehnung angebracht, am besten direct über dem Boden, welche solche Dimensionen hat, daß die Arbeiter
den Boden und das Futter der übrigen Theile des Gefäßes mit langen Stampfern und anderen zweckmäßigen Werkzeugen bearbeiten können. Diese Deffnung wird mit einem Stopfen verschlossen, welcher aus einem schmiedeeisernen, mit Plantischen W verfeßenen und mit feuerfestem Material U gefüllten Deckel V besteht. Wird dieser Stopfen abgenommen, so entsteht in Folge des Lostrennens von Teilen des Futters eine ähnliche unregelmäßige Deffnung, wie weiter oben (Fig. 29 und 30) beschrieben worden; soll nun der Stopfen wieder eingesetzt werden, so gibt man der Birne die in Fig. 36 angedeutete Stellung, in welcher es dem Arbeiter möglich ist, die unregelmäßige Fuge zwischen dem Stopfen und dem Futter durch die Deffnung X hindurch gehörig zu verstreichen.

XXVIII.

Über die quantitative Bestimmung der Titansäure; von

David Forbes.

Da die Ansicht, daß bei der Analyse von Silicaten die in denselben vorhandene Titansäure gänzlich oder doch zum größten Theile bei der Kieselsäure zurückbleibt, nachdem letztere von den Basen abgeschieden worden, noch immer die herrschende ist, so schien es wünschenswert, nachzuweisen, inwieweit dies wirklich der Fall ist, und ob zwischen der Menge der bei der Kieselsäure zurückbleibenden und der in die saure Lösung gehenden Titansäure ein bestimmtes Verhältnis obwaltet.

Die Resultate der Untersuchung verschiedener titanhaltiger Thone und Gesteine lieferten mir den Beweis, daß ein sehr bedeutsamer Antheil vom Titansäuregehalte der analysirten Substanz wirklich in Lösung geht und daß bei Ausschaltung der Resultate der Analyse ein bedeutender Fehler
entstehen muß, wenn dieser Anteil vernachlässigt und nur die bei der Kieselsäure zurückbleibende Menge als der Gesamtgehalt des untersuchten Körpers an Titanäure in Rechnung gezogen wird.

Ein einziges Beispiel wird hinreichend, um zu zeigen, daß sich die Sache wirklich so verhält. Bei der auf Anlassung von G. Maw von mir ausgeführten Analyse eines, eine 7 bis 8 Fuß mächtige Schicht ziemlich in der Mitte der Shropshire Kohlenablagerungen bei Calcott's unweit Broseley bildenden rothen Thones wurde für dieses Mineral die nachstehende Zusammenfassung gefunden:

<table>
<thead>
<tr>
<th></th>
<th>29,71</th>
<th>64,06</th>
</tr>
</thead>
<tbody>
<tr>
<td>gebundene Kieselsäure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>freie Kieselsäure</td>
<td>34,35</td>
<td></td>
</tr>
<tr>
<td>unlöschliche Titanäure</td>
<td>0,37</td>
<td>0,62</td>
</tr>
<tr>
<td>löschliche Titanäure</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>Thonerde</td>
<td></td>
<td>20,60</td>
</tr>
<tr>
<td>Eisenoxyd</td>
<td></td>
<td>6,84</td>
</tr>
<tr>
<td>Eisenoxydbind</td>
<td></td>
<td>0,32</td>
</tr>
<tr>
<td>Manganoxydbind</td>
<td></td>
<td>0,09</td>
</tr>
<tr>
<td>Kalscheide</td>
<td></td>
<td>0,12</td>
</tr>
<tr>
<td>Magnesia</td>
<td></td>
<td>0,04</td>
</tr>
<tr>
<td>Kali</td>
<td></td>
<td>0,91</td>
</tr>
<tr>
<td>Natron</td>
<td></td>
<td>0,44</td>
</tr>
<tr>
<td>Wasser, mit Spuren organischer Substanz</td>
<td>5,85</td>
<td></td>
</tr>
</tbody>
</table>

99,89

Aus diesen Resultaten ergibt sich, daß über 40 Procent vom ganzen Titanäuregehalte des Thones in Lösung gegangen waren, welche später durch Ammoniak (welches die Titanäure vollständig ausfällt) mit dem Thonerde und dem Eisenoxyd niedergeschlagen wurden.

Zur Abscheidung der mit der Kieselsäure zurückbleibenden unlöschlichen Titanäure wurde die Kieselsäure in einem Platinfiegel einige Zeit lang mit reiner concentrirter Schwefelsäure gekocht; dann ward der Tiegelinhalt nach dem Erkalten rafch in eine große Menge kaltes Wasser ge-
schützt, so daß eine etwas beträchtliche Erhitzung der Lösung vermieden wurde; nach dem Ablöslösen der Kieselsäure wurde die Lösung mit Natron beinahe vollständig neutralisiert, mit wenig Salpetersäure versetzt, und dann die Titan säure auf die vorhin angegebene Weise durch Kochen ausgefällt.

Nach Mariounac wird Titan säure aus ihrer Lösung in concentrirter Schwefelsäure nach der Verbrennung mit dem fünffachen Volum Wasser durch Kochen ausgefällt; ich fand es jedoch am sichersten, einen großen Theil der überschüssigen Säure vor dem Erhitzen der Lösung erst mit Natron zu neutralisiren; in der gefrorenen Flüssigkeit war nach dem Filtriren keine wägbare Spur von Titansäure mehr nachzuweisen.

In derartigen Fällen schlage ich nachstehendes Verfahren ein, welches ich als durchaus zweckmäßig empfinde kann. Das Mineral, der Thyron, das Gestein 2c. wird in unsißbar feines Pulver verwandelt und in einen Platintiegel von geeigneter Größe mit reiner concentrirter Schwefelsäure zu einem dünnflüssigen Brei angemacht; dann wird das Ganze mehrere Stunden lang einer Temperatur ausgelegt, wobei eine schwache Entwicklung von Schwefelsäurebämpfen stattfindet, obwohl das Masse in's Kochen oder Sprühen gerät. Auf diese Weise wird der Gesammtehalt der Substanzen gebunden und nicht gebundener Titan-
säure in die lösliche Modification umgewandelt und von der Schwefelsäure aufgenommen.

Enthält die Lösung viel Eisen, so verfehlt man das Filtrat vor dem Kochen mit etwas Salpetersäure, damit die Titannäsure nur Spuren von Eisenoxyd mitreißt kann.

Die auf diese Weise erhaltene Titannäsure hält gewöhnlich eine geringe Menge Schwefelsäure zurück, von welcher sie durch Erhitzen mit etwas kohlensaurem Ammoniak befreit werden muß; nach dem Glühen zeigt sie gewöhnlich eine lichtgelbe Farbung; erscheint sie dagegen dunkelrot, so enthält sie noch Eisenoxyd und muß dann mit zwei- bis zwei-äquivalent Kali oder Natron geschmolzen werden. Die geschmolzene Masse wird in überschüssigem kaltem Wasser gelöst, die Lösung mit einem Tropfen Salpetersäure verfehlt und gekocht, wodurch man die Titannäsure fastblos oder nur schwach gelblich gefärbert erhält.

In manchen Fällen, bei Gegenwart einer nur sehr geringen Menge von Kalk oder sonst einem Körper, der ein in Wasser oder in einer Lösung von schwefelsaurem Kali oder schwefelsaurem Natron unlöschliches Sulfat bildet, wie z. B. Jirkonäsure, Thorerde 2c., schlägt man ein anderes Verfahren ein. Man schmilzt nämlich das auf's feinste gepulverte Mineral mit etwa der zehnfachen Gewichtsmenge zweifach-schwefelsauren
Natrons, löst die Masse in kaltem Wasser, filtrirt die Lösung von der zurückgebliebenen Kiesel säure ab, wäscht letztere erst mit kaltem, dann mit heißem Wasser aus, glüht sie und wägt sie dann. Die Titansäure wird aus dem filtraten durch Kochen abgeschieden, nachdem dasselbe, falls irgend bedeutende Mengen von Eisenoxyd zugegen sind, mit einigen Tropfen Salpetersäure versetzt worden ist; nach dem Anfiltern der Titansäre werden dann die Basen, Thonerde, Magnesia, Eisenoxyd c. im filtraten auf die gewöhnliche Weise bestimmt.

Im Roheisen und Stabeisen wurde das Titan bisher gewöhnlich in dem in Säuren unlöslichen Rückstande aufgesucht; die nach- stehenden Versuche beweisen aber, dass ein solches Verfahren keine zuverlässigen Resultate gibt.

Von einem Roheisen, welches aus titanhaltigem Magneteisenstein von Gallarud in Norwegen 33 in einem Holzhobelhöfen erblasen war, wurden 251,59 Gramm in kleinen Stückchen in Salpetersäure gelöst; der unlöschliche Rückstand wurde auf einem Filter gesammelt, eingefärbt mit Schwefelsäure digestirt, und die vorhandene Titansäure auf die vorhin beschriebene Weise bestimmt. Ihre Menge betrug 0,52 Gramm, entsprechend 0,207 Proc. Titansäure oder 0,126 Proc. Titanmetall.

Eine andere Probe von Roheisen, aus titanhaltigem Magneteisenstein von der Drusine-Grube bei Krageröe in Norwegen erblasen, wurde zu demselben Zwecke nach ganz demselben Verfahren analysirt. 104,26 Gramm des Roheisens gaben nach dem Auflösen in Salpetersäure einen

33 Die Analyse dieses Eiseneines wurde im polytechn. Journal Bd. CXCI S. 224 mitgetheilt.
Rückstand, welcher nach dem Eisäfern 2,47 Gran wog und nur 0,02 Gran (in concentrirter Schweifelsäure) unlösliche Titan säure enthielt. Die Menge der im sauren Filtrate enthaltenen löslichen Titan säure betrug 0,03 Gran. Das Roheisen enthielt also im Ganzen nur 0,048 Proc. Titan säure (entsprechend 0,029 Titan); 0,019 Proc. dieses Titan säuregehaltes waren in dem unlöslichen Rückstande geblieben, 0,029 Proc. aber in Lösung gegangen. Durch diese Versuche wird bestätigt, daß wenn eine Substanz nur sehr geringe Mengen von Titan säure enthält, der größte Theil derselben häufig, wenn nicht immer, in der Lösung und nicht im unlöslichen Rückstande aufzufinden ist.

XXIX.

Ransome's Fabrication künstlicher Sandsteine.

Fr. Ransome in Ipswich ließ sich am 9. April 1861 in England ein Verfahren zur Fabrication künstlicher Steine (ohne Brennen) patentiren, welches im polytechn. Journal Bd. CLXIV. S. 395 mitgetheilt wurde und bekannt darin besteht, daß der Sand zuerst mit einer Ablösung von tiefelsaurer Natron (Wasserglas) gemischt, die so gebildete plastische Masse in Formen gepreßt und dann mit einer Lösung von Chlorcalcium behandelt wird; durch gegen seitige Verjüngung des tiefelsauren Natrons und Chlorcalciums entsteht tiefelsaurer Kalk, welcher als Bindemittel in der Masse zurückbleibt, und Chlornatron (Kohsalz), welches vom Stein durch Waschen entfernt wird. — Zur billigten Fabrication des erforderlichen tiefelsauren Natrons löst Ransome Feuer steine (in ganzen Stücke) in verschlossenen Gefäßen unter einem Druck von 60 Pfd. per Quadratzoll in Aethronlauge auf. 34

34 Der von Ransome zu dieser Darstellung des tiefelsauren Natrons angewandte Apparat wurde im polytechn. Journal, 1857, Bd. CXLV S. 289 nach bei-
Im Jahre 1862 erstatteten Dr. In ted und Prof. Frankland der British Association einen sehr günstigen Bericht über Ransome’s künstliche Sandsteine bezüglich ihrer Festigkeit und ihrer Widerstandsfähigkeit gegen die Atmosphäre der Städte, im Vergleich mit den besten natürlichen Steinen (Kalksteinen); dieser Bericht wurde im polytechn. Journal Bd. CLXVII S. 343 mitgetheilt.

Beschreibung der Fabrikationsweise Ransomescher Steine in dem am Themseufer in East-Greenwich errichteten Etablissement.

„Der größte Theil des bei der Fabrication verwendeten Sandes wird aus Maidstone geholt, während die Feuersteine bequem von den Mergelablagerungen in der Nähe der Fabrik zugezogen werden. Kalkstein liegt ebenfalls nahebei, und die sonstigen Chemikalien kommen aus einer Fabrik am Tyne.

An einem Ende des Fabrikgebäudes befinden sich die Kessel, in welchen das Natronslicat preparirt wird. Diese sind clyndrisch, mit einem
Hoist versehen, auf welchen die aufzulösenden Feuersteine gelegt werden, und mittels Dampfröhren geheizt. Nach Einlegen der Feuersteine wird der Kessel mit einer Lösung von Regatron von 1,12 spezifischem Gewicht gefüllt und sodann verschlossen. Jezt wird Dampf mit einem Drucke von 70 Pfund per Quadratzoll (4,92 Kilogramm per Quadratcentimeter) in die Röhren gelassen und das Kochen fortgesetzt, bis die Feuersteine aufgelöst sind. Man erhält Natronflücht in einer Lösung von 1,2 spezifischem Gewichte. Durch einen Hahn am Boden des Kessels steigt dieselbe mittels des auf ihr ruhenden Dampfdruckes in ein Ablagerungsreservoir und von da nach erfolgter Klärung in ein offenes, mit Dampfrohrenheizung versehenes Gefäß. Hier wird sie auf das spezifische Gewicht 1,7 konzentriert und ist nun zum weiteren Gebrauche fertig als eine zähe, etwas gelatinöse, durchsichtige Flüssigkeit.

Der nächste Prozeß besteht im Härten der Objekte. Aus den Formen gehoben, erfordern dieselben große Behutsamkeit, da die Cohäsion noch unbedeutend ist; aber unter dem Einfluß einer Lösung von Chlorcalcium gewinnen sie in wenigen Minuten einen genügenden Härtegrad, um ohne besondere Vorrichtung in die Sand genommen und transportirt zu werden. Früher tauchte man die größeren Gegenstände in ein Bad, um sie zu imprägniren, aber gegenwärtig wird derselbe Effekt auf andere, interessante Art erreicht. Beim Formen wird ein Loch in's Centrum hinein ausgepart und in dasselbe das Rohr einer Luftpumpe gehoben; beim Extrahiren der Luft wird dann die über den Artikel geöffnete Flüssigkeit rasch angezogen. Bei Mühlsteinen besitzen die gusseisernen
Formen durchlöcherte falsche Böden, und nach dem Eintüllen der Masse wird die Luft zwischen beiden Böden verdünnt. Der atmosphärische Druck drückt nun die Flüssigkeit von der freien Oberfläche hinein und das Resultat dieses Prinzips, die Luft aus dem Inneren aber von der unteren Seite der Objekte zu entziehen, ist eine sehr schnelle und vollständige Durchdringung. Kleinere Objekte werden lediglich aus einer Gießanne befreit.

XXX.

Über die Einwirkung von Schwefelwasserstoff auf Eisenorydhydrat und Eisenoryd bei gewöhnlicher Temperatur; von Emil Brescius in Frankfurt a. M.

Bekanntlich wird das Leuchtgas, um es von Schwefelwasserstoff zu befreien, über sogenannte Laming’sche Waffe, d. h. über ein Gemenge von Eisenwürtz oder Eisenchlorid mit Kalk, oder neuerdings über Eisenoryd geleitet.

Wenn die Eisenmäße eine Zeitlang benutzt worden ist und ihre Dienste versagt, wird sie aus dem Reinigungsapparaten herausgenommen und unter häufigem Anreiben und jeweiligem Befeuchten an der Luft gelassen, bis das vorhandene schwarze Schwefeleisen sich in braunes Eisenorydhydrat verwandelt hat, was unter Ausscheidung von Schwefel vor sich geht.

Die Waffe wird auf dieselbe Weise, wie man sich ausdrückt, regenerirt und zu neuem Gebrauche tauglich gemacht.

Gleichviel ob ursprünglich eine Eisenorydulverbinding oder Eisenoryd angewandt wurde, das Produkt der Regeneration ist immer Eisenorydhydrat und in der regenerirten Waffe wirkt also vorzugsweise das letztere. Da nun die Ansichten der Chemiker, was aus verschiedenen Werken und Schriften zu ersehen ist, über den, bei Einwirkung von Schwefelwasserstoff auf Eisenoryd und beziehentlich Eisenorydhydrat stattfindenden Vorgang sehr auseinander gehen, so stellte die Commission für Gassreinigung des Vereines deutscher Gasfachmänner im Jahre 1868 unter anderen folgende Frage auf:

"Was wird bei der Einwirkung des Gases auf Eisenorydhydrat oder Laming’sche Waffe (wobei vorausgesetzt ist, daß diese keinen überschüssigen Kalk enthält) aus dem Eisen?"

Beziehentlich der verschiedenen Ansichten der Chemiker sei hier nur erwähnt, daß Berzelius in seinem Lehrbuch von 1834, Bd. III S. 441 sagt: Schwefelwasserstoff und Eisenoryd oder Eisenorydhydrat bilden bei gewöhnlicher Temperatur das Andershalb-Schwefeleisen Fe₃S₃, nach der Gleichung:

\[\text{Fe}_2\text{O}_3 + 3\text{HS} = \text{Fe}_3\text{S}_3 + 3\text{HO} \]
Hierin stimmen ihm einige Chemiker bei, andere aber sagen, es entstehen „Einfach-Schwefeleisen“ und Schwefel, nach der Gleichung:

\[\text{Fe}^2\text{O}_3 + 3\text{HS} = 2\text{FeS} + 3\text{H}_2\text{O} + \text{S} \]

Gleichviel nun, ob der Prozeß der Einwirkung auf die eine oder die andere Weise vor sich gehen möge, so müssen durch ein Atom Eisenoxyd oder Eisenoxydhdydrat stets drei Atome Schwefel aus dem Schwefelwasserstoff ausgeschieden werden. Trägt man indessen nicht dafür Sorge, daß bei den Versuchen über diesen Egenstand der gleichzeitige Einfluß der Luft beseitigt wird, so findet sich, in Folge nebeneinanderer Drydation, immer etwas mehr Schwefel ausgeschieden, wie Herr Dr. Deide im Journal für Gasbeleuchtung, April 1868, — und ich in meiner citirten Abhandlung genauer mitgetheilt haben.

Dieser Umstand ist für die Verfolgung des Prozesses bei der Gasreinigung insofern wichtig, als bei Unterludung einer zur Reinigung gebrauchten Eisenmasse immer etwas mehr Schwefel gefunden werden muß, als den drei Atomen Sauerstoff des vorhanden gewesenen Eisenoxyd entspricht. Es ist dies dadurch bedingt, daß bei der Fabrication des Gases während der Ausleerung und Füllung der Retorten und der Reinigungsfäden z. immer etwas Luft mit in die Eisenmasse gelangt, welche direct aus dem Schwefelwasserstoff oder aus gebildetem Schwefel- eisen Schwefel auscheidet. Unter anderen, in der Originalabhandlung beschriebenen Versuchen, wurde nun auch der folgende gemacht.

Endlich wurde wederum von Sauerstoff befreite und völlig getrocknete Kohlensäure 24 Stunden lang durch die Röhre geleitet und diese von Zeit zu Zeit bis zu 500° C. erwärmt, um das erhaltene Schwefeleisen möglichst auszutrocknen.

Neber die, bei dem Borgang sich barbitrenden Erseheinungen bemerte ich, daß das Eisenoxydhdydrat durch den Schwefelwasserstoff sogleich, unter
deutlich fühlbarer Erwärmung und Ausscheidung von Wasser sich schwarz und als bald durch seine ganze Masse hindurch schwarz gefärbt ist. Es wurde aber der Sicherheit wegen während 24 Stunden Schwefelwasserstoff darüber geleitet um zu sehen, ob in einer so langen Zeit, trotz der angewandten Vorsichtsmaßregeln, nicht doch auf irgend eine Weise mehr Schwefel ausgeschieden werde, als den drei Atomen Sauerstoff des Eisen oxyd des entspricht.

Nach dem Austrocknen erscheint das Produkt mehr hellgrau als schwarz.

Durch vorläufige Versuche war constatirt worden, daß das möglichst ausgetrocknete Produkt der Wechselwirkung zwischen Schwefelwasserstoff und Eisen oxydhydrat sich nicht, oder nur sehr langsam in der Luft oxydiert und Schwefelsäurenstoff nur sehr wenig Schwefel aus demselben ausgelöst. Es wurde nun eine beliebige Menge desselben mit Schwefelkohlenstoff behandelt mit der Vorsicht, daß es immer von dem letzten bedeutet war und so auch die geringste Drydation vermieden wurde. Nach dem Rückstand, um abhängenden Schwefelsäurenstoff zu entfernen, längere Zeit getrocknet worden, wurde er mit concentirter Salpeter säure und etwas Salpeter vollständig gelöst und die erhaltene Flüssigkeit zur Trockene verdampft. In der Lösung des Verdampfungsrückstandes wurde das Eisen und die Schwefelsäure bestimmt; letztere natürlich mit der bekannten Vorsichtsmaßregel bei Fällung von schwefelsaurer Barium aus salpeter säurenhaltiger Lösung. Es fanden sich auf 0,7295 Eisen oxyd 3,185 oder auf 80, 349,28 schwefelsaurer Barium, also auf 1 Atom Eisen oxyd 47,97 Schwefel statt 48, mithin die äquivalente Menge. Der Schwefelkohlenstoff, mit welchen das Schwefeleisen behandelt worden, wurde verdampft und der bleibende Rückstand von Schwefel gewogen; er betrug auf 80 Eisen oxyd 0,333. Da bei dem Versuche doch die Luft in der beschriebenen Weise fern gehalten wurde, so ist es wahrscheinlich, daß solche während der 24stündigen Dauer des Nebenleitens von Schwefelwasserstoff in Folge von Diffusion durch die verbindenden Kautschuktäschchen des Apparates in denselben gelangte.

Es zeigt dieser Versuch, welcher mehrfach wiederholt wurde, daß Schwefelkohlenstoff aus dem Produkte der Einwirking von Schwefelwasserstoff auf Eisen oxydhydrat nur den Schwefel auslost, welcher durch die nebenhergehende Drydation direct oder indirect aus dem Schwefelwasserstoff ausgeschieden wird.

Dieser Umstand würde nun allein schon hinreichend zu beweisen, daß jenes Produkt nicht ein Gemenge von zwei Atomen „Eisenchwefeleisen“ und einem Atom Schwefel, sondern das Überschufs-Schwefeleisen Fe₂S₃ sein, wenn es nicht auch eine in Schwefelkohlenstoff unlösliche
Modifikation des Schwefels gäbe. Zwar tritt diese ziemlich selten auf, aber es ist doch nicht möglich, a priori zu beweisen, daß wenn bei der Einwirkung von Schwefelwasserstoff auf Eisenoxybdihydrat wirklich nach der Gleichung

\[\text{Fe}_2\text{O}_3 + 3\text{HS} = 2\text{FeS} + \text{S} + 3\text{HO} \]

ein Atom Schwefel ausgeschieden würde, dieser der löslichen Modifikation angehören müßte.

Bergelius gibt in seinem Lehrbuch an, daß das betreffende Produkt durch schwache oder verdünnte Säuren derartig zerlegt werde, daß schwarzes „Zweifach-Schwefeleisen“ dabei ungelöst zurückbleibe. Hierdurch wäre ferner bewiesen, daß jener Körper das Anderthalbschwefeleisen sei, denn die Bildung von „Zweifach-Schwefeleisen“ könnte ohne das chemisch gebundene dritte Atom Schwefel nicht möglich sein. Leider ist es mir aber bis jetzt nicht gelungen mit voller Sicherheit nachzuweisen, daß die Zersetzung wirklich in dieser Weise vor sich gehe.

Durch sehr verdünnte, chlorfreie, stark aufgelöste und wieder erkalte Salzsäure wurde aus der fraglichen Schwefelverbindung eine reichliche Menge Schwefelwasserstoff entbunden und es blieb allerdings ein schwarzer, unlöslicher Rückstand, der sich aber zum größten Teil als Schwefel erwies. Er löste sich mit Hinterlassung einer sehr unbedeutenden Menge einer Eisen-Schwefelverbindung in Schwefelkohlenstoff auf, die indessen stets zu gering war, um bestimmt nachzuweisen, daß sie „Zweifach-Schwefeleisen“ jen.

Es dient aber auch dieser Prozeß, bei welchem also Schwefel ausgeschieden wird, statt „Zweifach-Schwefeleisen“, in Verbindung mit einer früher erwähnten Thatache, die Zusammensetzung des Produktes der Einwirkung von Schwefelwasserstoff zur klaren Erkenntnis zu bringen. Wie oben gezeigt, löst Schwefelkohlenstoff aus dem eigentlichen Produkt der Schwefelwirkung jener beiden Körper keinen Schwefel auf; durch Behandlung mit verdünnter Salzsäure wurde aber aus demselben in Schwefelkohlenstoff löslicher Schwefel ausgeschieden. Dieser kann also nur von dem chemisch gebundenen dritten Atom der Eisenverbindung herrühren, nach der Gleichung:

\[\text{Fe}_2\text{S}_3 + 2\text{HCl} = 2\text{FeCl} + \text{S} + 2\text{HS} \]

Hiermit ist also das Folgende bewiesen:

Bei Einwirkung von Schwefelwasserstoff auf Eisenoxydhydrat bildet sich bei gewöhnlicher Temperatur das Anderthalbschwefeleisen „Fe_2\text{S}_3“ und der Prozeß der Einwirkung geht vor sich nach der Gleichung:

\[\text{Fe}_2\text{O}_3 + 3\text{HS} = \text{Fe}_2\text{S}_3 + 3\text{HO} \]
Als Beleg diene hier noch die Bemerkung, daß bei der Zersetzung des Schwefeleisens durch verdünnte Salzsäure, z. B. auf eine 0,380 Eisenoxyd entsprechende Menge in Lösung gegangenen Eisens, 0,0753 ausgeschiedener, in Schwefelsäure enthaltener Schwefel gefunden wurde. Hierbei ist aber diejenige Menge in Abzug gebracht, welche von Schwefeleisen in Folge der besprochenen, nebeneinandergehenden Ausscheidung von Schwefel durch oxydierende Wirkung der Luft beigemengt war. Nach der Gleichung:

\[\text{Fe}_3\text{S}_8 + 2\text{HCl} = 2\text{FeCl}_2 + 2\text{HS} + 8\text{H}_2\text{O} \]

hätten aber auf 0,380 Eisenoxyd 0,076 ausgeschiedener Schwefel gefunden werden müssen.

Weiteres über diese Zersetzung, sowie über die Eigenschaften des Unterthalb-Schwefeleisens behalte ich für eine spätere Arbeit vor.

Da, wie bemerkt, in neuerer Zeit auch Eisenoxyd (gewöhnlich wohl der gewählte Rückstück einer Schwefelsäure) zur Reinigung des Gases gebraucht wird, so habe ich auch die Einwirkung des Schwefelwasserstoffs auf Eisenoxyd untersucht, welche ganz interessante Momente bietet. Neuer frisch geglühtes, chemisch reines Eisenoxyd wurde in einer Nähre erst völlig durch Chlorcalcium und sogenannte gläserne Phosphorsäure getrocknet, dann 8 Stunden lang, durch dieselben Substanzen getrockneter Schwefelwasserstoff und hierauf wiederum getrocknete Rohrenfärbe geleitet, bis aller Schwefelwasserstoff vertrieben war, was nebenbei gelingt, sehr lange dauert. Bereits vorhergehende Versuche hatten gezeigt, daß bei dieser Operation eine Einwirkung nicht stattfinden würde und dies zeigte sich nach Beendigung der auf das Bestimmtes. Es war auf keine Weise auch nur eine Spur Schwefel in dem Eisenoxyd zu entdecken und es gilt der Satz:

„Ganz trockener Schwefelwasserstoff übt auf ganz trockenes Eisenoxyd keine Wirkung aus.“

Dieses Resultat erhält man indessen nur, wenn man genau wie angegeben verfährt. Das Eisenoxyd verdichtet nämlich sehr energisch Wasser dampf aus der Luft in seinen Poren. Ist daher vor der Verleitungen von Schwefelwasserstoff nicht alles Wasser aus dem Apparat und dem Eisenoxyd entfernt und ist jenes Gas nicht völlig getrocknet (was mit Chlorcalcium allein nicht der Fall ist), so findet man, wenn auch nur Spuren von Schwefel. Ebenso kann es heyn, wenn nicht zulegt der Schwefelwasserstoff verdrängt wird; wird nämlich mit demselben noch beladenes Eisenoxyd an die Luft gebracht, so kann mehr oder weniger schnell in Folge von Wässeranziehung die Wechselwirkung eintreten. Es wurde nun weiter über Eisenoxyd, bloß durch Wasser gewaschener, also

damit gesättigter Schwefelwasserstoff einmal 8, ein anderesmal 24 Stunden lang geleitet, ohne vorher Kohlen säure anzuwenden; wohl aber wurde zuletzt mit getrockneter Kohlen säure der Schwefelwasserstoff vertrieben und das Produkt einigermaßen getrocknet. Dieses wurde wie oben mit Salpetersäure u. s. w. zur Bestimmung von Eisen und Schwefel behandelt. Es fand sich nach 8 stündigem Ueberleiten auf 80 Eisenoxyd statt 48, nur 30,7 Schwefel, nach 24 stündigem 31,08; in beiden Fällen also saß genau dieselbe Menge.

Die Einwirkung des feuchten Schwefelwasserstoffes auf Eisenoxyd geht, wie auch Berzelius angibt, sehr langsam vor sich. Während Hydrat sich augenblicklich schwarz, ist bei Oxid eine deutliche Farbenveränderung erst nach einiger Zeit bemerkbar und eine Erwärmung ist dabei nicht zu fühlen. Nach und nach baut sich das Pulver in einzelne größere und kleinere Klumpen zusammen.

Zur Beurtheilung dieser Resultate ist in Betracht zu ziehen, dass von dem gefundenen Schwefel derjenige noch abgesogen werden muss, welcher sich in Folge der, auch bei diesen Versuchen stattgehabten accessorischen Verjagung durch die Luft gebildet hatte, der wohl qualitativ nachgewiesen, aber nicht quantitativ bestimmt wurde.

Aus diesen Versuchen geht nun hervor, dass, wie bereits bemerkt, die Einwirkung von feuchtem Schwefelwasserstoff auf Eisenoxyd überhaupt eine langsame sei, da dieser aber auch, indem ein Theil des Eisenoxydes durch eine dichte Decke von Schwefeleisen eingeschüttet wird, gar eine Grenze gefühlt seyn könne, wenn jene Decke nicht durch mechanische Hülse zersplittert wird.

Dieser Umstand erklärt es wenigstens theilweise, dass eine Reinigungsmasse mit Eisenoxyd, natürlich nur bis zu einem gewissen Punkt wirksam wird, wenn sie regenerirt worden.

Hierbei wird nämlich der eine Theil des Eisenoxydes, welcher in Schwefeleisen verwandelt worden, zu Eisenoxydhydrat, der andere Theil
aber seiner schützenden Decke von Schweißeisen beraubt, so daß also der Schwefelwasserstoff in der regenerierten Masse mehr und leichter empfangliche Angriffs punkte findet.

\[\text{Fe}_2\text{O}_3 + 2\text{HCl} + \text{HS} = 2\text{FeCl} + 3\text{HO} + \text{S} \]

vor sich geht, so würde, wenn sämtliches Eisenzyrd reduziert und gelöst wird, gerade so viel Schwefel ausgeschieden werden, als wenn es als \(\text{Fe}_2\text{S}_3 \) vorhanden gewesen wäre. Bleibt aber Eisenzyrd ungelöst, so findet es sich bei dem in Schwefelkohlenstoff unlöslichen Rückstand, worauf bei etwaiger Prüfung Rücksicht genommen werden muß.

XXXI.

Über die Einwirkung des Sauersloffes der Luft auf Einfach-Schweißeisen; von A. Wagner.

In den Lehrbüchern der Chemie findet sich jetzt noch gewöhnlich angegeben, entweder: „das Einfach-Schweißeisen oxydiert sich an der Luft rätsch zu schwefelsaurem Eisenoxydul“, oder: „das Einfach-Schweißeisen oxydiert sich rätsch zu basisch-schwefelsaurem Eisenoxyd.“

Nach diesem Betreffen angestellten Versuchen sind jedoch beibe Aufgaben nicht den thatsächlichen Vorgängen entsprechend, indem das Einfach-Schweißeisen hauptsächlich in freien Schwefel und Eisenzyrd zerfällt. Nebenein tritt jedoch auch Schwefelsäure und Eisenzyrdul, beibe aber in unbesritten wechselnden Verhältnissen, auf.

Direkte Versuche haben ergeben, daß hauptsächlich die Wärme die Bildung von Schwefelsäure begünstigt, während bei gewöhnlicher Temperatur sehr wenig Schwefelsäure auftritt.
Zu diesen Versuchen wurde aus möglichst neutralem oxydfreiem Eisenchlorür und farblosem Schwefelammonium schnell bereitetes Einfach-Schwefeleisen in drei Portionen geteilt, und jede dieser drei Wohden lang zur Regeneration gelesen gelassen. Dieselben wurden während dieser Zeit niemals unter folgenden Verhältnissen gehalten:

Portion I warm (circa 100° C.) und feucht;
Portion II kalt und feucht;
Portion III kalt und trocken.

(Zur Darstellung des trockenen Schwefeleisens wurde das frisch gefällte, feuchte Schwefeleisen in einer Liebig'schen Trockennröhre bei Ausschluß der Luft, nämlich durch einen darüber geleiteten Strom von Leuchtgas, bei 100° getrocknet. Zur Regeneration wurde dasselbe in einen durch Schwefelsäure trocken gehaltenen Raum geblasen.)

Die Analyse der drei Portionen nach der Regeneration, in wasserfreiem Zustande berechnet, ergab:

Portion I (warm und feucht): Schwefel 24,35
 Schwefelsäure 7,76
 Eisenoxyd 61,73
 Eisen oxydul 6,17
 Gesamt 100,00

Portion II (kalt und feucht): Schwefel 28,32
 Schwefelsäure 0,96
 Eisenoxyd 61,51
 Eisen oxydul 9,21
 Gesamt 100,00

Portion III (kalt und trocken): Schwefel 27,94
 Schwefelsäure 2,39
 Eisenoxyd 46,48
 Eisen oxydul 23,24
 Gesamt 100,00

Es berechnet sich hiermit:

Portion I (warm und feucht) auf 1 Gewichtsteil Schwefel: 0,319 Schwefelsäure
 II (kalt und feucht) auf 1 Gewichtsteil Schwefel: 0,034
 III (kalt und trocken) auf 1 Gewichtsteil Schwefel: 0,085

Ferner bei:

Portion I (warm und feucht) auf 1 Gewichtsteil Eisenoxyd: 0,100 Eisen oxydul
 II (kalt und feucht) auf 1 Gewichtsteil Eisenoxyd: 0,151
 III (kalt und trocken) auf 1 Gewichtsteil Eisenoxyd: 0,500

Bemerkenswerth ist, daß bei Portion III bei Abwesenheit von Feuchtigkeit sich bloß die Hälfte zu Dryd oxydierte, während die andere Hälfte...
sich nur zu Dryptill oxydiren konnte. Da selbst nach vielen Wochen noch Dryptill in der Masse vorhanden ist, so ist eine Bildung von Eisenopydul
oryd nicht unwahrscheinlich. *35

XXXII.
Beiträge zur Kenntnis des Dienzer Verfahrens zur Verarbeitung
der Rückstände der Chlorkalk - resp. Soda fabriken; *36 von Dr.
E. Richters, Chemiker an der Bergschule zu Waldenburg.

Wird der oxydirte Nieder schlag, welcher durch Fällung der Mangant
brühe mit der aus den Sodarrückständen gewonnenen Lauge erhalten
wurde, abgeröset, der Rückstand mit soviel salpetersaurem Natron ge
mengt, daß auf ein Äquivalent MnO, SO³ ein Äquivalent NaO, NO5
kommt und das Gemenge im Schwefelvbernzungsofen zerlegt, so er
hält man ein Röstproduct, welches nach Entfernung des gebildeten schwe
ffelsauren Natriums nach Hofmann circa 55 Proc. MnO² enthält. Ich
fahne diese Angabe vollkommen bestätigen; ein Röst gut von demselben
Sauerstoffgehalte erhält man, wenn die Zersetz ung in einer gewöhnlichen
Glas retorte bei geinder Rostglühtichte vorgenommen wird.

Die Zersetzung des ersterwähnten Rückstandes mit salpetersaurem
Natron im Schwefelverbrennungssofen kann unter Umständen wenig zweck
mäßig er scheinen, falls nämlich die Menge der sich dabei bildenden Unter
salpetersäure den Bedarf der Schwefelsäure-Rammer übersteigt. In Rück
sicht auf die hierdurch eventuell bedingte Rostzwendigkeit, die Zersetzung
in besonderen Apparaten vorgunenmen, erscheint die Beantroung der
Frage, ob es möglich ift, den ganzen Stickstoffgehalt des sal
petersauren Natrons als Salpetersäure oder salpetrige
Saure wiedergewinnen, nicht ohne Interesse. — Da ferner die Zersetzung den Formeln: NaO, NO5 + MnO, SO³ = NaO, SO³ +
MnO, NO5 und MnO, NO5 = MnO² + NO4 entsprechend verläuft
theoretisch also 1 Äqu. schwefelsaures Manganopydul 1 Äqu. Hyperopyd.

*35 Der Verf. hat im Jahre 1867 nachgewiesen, daß das Kunderhalb-Schwefe
affen (Fe2S3), der Luft ausgegefe, durch den Sauerstoff desf'en direct in Gisencord
übergang, unter Ausscheidung keines gängen Schwefelgehaltes; man s. polyeideo.
Journal Bd. XLXXV S. 315.
36 Im Anschluß an den im vorigen Hefte 2. 60 veröffentlichten Artikel des
selben Verfassers.
oder, wie man sich auch ausdrücken könnte, einen 100procentigen Braunstein geben müßte, das Hypoxyd aber bei einer Temperatur von ungefähren 360° C. schon ziemlich viel Sauerstoff verliert, und zwar um so mehr, je höher die Temperatur steigt, so ist klar, daß sich ein bedeutend sauerstoffreicheres Reaktionsprodukt erzielen lassen müßte, wenn es möglich wäre die Zersetzung bei einer möglichst niedrigen Temperatur auszuführen. — Zumeistens Geschichtspunkte waren bei Ausführung der nachstehend beschriebenen Versuche maßgebend. Das Material zu den selben lieferte mir das Reaktionsprodukt „c“, dessen Zusammensetzung in dem vorhergehenden Artikel mitgeteilt wurde.

I. 100 Gramm Körzgut wurden mit 59 Grm. salpeterfreiem Rastron gemengt (1MnO, 50° = 1 NaO, NO3); letzteres war vorher in einem Möser zu einem mäßig feinen Pulver zerrissen worden, wie sich ein solcher bei einer Darstellung im Großen gleichfalls leicht gewinnen lassen würde. Die größten Bruchstückchen der Kristalle waren etwa 0,25 Millimeter stark. Ein noch feineres Pulver anzuwenden erübrigte, wenn das Resultat der Versuche für die Praxis als maßgebend genannt werden sollte, nicht räthlich.

Also auch in diesem Falle wurde eine vollständige Zerlegung nicht erreicht.

V. 50 Grm. Röstgut wurden, wie beim Versuch I, mit 29,5 Grm. Natronsalpeter gemengt, und das Gemenge ohne Anwendung eines Sand-

In diesem Falle wurde also die vollständige Zersetzung erreicht. Die Menge der wieder gewonnenen Salpetersäure war fast genau die der angewandten; aber die Temperatur musste, um dies zu erreichen, so hoch gesteigert werden, daß das gewonnene Dypd nur den von Hofmann angegebenen, verhältnismäßig niedrigen Sauerstoffgehalt besaß.

Die Ergebnisse der Versuche lassen sich wie folgt zusammenfassen:

1) Es gelang nicht, die Zersetzung des Rößgutes mit salpetersaurem Natron bei so niedriger Temperatur zu Ende zu führen, daß das sich bildende Hypemoxyd nicht bedeutend an Sauerstoff verloren hätte.

2) Bei vollkommener Zersetzung wurde die ganze oder doch annähernd die ganze Menge der Salpetersäure des NaO, NO₃ als solche, resp. NO₃ wieder gewonnen.

3) Burde, wie auch Hofmann in neuerer Zeit vorgezogen, statt des rohen Rößgutes das in demselben enthaltene schwefelsaure Manganorydul mit Natronsalpeter zersetzte, so war das gewonnene Dypd stets erheblich sauerstoffreicher als im entgegengesetzten Falle.

Im Nachfolgenden möchte ich der Beachtung des Lesers einen Vorschlag empfehlen, welcher statt des mehrfach erwähnten Rößgutes den
ursprünglichen, oxydierten, aus freiem Schwefel und Manganoxydul oxyd durch Bleichen und der beschriebenen Rückschlag als Ausgangsmaterial hat, und in sich, die beiden genannten Gemengtheile durch Schwefelkohlenstoff zu trennen, und das Manganoxydul oxyd durch Salpetersäure höher zu oxydieren. Eine besondere Berücksichtigung dürfte deshalb dann verbreiten, wenn es sich, wie bei den beschriebenen Versuchen, vorzugsweise um die Gewinnung eines sauerstoffreichen, zur Chlorkalkfabrikation geeigneten Materials handelt. Was zunächst die Entfernung des Schwefels durch Schwefelkohlenstoff betrifft, so würden die resp. Versuche theils im Laboratorium mit Mengen von circa 1/2 Kilogramm, theils in größeren, besonders konstruierten und eigens für diesen Zweck hergestellten Apparaten ausgeführt.

Da die leitgedachten Versuche nicht unter meiner Leitung ausgeführt wurden, so kann ich mich über die Ergebnisse deselben hier nur ganz im Allgemeinen äußern. Dieselben gaben die gebeizung, daß die Anwendung des Schwefelkohlenstoffs als Lösungsmittel für den Schwefel nicht nur vollständig zum Ziele führt, sondern auch in dem konkreten Falle nicht größere Schwierigkeiten bietet, als die Ausführung verschiedener anderer, in der Technik seit langer Zeit und im großen Maßstabe zu ähnlichen Zwecken bewährter Operationen vermittels derselben Materials.

Die dem zweiten Theile des Vorlesunges zu Grunde liegende That- sache ist nicht neu. Sowohl das Oxydul, als die Chloralkaliengießerei haben für Chlorwasserstoffsaure allein, und in einem Gemisch derselben mit Salpetersäure zu zerlegen. Man erhält dabei Chlor einerseits und salpetersaures Manganoxydul andererseits, welches sich, wie wir sehen, beim Erhitzen in MnO_{2} und NO_{x} zerlegt.

Wirkt Salpetersäure auf Manganoxydul, so findet zunächst eine Spaltung deselben statt; es bildet sich auch hier salpetersaures Manganoxydul, welches in Lösung geht, während sich Hyperoxyd niederschlägt (Mn_{2}O_{3} + NO_{5} = MnO, NO_{5} + MnO_{2}). Beim Erhitzen bildet sich alsbald auch hier als Endprodukt MnO_{2}.

Obgleich jene Thatsaechen längst bekannt sind, so dürften die folgenden Versuche doch passend hier ihre Stelle finden, da sie aus verschiedenen Verhältnisse von praktischer Bedeutung spezieller eingehen.

1. 25 Grm. foslenfaures Manganoxydul wurden mit 100 K. C. Salpetersäure = 31,61 Grm. NO_{5} (die Salpetersäure ist zur Ummünzung in salpetersaures Salz mehr wie ausreichend) behandelt. Die Zersetzung wurde in demselben Apparate bewerkstelligt, welcher zur Ausführung des bereits beschriebenen Versuches diente; dieselbe verlief bei

III. 50 Grm. des auf Fabrikationsmäßigen Wege gewonnenen und vom Schweifel durch Extraction mit Schweifelsäure und freien Drydul-loxydes von der Zufälligkeit: 9,85 MnO³, 28,13 MnO, 0,77 Fe₂O³, 2,65 CaO, 8,86 SO³, 0,77 SiO², 0,82 Grm. Sand und 6,81 Wasser wurden mit 118,6 Fl. C. Salpeteräure, welche in 100 Fl. C. 29,8 Grm. NO₃ enthielt, behandelt. (Dieselbe reicht zur vollständigen Umwandlung in MnO₂ gerade aus.) Verjüngungstemperatur 220° C. (statt 360°, wie vorhin). Dauer der Operation 2 3/4 Stunden. Luftzutritt mangelhaft. Bis zur Verdickung der Masse machte sich sehr starkes Schäumen bemerkbar, so daß das Volum um mehr als das Doppelte zunahm, und einem Überfließen nur durch sehr vorsichtiges Erhören vorgebeugt werden konnte. Gewicht des Drydes = 52,8 Grm. mit 74,52 MnO₂; nach Abzug von 6,21 schwefelsaurem Kalk, 10,98 schwefelsaurem Mangandioxid und 2,07 Wasser berechnet sich der Gehalt an MnO₂ auf 92,29 Proc. Verlust an Salpeteräure = 7,94 Proc.

IV. 50 Grm. deselben Mangandioxidxydes wurden mit 48,5 Fl. C. Salpeteräure behandelt, welche in 100 Fl. C. 72,92 Grm. NO₃ enthielt. (Die absolute Menge der Säure ist gleich der beim vorigen Versuche angewandten, aber die Säure ist in diesem Falle bedeutend concentrirter. Verjüngungstemperatur = 320°; Dauer 2 1/2 Stunden. Das Aufflammen der Masse war beträchtlich, blieb aber selbst bei ge- steigerter Temperatur durchaus gleichmäßig, so daß nicht wie beim Versuch III ein Überfließen der Masse zu befürchten war. Das Durchziehen der Luft begann mit der Entwickelung der rothen Dämpfe. Gewicht des erhaltenen Drydes 53 Grm., mit 92,29 Grm.

V. 50 Grm. des Niederschlags wurden mit 30 F. C. der beim vorigen Versuche angewandten Salpetersäure, also mit einer zur vollständigen Umwandlung in MnO₂ nicht ausreichenden Menge behandelt.

Zersetzungstemperatur 300° C; Dauer 2½ Stunden. Verlust an Salpetersäure, bei hinreichendem Zutritt von Luft, 1,51 Proc. Gewonnenes Dryd = 58,82 MnO₂.

VI. Der Versuch war insofern dem vorigen ähnlich, als die Menge der angewandten Salpetersäure zur Drydbung nicht ausreichte.

Zersetzungstemperatur 300°C; Luftzutritt hinreichend.

Die Versuche zeigen:

1) Daß die Zersetzung sich bei einer Temperatur von 220° C. vollständig zu Ende führen läßt (Versuch III), daß aber auch bei Anwendung einer um 100° C. höhere liegenden Temperatur das resultierende Dryd nicht sauerstoffärmer ist, als im ersten Falle (Versuch IV); erst bei 360° erhält man erheblich sauerstoffärmeren Produkte (Versuch I, II 2c).

2) Bei mangelndem Luftzutritt finden erhebliche Verluste an NO₃ statt (Versuch I und III).

3) Bei Anwendung einer nicht sehr concentrirten Salpetersäure zeigte die Masse große Neigung zu schäumen und überzusteigen, so daß sich die Zersetzung ohne Unfall nur mit größter Behutsamkeit ausführen ließ.

Bei Anwendung einer concentrirten Säure fielen diese Nebelstände fort.

4) Die Anwendung einer geringeren Menge Salpetersäure als der nach den angegebenen Formeln berechneten, genügt nicht; man erhält in diesem Falle der fehlenden Salpetersäuremenge entsprechend sauerstoffärmeren Producten.
XXXIII.

Indigopräparat (reduziertes Indigoatin) zum gleichzeitigen Aufdrucken von Blau und Grün mit den Beizen für Krappfarben aus Baumwoll- und Leinengewebe; von J. Lightfoot.

Aus Armengaud’s Génie industriel, März 1869, S. 130.

Man hat vielfach Versuche gemacht, Indigopräparate (auch das erwähnte Solidoblau und Solidogrün) gleichzeitig mit Beizen für Krappfarben aufzudrucken, um eine sich scharfer begrenzte Muster zu erzeugen und andererseits die beträchtlichen Kosten des Einbrucens der in Krapp v. gefärbten Zeuge zu vermeiden; sei es aber, daß das so erhaltene Blau und Grün nicht lebhaft genug waren, oder daß die aufgedruckten Beizen von dem zum Fixieren des Indigs angewandten alkalisichen Bad gegriffen wurden, oder daß ein besonderer Apparat zum Drucken der Indigopräparate notwendig war, diese Versuche wurden niemals mit Erfolg geführt, und das gleichzeitige Aufdrucken von Blau und Grün mit Beizen für das Krappfarben ist unbestritten ein noch nicht gelöstes Problem.

Es ist J. Lightfoot (zu Lower-House, Lancashire) durch eine abgeänderte Zusammenfassung der Indigopräparate gelungen, ein schönes Blau und Grün zu erzeugen, welches gleichzeitig mit Beizen für Rot, Braun, Violett und Schwarz, aufgedruckt wird. Sein Verfahren stieß er sich tüchtig in Frankreich patentierte.

37 Er hat nämlich gefunden, daß, wenn bei Bereitung der Druckfarbe für Solidoblau oder Solidogrün das Zinnorydul oder Zinnoryduläsalz ein gewisses Verhältniß überschreitet (wie es bisher der Fall war), dann bei Behandlung der Zeuge in dem zum Fixiren des Indigo hin und der Beizen dienenden Reinigungsbad sich Zinnorydul in der Fäser fixiert, welches sich hernach durch den angewandten Farbstoff färbi, wodurch das Blau matt und das Grün trüb wird.
Lightfoot bereitet für seine Druckfarben reduziertes Indigotin in Teigform nach einer der folgenden Methoden:

Man macht ein Gemisch von 1 Kilogr. Indigo, welcher mit Wasser zu einem Teig zerrieben worden ist, 1 Kilogr. JinnSalz (Jinnchlorür) und 8 Liter Natrium - oder Natriumsulfate von 20 bis 23° Baume. Dieses Gemisch wird in einem kupfernen Kessel in 30 Minuten zum Kochen gebracht; alsdann setzt man 8 Liter fochendes Wasser zu und läßt die Mischung vollständig erkalten; hierauf gibt man sie in 24 Liter kaltes Wasser, welches 0,4 Kil. Zucker oder 0,8 Kil. Melasse aufgelöst enthält. (Dieser Zucker von Zuckersüß ist für das Gelingen der Farbe nicht wesentlich, aber vortheilhaft.)

Der so erhaltenen Lösung setzt man 3 Liter (eisenfreie) Salzsäure von 21° Baume zu; oder 1 Liter Schwefelsäure von 70° Baume, welche vorher mit 1 Liter Wasser verdünnt und stehen gelassen wurde bis sich alles etwa darin enthaltene Schwefelsäure Bleisalz ausgeschieden hat; oder 6 Liter Essigsäure von 6° Baume; oder ein Gemisch von 0,25 Liter JinnSalzlösung von 50° Baume mit 5 Liter Essigsäure. Von allen diesen Substanzen zieht Lightfoot die Anwendung der Essigsaure vor.

Der Niederschlag wird hernach aus ein tiefes conisches Filter gebracht, damit die möglich geringste Oberfläche der Luft ausgesetzt bleibt. Nach dem Filtriren muß der Teig 8 Liter meessen.

Zur Darstellung einer blauen Druckfarbe verfährt man 8 Liter Indigo-weiß-Niederschlag mit 2,4 bis 3,2 Kil. Gummi und rührt um, bis alles Gummi aufgelöst ist.

Um eine grüne Druckfarbe zu erhalten, verfährt man die erwähnte blaue Farbe mit 1,6 Kil. kristallisiertem salpeteraurem Bleiopx und 1,6 Kil. kristallisiertem essigsaurem Bleiopx; beide Salze, in Pulverform angewendet, läßt man in der Farbe sich auflösen.

Mit den erwähnten Farben und den gewöhnlichen Beizen für Kapp oder Garancin kann man baumwollene oder leinene Zeuge bebruden und nachdem man die Stücke über Nacht ausgehängt ließ, sie durch ein Reinigungsbad passiren; letzteres besteht in einer Kali - oder Natronwasserglas-Lösung von 6° Baume; oder in einer Lösung von kohlenstaurem Kali, welche 14° Baume zeigt, welcher man per Liter 7 bis 8 Gramme Kresse zuschneiden kann; oder endlich in einem Gemisch von Wasserglas und kohlenstaurem Kali.

Dieses Bad wird in einem Kaffee, welcher oben und unten mit Leitwasser verflossen ist, auf beiläufig 25° C. erhitzt, und die Stücke können mit einer Geschwindigkeit von 20 Meter pro Minute durchgeführt werden. Hierauf müssen die Stücke rasi in kaltem Wasser gespült werden.
von einem Topf aus, welcher beiläufig 1,25 Meter über dem Wasser-
spiegel angebracht ist.

Durch dieses Spülen wird das in der Faser fixierte Indigo erst zu
Indigoblau oxydiert. Die mit Grün bedruckten Stücke werden dann fünf
Minuten lang durch eine Lösung von doppelt-chromfaarem Kali passirt,
welche 6 bis 7 Gramme des Salzes per Liter enthält und auf 35° C.
erwärmt ist. (Wenn man nur Blau mit den Beizen für Krapp ausge-
druckt hat, kann man diese Operation unterlassen.)

Als dann untersicht man die Stücke der Operation des sogenannten
„zweiten Kühlschens;“ man passirt sie nämlich 15 bis 20 Minuten lang
in einem Kessel, welcher Wasser und Kuhkoth enthält, bei einer Tem-
peratur von beiläufig 70° C.; hernach wägt man sie in Wasjer, und
färbt sie mit Krapp, Garancein etc.; hierauf kann man das gewöhnliche
Verfahren zum Bleichen des weißen Grundes anwenden.

XXXIV.

Über die Anwendung des Fuchsinus in der Scharlachfärberei;
von Carl Pulkowski, Assistent für chemische Technologie
am k. k. Polytechnicum zu Wien.

Die Aufführung rother Pigmente oder einer einfachen Färbevor
de, mittels welcher man schnell und wohlsicht den Fasern einige der schönsten
rothen Farbtöne von ziemlicher Beständigkeit ertheilen könnte, ist ein
Problem, dessen Lösung eine tief empfundene Lücke der Colorie ausfüllen
würde. Die Herstellung jener Farbtöne ist gegenwärtig entweder mit
einem großen Aufwande an Zeit und Arbeit verbunden, oder es sind
hierzu sehr kostspielige Farbmateriälen erforderlich. Dies gilt insbeson-
dere für Scharlach, Amarant und Melkenroth; Farbtöne, welche durch-
gehends gelber als das Rotto des Fuchsinus sind. Zur Erzielung genann-
ter Farben bedarf es heute zu Tage noch immer eines sehr geschickten
und erfahrenen Färbers, also selbst zu einer Zeit wo die Chemie dem-
selben ratend und helfend zur Seite steht; es darf uns daher nicht
Wunder nehmen, daß dieser Theil der Färbererei in früheren Zeiten ge-
radezu als Kunst betrachtet wurde.

Die hellrothen Farbtöne sind für die farbigen Dessins der Gewebe
ganz unentbehrlich; sie sind ja vorzugsweise, welche ihnen Leben und
Frische ertheilen, und daraus erklärt es sich, daß der auf die Herstellung
dieser Farben bezugnehmende Theil der Färberei und des Zeugdruckes seit jeher von den Coloritien mit Vorliebe gepflegt wurde.

Einlamer Weise findet sich unter den so zahlreichen Theerfarben bis jetzt kein einziges Präparat vor, welches einen der früher genannten Farbstoffen in dieser Richtung zu ersehen oder ihrer Anwendung in merkbarer Weise zu beschränken vermocht. In Bezug auf die vorhin erwähnten rothen Farbentöne unterscheidet sich die moderne Colorie von der älteren so gut wie gar nicht.

Die rothen Farbentöne, welche man mit Ruchsin und Peonin (rotem Corallin) erhält, nähern sich mehr dem Purpur und sind außerdem gegen die Einwirkung des Lichtes sehr empfindlich, während die mit Krapp und Cohenille erzeugten Farben frei von diesen Nachtheilen sind. Bekanntlich war es der berühmte englische Farbenchemiker Ban
croft, welcher daranhan hatte, daß die echte Scharlachfarbe mit Cohenille nur unter dem Einfluß gewisser Salze als Beizmittel hergestellt werden kann, und daß das unveränderte Pigment der Cohenille die Wollfaser nur carminrot- und nicht scharlachrot färbe. Er stellte die Ansicht auf, daß diese Salze einen Theil desselben in einen gelben Farbstoff überführen, welcher mit dem ungeänderten Pigment vereint, das Scharlachrot auf der Faser erzeugt.

38 In den Wiener Seidenfärbereien wird das Pfund Seide mit Saffrotsarmin je nach der Farbentiefe um den Preis von 10 — 20 Gulden öst. W. gefärbt.
Diese Ansicht scheinen auch seine Versuche zu bestätigen, und darauf geführt, gelang es ihm ein neues Prinzip in der Scharlachfärberei einzuführen, nach welchem die Cochenille nicht für sich allein, sondern unter Mitbenutzung geringer Farbstoffe verwendet wird, und wobei alle jene Substanzen weggelassen werden, welche dem carminfarbenen Cochenillepigment den gelblichen Ton verleihen.

Es läßt sich a priori behaupten, daß eine aus Fuchsin und irgend einem gelben Pigment erhaltene Mischfarbe, bezüglich ihrer Echtheit der Cochenillefarbe nachstehen muß; dagegen erscheint es ebenso gewiß, daß sich auf diesem Wege beständigere Farben erhalten ließen, wenn wir einen dem Fuchsin in der Farbe gleichkommenden, jedoch echteren Thierfarbstoff besäßen, der uns an echten gelben Pigmenten nicht mangelt.

Die Lücke in der Farbenreihe der künstlichen Pigmente, unter denen sich kein zweckentsprechendes Scharlachpräparat vorfindet, wäre sodann gewissermaßen ausgefüllt, weil man auf indirektem Wege mit einem purpurrothen Farbstoff den gleichen Effekt erzielen könnte. Leider besitzen wir unter den rothen Thierfarbstoffen keinen, welcher die Echtheit des Cochenillecarminfarbenes behält, und mit Fuchsin lassen sich somit nur unechte Mischfarben erhalten.

Um an Cochenille zu sparen, haben die Holzfärber die hellrothen Farbenabstufungen häufig in solgender Weise hervorgebracht: Der Strangwolle wurde ein aurorarotbiger Grund mit Cochenille ertheilt und der gewünschte Farbenstich durch Nachfärben mit Fuchsin gegeben. Diese Methode erfüllt ihren Zweck nur teilweise, weil diese Farben den mit Cochenille erhaltenen an Feuer und Reinheit bedeutend nachstehen.

Seit einiger Zeit wird jedoch scharlach- und amarantrothser Fuchsin aus England importirt, dessen Farbenstich nichts zu wünschen übrig läßt, und welches dennoch nicht mit Cochenille, sondern mit Fuchsin gefärbt sein soll. Die Billigkeit dieser Fabri cate zwang die Schönfärberei zu Versuchen, das Fuchsin in die Scharlachfärberei einzuführen, welche aber wie es scheint nicht zum Ziele geführt haben, weil meines Wissens weder in den technischen Journalen noch in den Kreisen competenten Fachmannern etwas über die Verwendbarkeit des Fuchsin's in genannter Richtung verlautete. Im Gegenbilde, ich wurde von Färbern und Fabrikanten öfter
zu Rathe gezogen, welche sich mit derartigen Versuchen beschäftigten und zu ihrer größten Überraschung die unangenehme Entdeckung machten, daß das Fuchsin mit gelben Pigmenten combiniert, dem Luche in den meisten Fällen eine Mißfarbe ertheilt, ohne daß die Ursache dieses eigenthümlichen Verhaltens ergründen konnten. In manchen Fällen gelang es allerdings, dem Stoffe die gewünschte Farbe zu erteilen; es glückte jedoch nicht, dem Bedingungen auf die Spur zu kommen, unter welchen stets dasselbe Resultat zu erlangen ist.

Obne in die Einzelheiten meiner Untersuchungen eingezogen, will ich hier nur deren Resultate kurz erwähnen:

Eine wässerige Fuchsinlösung, von etwas beträchtlicher Concentration, ertheilt dem mit Pikrinäsäre gründirten Luche immer eine Mißfarbe, namentlich dann, wenn die Temperatur der Färbesalze gering ist. Wendet man hingegen eine stark verdünnte Fuchsinlösung an, so erhält man eine ziemlich hübsche Scharlachfarbe. Tiefer Nuancen, wie z. B. Amaranth, lassen sich auf diese Weise nicht erhalten. Genau dieselben Ertheilnungen finden statt, wenn man zum Grundiren anstatt der Pikrinäsäre irgend ein Salz des Dimitonaphtols (Kapptalingelb, Marsiusgelb) verwendet.

Schon in mäßig concentrirter Fuchsinlösung schlägt sich auf der Faser ein schwer lösliches Rosanilinjalz der Pikrinäsäre, beziehungsweise des Dimitonaphtols nieder; jedes Faserchen erscheint stellenweise mit einem bronzeartigen Nebenzug versehen. Die Mißfarbe, welche hierdurch zum Vorschein kommt, ist offenbar durch die Farbe und den Metallglanz des niebergegeschlagenen Rosanilinjalzes bedingt.

Obwohl man diesen Nebenstand durch Anwendung sehr verdünnter Fuchsinlösungen vermeiden kann, so ist diese Färbemethode denn doch nicht für die Praxis geeignet. Das Färben erfordert zu lange Zeit und ist zu umständlich. Man muß mit der Zugabe von Fuchsin in die er-

39 Diese Färbemethode steht in einer märchenischen Luchsfarbt in Anwendung.

schönste Färbeblöcke äußerst behutsam zu Werke gehen, wenn man nicht Gefahr laufen will, die Waare gänzlich zu verderben.

Es ist eine bekannte Tatsache, dass das Fuchsins nur in alkalischer Lösung der Boll- und Seidenfaser eine schöne, feurige und satte Farbe erteilt. Von diesen kunstgriffigen Maßen die Seidenfärbere auch wirklich einen ausgedehnten Gebrauch, denn sie den ihren Färbebädern immer eine gewisse Menge Mariäler Seife zu.

Wird Tuch mit Pitanfäure oder Naphtalin Gelb grundiert, so ist die Anwendung alkalischer Färbeinlösungen ausgeschlossen, denn in einem solchen Falle werden beide von der Wafer fast ganz abgezogen.

Will man einen seiferechten Grund, so muß man zu anderen gelben Pigmenten seine Zuflucht nehmen, und insbesondere auf jene Rücksicht nehmen mit welchen man das glänzendste Goldgelb erzielen kann. Das Mangel ist somit ganz unbrauchbar, weil es bekanntlich einen grünlichen Stich besitzt. Das reine Goldgelb, also ein Gelb mit einer ganz kleinen Beimischung von Orange, lässt die roten Farben am reinsten erscheinen.

Diesen Farbenton erhält man, wie zahlreiche Versuche gezeigt haben, am besten aus dem Farbstoff der Kreuzbeere; auch mit Flavin lassen sich ziemlich schöne Efecte erzielen, jedoch muß dem erterften Farbmaterial die Vorzug gegeben werden.

Der gelbe Grund wird dem Tuche in folgender Weise erteilt:

Zuerst wird daselbe einer sorgfältigen Reinigung durch Waschen u. s. w. unterzogen, dann ungefähr eine Stunde lang mit raßnirtem Weinsäure, Jinnchlorid und Malon angejottet. Der angejettete Stoff wird nachher gereinigt und bei einer Temperatur von etwa 80° C. in einer mit Kreuzbeerextrakt, beobachtungweise mit Flavin verseuchten Färbeblöcke bis zu der erforderlichen Farbentiefe ausgefärbt, sodann in Wasser gut gespült, bis das Waschwasser vollommen klar abläuft.

Alle vorher geschilderten Schwierigkeiten beim sogenannten Röthten des gelb grundierten Tuches fallen hinweg, wenn man das Färbebad in nachstehender Weise bereitet:

Auf 1000 Gewichtsteile Wasser, welches in der Färbeblöcke durch einen Dampfstrom auf 50 bis 60° C. erwärmt werden muß, gibt man 1,7 Gewichtsteile frischgesierte Soda und 0,145 Gewichtsteile Diamantsfuchsins. Letzteres wird in Form einer weingeistigen oder wässerigen Lösung zugefügt. Die Soda ist für die Erschließung schöner Farben unerlässlich; sie bewirkt eine Jerkung des Fuchsins, die Baje wird in Freiheit gelegt, verbleibt jedoch bei diesem Grade der Verdünnung gelöst. Die Färbeinlösung verliert hierdurch ihre tiefrote Farbe und erhält eine
dem lichten Bier ähnliche Färbung. Diese Flüssigkeit besitzt nicht die unangenehme Eigenschaft rein wässriger Fuchsinlösungen, den Farbstoff beim Erkalten in Form eines metallisch-glänzenden Häutchens an der Oberfläche auszuscheiden, welches sich beim Herausziehen der Gewebe an der Faser anlegt, durch kein Mittel zu entfernen ist und die Ware verdübt.

In dem auf die angegebene Weise bereiteten Färbebad wird das Tuch bei einer Temperatur von 55° C. mittels des Haups als hin- und herbewegt. Im Anfange erhält daselbe eine Mässfarbe, erst später, nachdem die Flüssigkeit bis in das Innerste der Fasern gedrungen, kommt ein äußerst lebhaftes und glänzendes Scharlach bis zum Borschein, welches, wenn die Operation nicht unterbrochen wird, in Amarant und endlich in Nelsenrot übergeht.

Es ist sehr interessant zu sehen, wie eine Flüssigkeit von so geringer Färbung, so intensive Farben zu geben im Stande ist. Nachdem aber bekanntlich das Rosanilinhydrat einen farbloosen Körper darstellt, so ist dieser Umstand einigermassen befremdend und es hat den Anschein, als ob sich im Inneren der Faser der ursprüngliche Farbstoff regenerieren würde; wenigstens läßt die Erscheinung vorüberhand keine andere Deutung zu.

Nach erfolgter Färbung muß das Tuch mit Wasser gewaschen werden und hierbei zeigt sich die interessante Erscheinung, daß der in dieser Weise fixierte Farbstoff der lösenden Einwirkung des Wassers großen Widerstand entgegengeht, während ein mit Fuchsin substantiv gefärbtes Wollgewebe das Wäscherwasser sehr stark röthet. Im ersteren Falle laufen die Wäscherwasser fast wasserklar ab.

Die nächste Operation, das warme Pressen, welchem das Tuch unterworfen werden muß, bildet eine gesähliche Klippe, woran viele Versuche gescheitert sind, welche die Einführung des Fuchsin in die Scharlachfärberei zum Zwecke hatten. Eine der unangenehmsten Eigenschaften des Fuchsin ist nämlich die, daß es auf den Stoffen bedeutend
nachdunkelt und an Feuer einbüßt, sobald die Temperatur beim Pressen eine gewisse Höhe überschreitet; ein Nachteil, welcher sich schwer vermeiden läßt, wenn die Preßplatten im Ofen und nicht mittels Dampf erhitzt werden. Im vorliegenden Falle dürfen nur hydraulische Preßen zur Anwendung kommen, bei welchen die Preßplatten mit Dampf von geringer Spannung erwärmt werden können; der Ausfall an Wärme muß durch einen höheren Druck ersetzt werden.

Unter Einhaltung aller der früher genannten Bedingungen kann das Fuchsin zur Erzielung der hellrothen Farbentöne verwendet werden, welche man bisher in dieser Reinheit nur mit Cochenille erhalten konnte. Dies gilt jedoch nur für Luchs; denn ungefärbte Gewebe, wie z. B. Wolle, muscheline, in der nämlichen Weise behandelt, erhalten äußerst magere Farben.

Emil Saloehin in Brighouse (Yorkshire) gibt eine Erklärung, warum das Fuchsin nahezu alles Gelb, wenn es auch noch so voll gefärbt war, gewissermaßen verkehrt, so daß die resultierende Farbe dünn und sahnsüchtig aussieht.40 Die Ursache dessen liegt seiner Ansicht zufolge in dem violetten Stiche des Fuchsinrothes, welcher einen großen Theil des Gelb zu Weiß ergänzt; der Rest ist ein mageres Rot, welches nur bei gestrichenen Geweben in Folge größerer Massenwirkung voll und satt erscheinen kann.

Die Farbe welche das Fuchsinroth zu Scharlach ergänzt, ist eigentlich ein hohes Orange und nicht Goldgelb. Für Seide, wo jene Farbe leicht mit Orlean gegeben werden kann, läßt sich eine Scharlachfarbe durch Deden mit Fuchsin leicht hervorbringen. Für Wolle haben wir keinen Farbstoff, der ein schönes, glänzendes Orange liefern würde (Krapp und Bonacin geben viel zu matte Farbentöne); wir sind daher noch nicht im Stande, für ungefärbte Gewebe das Fuchsin in genannter Richtung zu verwenden.

Wirb ein mit Kreuzbeereextrakt grundiertes Tuch mit rotem Corallin (Beouin) nachgefärbt, so erhält man ein äußerst lebhaftes Mennigroth (Tunis). Der Unterschied zwischen diesem und dem früher angeführten Verfahren ist durch die Natur dieses Farbstoffes bedingt, und besteht nur darin, daß man die Farbessorte anstatt mit Soda, mit etwas Marsseiler Seife allmählich machen, und den Farbstoff in Form einer weingeistigen Lösung zufügen muß.

40 Man. I. Färberei, Druckerei 1867 S. 121.
XXXV.

Über Darstellung der Metachromatypien oder präparierten Abziehbilder; von A. Müller in Paris.

Metachromatypien oder präparierte Abziehbilder sind zuerst von Paris aus in den Handel gekommen und haben ihren Weg von dort nach Deutschland gefunden.

In Deutschland selbst betrachtete man diese Bilder zu Anfang als eine französische Spielerei, die Kindern und Damen eine augenblickliche Unterhaltung gewähren könnte. Höchstens hielt man sie gut für Nürnberger Holzspielwaren-Fabrikanten, die ihren Spielsachen dadurch ein freundlicheres Aussehen geben können.

Busch ein in Nürnberg war meines Wissens der erste, der die Fabrication von Abziehbildern in größereM Raumstabe versuchte; er selbst glaubte wohl damals, als er mit der Fabrication begann, nicht, daß er nach 11-jährigem Bestehen 25 Pressen in diesem Artikel beischäftigen werde. Was wird aber jetzt alles in dieser Weise angefertigt! Man staunt, wenn man an den Pressen vorüber geht; hier sieht man mit Blattmetall bedeckte Verse, um auf Schnupftabakdosen abgezogen zu werden, dort Bouquets mit Räderbann für Theobren, hier Namen und Bemerkungen für Gewürz- und andere Kästen, dort stehen große Steine mit darauf gedruckten ganzen Tischplatten. Wenn die Zeichnungen auf die Tische abgezogen und sauber überpolirt sind, so machen sie ganz den Eindruck, als ob die Tische mit verschieden Holzarten ausgelegt wären.

Es ließe sich noch eine ganze Reihe von Gegenständen anführen, welche auf diese Weise hergestellt werden, doch würde dies zu weit führen.

Ich werde jetzt versuchen, die Herstellungswsweise der Metachromatypiebilder zu beschreiben. Zuerst kommen die dazu verwendeten Materialien in Betracht und von diesen ist es hauptsächlich das Papier, dessen Praparierung einige Sorgfalt erfordert.

Das Papier, welches zu Metachromatypiebildern verwendet wird, muß folgende Eigenschaften haben: es muß ziemlich stark sein und sich durcharmem nicht mehr strecken, sowohl während des Druckes, wie hernach beim Abziehen, wenn es mit Wasser befeuchtet wird; es muß ferner so präparirt sein, daß es sich beim Abziehen, nachdem es 1 bis 2 Minuten lang angesauft ist, leicht von der Seite abzieht, ohne daß auch nur das Geringste vom Druck daran hängen bleibt. Es ist notwendig, ehe
man das Papier zum Druck benutzt, einen Bogen mit einem Feucht-
chwamme anzustreichen; streicht sich derfelbe nicht und wirft keine Falten,
so ist das Papier zur Metachromatypie gut, wirft der Bogen aber Wellen,
so ist er weber zum Druck, noch viel weniger zum Abziehen tauglich.

Um nun aber das Papier so zu präpariren, daß es die genannten
Eigenschaften besitzt, muß es folgenderBehandlung unterworfen werden:
Mittels einer Ziegenhaar- oder Dachshaarbürste gebe man dem Pa-
pier einen fetten, gleichmäßigen Anstrich von aus Weizenstärke geflochten
und durch ein leines Tuch getriebenem Kleister, lasse die Bogen glatt-
liegend trocknen und jege dieselben alsdann zwischen Preßpänen einem
scharfen Drucke der Glättresse aus.

Als dann bereite man sich eine Mischung von gleichen Theilen aus-
gelöstem arabischem Gummi und Stärkekleister, und gebe dem Papier
 einen zweiten Anstrich. Nach diesem muß daselbe mindestens 6 bis 8
Stunden liegen, um vollkommen trocken zu werden, damit es sich beim
Druck nicht mehr verzieht. Auch auf das Drucklokal ist Rücksicht zu
nehmen, denn das so präparirte Papier zieht leicht aus der Luft wieder
Feuchtigkeit an und man hat dann mit den Preßten der Platten große
Schwierigkeiten.

Nachdem nun das Papier wiederum in die Glättresse gelegt wurde,
um die kleinen, durch das Anstreichen unvermeidlich hervortretenden Un-
ebenheiten zu entfernen, ist es zum Druck gut.

Es kommen jedoch von dieser Regel auch Ausnahmen vor, wenn z.
B. HolzfARBethe träftig gedruckt werden müssen. Es ist dann ge-
rathen, dem Papiere zwei bis drei Anstriche von Kartoffelstärke zu geben,
so daselbe hierdurch eine gewisse Nuheit erhält, die es zur Annahme
der Farbe empfänglicher macht, als wenn es zu glatt ist. Allerdings
läßt sich dieses Papier beim Abheben nicht so leicht ab, als das erfrere,
doch wissen sich die Fabrikanter von lauterer Sachen, welche diese Bilder
gebrauchen, recht gut zu helfen, wie ich später nachweisen werde.

Sollen die Bilder auf Porzellan, Email oder Glas übertragen wer-
den, so muß man ein einges geleiintes Papier anwenden, das ebenfalls
zwei Anstriche, den ersten von Stärkekleister und den zweiten von Gummi
und Kleister erhält.

Bei ungeleimtem Papier kann der Stärkekleister ziemlich schwach
seyn, dadurch läßt sich derselbe fettet und gleichmäßiger verteilen; die
Masfe zum zweiten Anstrich darf jedoch nicht gar zu dünn seyn, weil
gegenheils das Gummi schäumt und Bläschen bildet, welch spätter beim
Druck als weisse Pünktchen erscheinen.
Alle Anträge müssen kalt geschehen, damit die Masse, besonders bei ungleichen Papieren, nicht zu tief in diese eindringt.

Die Lithographie wird ganz ebenso wie jede andere lithographische Arbeit angestellt, der Druck aber ist von der gewöhnlichen Manier abweichend. Statt daß bei Genrebildern z. B. die lichten Platten zuerst und die kräftig- und dunkleren Platten dann nach gedruckt werden, ist es bei Metachromatpapierbildern umgekehrt. Hier werden die dunkleren Platten zuerst und stufenweise bis zur hellsten, der gelben, die gewöhnlich den Schluß bildet, gedruckt. Solche Bilder, die mit Gold bedeckt werden, nehmen in der Regel eine weit helle Farbe an, sobald dieselben vom Papier abzogen sind und Gold als Unterlage dienen, was man zur Erzielung des gewünschten Effectes zu beachten hat.

Solchen mehrfarbigen Bildern auf dunklen Grund gelegt werden, so druckt man Wheat auf, das noch extra mit Weiß angedräht wird, um recht gut zu denken.

Nebrigens macht Nebung den Meister und ist diese Arbeit überhaupt so interessant, daß ein Drucker, sobald er einmal eingeweiht ist, sich keine andere Arbeit wünscht.

Wenn der Druck in dieser Manier schon vielfach von dem gewöhnlichen abweicht, so ist dies noch in erhöhten Maße der Fall, wenn man Bilder für Glas, Email oder Porzellan ausführt.

Die meisten Farben hierzu lassen sich wohl in Zinn aufreiben, aber nicht drucken; man muß deshalb auf Umwegen sein Ziel zu erreichen suchen und sich gesichtert durch das Auseinandergeben des Papieres. Man druckt auf sehr stark geglättetes, nach obiger Beschreibung bereitetes Papier. Die erste Farbe färbt man sehr stark auf und läßt die Blätter, wenn der Druck trocken ist, wieder durch die Saturnpressen gehen, damit die nächste aufzustäubende Farbe nicht an den vorherigen rauhen Hängen bleibt und sich die Farben nach und nach in einander pudern. Das Saturnien, wenn auch mit leichter Spannung, wiederholt sich bei jeder Farbe. Hauptbedingung ist es, daß man die Farben sehr fest druckt; wenn das Bild auf dem Papier überladen steht, so steht es hernach nach dem Brennen doch ganz anders aus.

Die Schmelzfarben, deren es wohl an 80 verschiedene Sorten gibt,

Das Abziehen der Bilder geschieht auf folgende Weise. Sind es glatte Gegenstände, auf welche die Bilder übertragen werden sollen, so wird entweder die Fläche, wohin sie zu stehen kommen, oder auch das Bild selbst mit einem fetten Lack überstrichen, und so lange gewartet, bis dieser anfängt stark harzig zu werden. Eodann wird das Bild auf den Gegenstand gelegt und fest angedrückt, damit keine Luftblaschen sich darunter bilden. Bei kleineren Bildern kann man nun sofort das Papier mit einem nassen Schwamm so lange benutzen, bis es gänzlich vom Wasser durchdrungen ist und dann gleich abziehen, doch ist es immer gut, vier bis fünf Minuten zu warten, denn je länger das Papier unter Wasser steht, desto besser löst es sich vom Bilde los. Bei größeren Bildern läßt man den Lack, nachdem das Bild angelegt ist, erst trocknen, damit letzteres sich fest mit dem Gegenstande verbindet.

Nachdem das Papier weggezogen, tupft man mit einem nassen Schwammie die Schleimtheile, welche sich vom Papier neben dem Bilde abgelöst haben, sauber fort, und wenn dann Alles rein und trocken ist, kann das Bild mit Spirituslack überlackirt oder mit Politur überpoliert werden.

Bei Gegenständen, welche Erhöhungen oder Vertiefungen haben, auf oder in welche sich das Bild legen soll, legt man dasselbe in etwas ge- feuchtete Maculatur, damit es geschmeidiger wird. Die Maculatur darf jedoch nicht zu stark gesuchtet sein, weil sich sonst leicht das Bild schon früher vom Papier ablösen könnte, ehe man es auf den bestimmten Platz gebracht hat.

Bei runden Gegenständen, z. B. einer Flasche, kann man sich sehr leicht helfen, wenn man ein langesstück Leinen, ein Handtuch 2 c. an beiden Enden zusammennotet, dasselbe glatt über das aufgelegte Bild über die Flasche hängt und das Tuch durch Hineintreten mit dem Fuß anspannt. Als dann bringt man Wasser auf das Tuch dort wo das Bild liegt und läßt es losweichen. Auf diese Weise vermeidet man das Strecken des Papieres.

Abziehbilder auf Email, Porzellan und Glas werden ebenfalls ein wenig feucht auf den mit fettem Lack bestrichenen Gegenstand gelegt und, nachdem das Bild fest angedrückt, gänzlich in's Wasser gebracht. Das Papier löst sich nun nach und nach ab und schwimmt zuletzt auf dem

Das Einbrennen ist selbstverständlich nur ganz geschickten Händen anzuvertrauen, denn wenn das Bild noch so schön gedruckt ist, so werden, wenn es zu stark gebrannt ist, die lichteren Farben alle verschwinden, während gegenheils bei zu schwachem Brande Alles stumpf und undurchsichtig aussieht und sich noch obendrein wieder beim Gebrauch abwischt. (Müller: Lithographia, durch Industrie-Blätter, 1869 S. 21.)

XXXVI.
Neue Methode zur Fabrication und Reinigung des Zuckers; von Fr. Margueritte.

Aus Les Mondes, t. XIX p. 315; Februar 1869.

Man nennt einen Teile ihrer Bestandtheile: in der Rübe ist Kali, Natron und Kaff nachgewiesen worden; von den Säuren, Farb- und Extractivstoffen weiß man aber nur sehr wenig.

Um die organischen Säuren zu erhalten, verfährt man gewöhnlich nach einer der beiden folgenden Methoden:

1) Man fällt die organischen Salze mittels Bleiessig und zersetzt den Bleiniederschlag mit Schwefelsäuresalzlösung, welcher die Säuren in Freiheit setzt.

2) Man behandelt die Kali-Salze mit einem Gemisch von Alkohol und Schwefelsäure; es entsteht unlösliches schwefelsaures Kali und die verdrängte organische Säure kommt in Lösung.
Leiterte, auch von uns besfoigte Methode, wurde von Liebig, Gmelin und Zeise zur Darstellung verschiedener Säuren angegeben. Sie ist sehr einfach, immer wirksam und liefert das gesuchte Produkt in ganz unverändertem Zustand, was man nicht von der Verleimung der Abspaltung durch Schwefelsäure behalten und so nach hinreichendem Umschütteln einerseits einen sehr beträchtlichen Niederschlag, andererseits eine sehr gefärbte Flüssigkeit erhalten.

In letzterer fanden wir: Metapectin, Parapectin, Milch- und Nervensäure, Mannit, Asfumar und verschiedene Farbstoffe. Im Nieder schlage waren nachzuweisen: Zucker, Metapectin, Parapectin, Apogluces säure, die schwefelsauren Säfte von Kalf, Natron und Kalk.

Man sieht, daß zwar viele fremde Stoffe in Lösung bleiben, aber auch noch einige mit dem Zucker gesätt werden, dafür diese Methode nicht technisch zur Gewinnung reinen Zuckers benutzt werden kann.

Dennoch ist das Gemisch von Alkohol mit verschiedenen Säuren öfter zum Behandeln der Produkte der Zuckeraufbereitung vorgeschlagen worden und ein hieraus gegründetes System (von Paullet) ist schon vor längerer Zeit (1837—1838), jedoch erfolglos, zum Entfärben der Rohzucker behufs worden.

Die Versuche, ein praktischeres und einfacheres Verfahren zu finden, haben uns auf eine ganz andere Methode ge führt: Statt den Zucker

krystallisierbarer Zucker	99,50
unkrystallisierbarer Zucker	0,50
Asche	0,00

Dieses einfache Verfahren, auf die Anwendung einer rein wissenschaftlichen Beobachtung gegründet, hat zur Bearbeitung von etwa 10000 Kilogrammen verschiedener Produkte (Melasse und Nachprodukte) gedient und dabei stets die erwartete Mehrerziehung erreichen lassen. Diese Verleihung sind in der Zuckereiabt Laverdines, Prn. Sourdéval, gehörig, ausgeführt worden.

44 Man braucht der alkoholischen Flüssigkeit nur 0,06 Chlorcalcium oder Chlorbarium zuzusetzen, um die letzten Spuren gelöster Schwefelsäuresalze zu zerlegen; man erhält dann den Zucker frei von diesen und von Chlorverbindungen. Der Verf.
Diesen allgemeinen Angabenügen wir aus der ausführlichen Abhandlung des Verfassers 45 noch folgende nähere Mitteilungen hinzu.

Die charakteristischen Seiten des Verfahrens, welche zugleich dessen Neuartigkeit ausmachen, bestehen in Folgendem:
1) Anwendung des angefärbten Alkohols, bei einer Verdünnung und einer Temperatur, welche für Auflösung des Zuckers und Fällung der Unreinigkeiten angemessen sind;
2) weiterer Zusatz von 95 prozentigem Alkohol zum Ausfällen des Zuckers;
3) Zusatz von Zuckerkrystallen zur Beschleunigung der vollkommenen Ausscheidung des Zuckers;
4) directe Herstellung krystallisierten und reinen Zuckers in einer sauren Flüssigkeit;
5) Ausscheidung, in Alkohol, der sauren, gefärbten und zersetzlichen Stoffe.

Durch spezielle Berücksichtigung hat der Verfasser nun folgende wesentliche Punkte aufgeklärt:
1. Die Unveränderlichkeit des Zuckers in der alkoholischen sauren Flüssigkeit.
2. Die zweckmäßigsten Temperaturen und Concentrationgrade.
3. Den Einfluss des zugesetzten Zuckers auf die Krystallisation.

Zu 1. Es könnte scheinen, als ob der Zusatz der Schwefelsäure zum Alkohol den Zucker verändern müßte; dieser befindet sich hier aber nur in Berührung mit schwachen organischen, durch die Schwefelsäure verdrängten Säuren und es entstehen daher selbst in Zeit von 6 Stunden nur Spuren veränderten Zuckers; sogar nach 20 Tagen ist der Zucker noch größtenteils in krystallisierbarem Zustande vorhanden.

45 Journal des fabricants de sucre, Jahrg. IX, Nr. 48 und 49.
Alkohol bei 30 — 40° C. arbeiten, doch scheint dies, zur Vermeidung jeder Veränderung des Zuckers, nicht geraten.

Zu 3. Verschiedene direkte Versuche haben die Wirkung des Zuckerzusatzes aufgeklärt; sie besteht darin, daß die Kristallisation alles überhaupt zu erhaltenden Zuckers in weniger als fünf, statt in 18 Stunden hervorgerufen wird. Der Alkoholgrad der Flüssigkeit liefert einen genauen Gradmesser für die Ausscheidung, welche im Ganzen auf 1 Kilogramm Melsasse 1350 Gramm beträgt, wenn man 1000 „ Zuckerpulver zugefügt hat, so daß 350 Gramm als aus der Melsasse ausgefällt, bleiben. Die Ausscheidung ist eine so rasche, daß man sie mit dem Auge verfolgen kann. Gezuckert Zucker zeigt sich rascher wärmend als Kristallzucker.

Die zugezeigten Zuckerkrystalle vergrößern sich regelmäßiger, ohne ihre Durchsichtigkeit und ihren Glanz zu verlieren; obgleich die Zunahme in einer sehr bunten Flüssigkeit vor sich geht, so bleibt die Farbe der Krystalle doch kaum gelblich, so daß man sie direct auslöschen und auf Brodzucker verarbeiten kann. In diesem Falle wird der gewaschene Zucker in einen geschlossenen Kessel gebracht, um durch Kochen den anhaengenden Alkohol wieder zu gewinnen. Soll der Rohzucker als solcher verkauft werden, so wird der Alkohol beim Trocknen oder durch Ausdecken wieder erhalten. In diesem Falle setzt man auch zweckmäßig der alkoholischen Flüssigkeit 0,006 Chlorcalcium zu, um die letzten Spuren schwefelsauren Salze niederschlagen; man erhält dann einen salzreinen Zucker, welcher im Werthe den besten Zustand des Handels gleich steht.

Die Hauptausgabe bei dem ganzen Verfahren besteht in derjenigen für die Wiedergewinnung des Alkohols; diese Kosten kennt man hinlänglich, um sie in Rechnung ziehen zu können. Die Verluste an Alkohol dagegen während der Arbeit selbst können sich nur durch die Erfahrung ergeben; jedenfalls sind sie bei gut eingerichteten Apparaten nicht groß (?), da bekanntlich auch bei der industriellen Anwendung anderer stärkerer Flüssigkeiten, wie z. B. des Schwefelkohlenflüssiges, des Holzgeistes u. s. w. die Verluste hinter den Voraussetzungen zurückbleiben. Schließlich stellt der Verfasser die Vorteile seines Verfahrens wie folgt zusammen:
1. Gewinnung von 35—38 Proc. Zucker vom Melassegewicht,
d. h. Erhöhung der Ausbeute um 24—26 Proc.;
2. Gewinnung dieses Zuckers in direkter Weise, d. h. im reinsten
Zustande in vier Operationen;
3. Verminderung der Arbeit bei den Nachprodukten der Raffinerien;
4. fast vollständiger Wegfall der Knochenkohle in Zuckerfabriken
der Raffinerien.

An Operationen begreift das Verfahren nur folgende:

a) Mischung der Melasse mit 85 prozentigem Alkohol unter Zugabe
von 5 Proc. Schwefelsäure, Zugabe von 95 prozentigem Alkohol
mit 0,006 Chlorcalcium; Filtration;

b) Krysalisation durch Zuckersalz, Walzen mit Alkohol, Mischung,
Kochen auf Brode oder Trocknen des Rohzuckers;

c) Wiedergewinnung des Alkohols;

d) Verarbeitung der zuckerhaltigen Rückstände auf Alkohol;

e) Gewinnung und Reinigung der Schwefelsäuresaft.

Alle Melassen, Rohzucker und Zuckeraufbereitungsprodukte jeder Art
können nach diesem Verfahren verarbeitet werden.

XXXVII.

Uber das Vorkommen des veränderten Zuckers (der Glucose)
in den Rohzuckern und raffinierten Zuckern aus Runkelrüben;

von Dubrunfaut.

Aus dem Journal des Fabricants de sucre, Jahrgang IX, Nr. 48 u. 49.

Bei einem Versuche, die bisher zur Bestimmung des veränderten
Zuckers angewandten Methoden zu verbessern und für die Untersuchung
der Handelswaren anwendbar zu machen, gelangte der Verf. zu dem
unerwarteten Resultate, daß die meisten Rohzucker und raffinierten Zucker
aus Rüben jeder Herkunft bemerkliche und mittels der Kupfersalz
bestimmbar Mengen veränderter Zucker enthalten.

Alte, seit 15 bis 20 Jahren aufbewahrte Zucker verhielten sich
ebenso, sie waren jedoch offenbar durch die Länge der Zeit verändert.
Nur ein im Jahre 1850 aus Melasse erhaltener raffinierter Zucker zeigte
bloß Spuren der Kupferreaction. Fast alle das Kuperoxid reduzierenden
Zucker lieferten neutrale oder (und zwar meistens) saure Lösungen, doch
trat die Reduction auch bei stark alkalischem Zucker ein. Der Verfasser
glaubt hieraus, da vor 20 Jahren die Rübenrohzucker keinen veränder-
ten Zucker enthalten hatten, den Schluss ziehen zu sollen, daß die neuen
Verfahrensweisen, welche die Anwendung der Kohlensäure begreifen,
der in Nebe steigenden Eigenthümlichkeit, d. h. dieser Benachtheiligung
des Productes nicht fremd sind.

Folgendes sind die Belege für diese allgemeine Angabe: Alle aus
den Pariser Raffinerien stammenden Zucker enthalten unkrystallisirbaren
Zucker und alle sind deutlich sauer. Die Menge dieses Zuckers wechselt
zwischen 3 und 10 Procent, im Mittel aller Proben 5 Tausendstel
(0,5 Procent). Durch sorgfältiges Waschen mit 95procentigem Alkohol
verlieren diese Zucker ihre saure Reaction und die Eigenschaft, die Küpfef-
lösung zu reduciren; die freie Säure scheint Milchsäure zu seyn.

Der veränderte Zucker stammt von dem verwendeten Rohmaterial.
Da in dieser Beziehung eine Untersuchung der Produkte aller 460 Zucker-
fabriken nicht möglich war, so hat der Verfasser, um ein authentisches
Resultat zu erhalten, die Proben untersucht, welche als Typenmuster alle
Jahre von der Pariser Handelskammer dem Publicum geliefert werden.
So stellt z. B. die letzte Sammlung von 14 Mustern die normalen Pro-
ducte der Campagne 1868—69 dar, welche durch die Kürze ihres Be-
stehens (seit November 1868) die Sicherheit, unverändert zu seyn, dar-
bieten.

Von diesen 14 Mustern sind 11 (von Nr. 10—20) nach der Farbe
geordnet, die übrigen 3, als Nr. 1, 2 und 3 sind weisse, nach dem Korne
classifizirte Zucker.

In diesen Proben zeigte nun die Analyse folgende Mengen verän-
derten Zuckers:

<table>
<thead>
<tr>
<th>Typen-Nummer</th>
<th>altäth, enthält</th>
<th>veränd. Zucker</th>
<th>Theil</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>0,0104</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0,0112</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0,0101</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>0,0107</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>0,0090</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0,0084</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>0,0110</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>neutral, enthält</td>
<td>0,0077</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>0,0069</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>0,0068</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>altäth, enthält</td>
<td>0,0104</td>
<td></td>
</tr>
</tbody>
</table>

Weiße Zucker:

Nr. 1 altäth 0,0077 Theil
Nr. 2 neutral 0,0082
Nr. 3 altäth 0,0082
Das Mittel der ersten 11 ist also 9 Tausendstel, das der 3 letzten 8 Tausendstel. Der Unterschied ist somit unerheblich.

Die 15 gefärbten Muster einer Typensammlung vom November 1866 zeigten im Allgemeinen saure Reaction und im Mittel 0,0078 veränderten Zucker; die weißen Zucker dagegen waren neutral und hatten im Mittel 0,0103 — nämlich Nr. 1 (neutral) 0,0055; Nr. 2 (sauer) 0,0131; Nr. 3 (sauer) 0,0121 —, während Colonialraffinade aus Nantes nur 0,00675 veränderten Zucker befaßt.

Hängen diese Unterschiede mit einer im Laufe der Aufbewahrung entgegengesetzten Veränderung zusammen, so würde daraus folgen, daß die weißen, also nach fogen, verbesserten Verfahren dargestellt, sich schlechter als die anderen aufbewahren.

Der Berf. hat derselben Bestimmung deutsche Zucker von der Welt-Ausstellung zu Paris im Jahre 1867 unterzogen, welche seither in Papier aufbewahrt waren, und nur Spuren veränderten Zuckers bei deutlich saurer Reaction gefunden, wie das ein sehr schöner weißer französischer Rohzucker, von derselben Ausstellung, in einer Glasflasche aufbewahrt, 0,0065 veränderten Zucker aufwies. Wenn die prächtvollen deutschen Zucker jener Ausstellung wertvolle Gartenswaare darstellten und nicht eigens zum Zwecke der Ausstellung fabricirt waren, so könnte diese Untersuchung auf größeren Zucker wohl die goldene Medaille rechtfertigen, welche der Zollverein erhalten hat, und dies wird der Berf. noch weiterhin durch Unterfuchung deutscher Handelsware ermitteln. Vorläufig heißt er nur mit, daß ein prächtvoller, aus Köln flammender weißer, aus wohlereins fähigem Rohzucker fabricirter Kandis 0,00304 veränderten Zucker ergab, was auf eine geringere Reinheit des deutschen Rohzuckers hinweisen könnte, als jene Ausstellungszucker befaßen.

Ein ruföfischer raffinirter Zucker enthielt weniger als 0,0005 veränderten Zucker. Nebrigens könnten, nach dem Berf., die aus reicheren Ruben flammenden Zucker auch reiner als die französischen sein, ohne daß darum der Fabrication ein Vorzug gebühre.

XXXVIII.

Neues (mechanisches) Verfahren zur Wiederbelebung der Knochenkohle in Zuckersfabriken; von G. Gordon in St. Francisco (Californien).

Die Arbeit mit der dem Genannten patentierten Einrichtung bezweckt folgendes:

1) Die Knochenkohle mechanisch und ohne jede Abnutzung durch Reibung, Drosselung oder jede andere Misshandlung ihren Weg von den Filtern, durch die verschiedenen Apparate hindurch und wieder zu den Filtern zurück durchlaufen zu lassen und zwar in regelmäßigen, ununterbrochenen und sehr geringen Mengen zu gleicher Zeit, doch hinreichend, um den täglichen Bedarf gereinigter Kohle zu liefern.

Hierzu wendet der Erfinder eine einzige gemeinschaftliche Bewegungsmaschine an, welche unter Verminderung der Handarbeit eine vollkommene Regelmäßigkeit und namentlich eine Bearbeitung von einer sehr geringen Menge Knochenkohle gestattet.

2) Die Knochenkohle soll ohne Reibung in mehreren heißen Wässern gewässert werden, und zwar erst in schon gebrachten, zuletzt in ganz frischen, so daß Schmutz und verbrauchtes Wasser an einer Seite abfließen und die gereinigte Kohle an der anderen herauskommt, ohne daß die Wässerhöhe bemerklich vermindert würde.

3) Entwässerung der Kohle, durch Ausschleudern, heißen Luft- oder Dampfstrom.

4) Trocknung der Kohle, ohne Reibung, und Fortschaffung zum Ofen.

5) Glühen in solchen Ofen, daß die Kohle weder in einigen Theilen verbrannt, noch in anderen zu langsam geglüht wird.

6) Gleichmäßige Abführung der Kohle durch einen in die Kühlgase umgebenden Wässerstrom; das erwärmte Wasser kann zum Waschen benutzt werden.

7) Benützung der durch das Trocknen entwickelten Dämpfe zum Erwärmen von Kühlgefäßen u. s. w.

(Im Originale sind die nachstehend beschriebenen Apparate in 13 Figuren dargestellt, doch dürfte eine kürzere Beschreibung hinreichen.)

Transport der Knollenkohle. — Der Grindermaschinen bedient sich hierzu horizontaler und geneigter Niemen mit oder ohne Leisten an der Oberfläche. Obwohl dieselben sehr lang sein können, zieht er vor, sie auf Mahnen von 7 bis 8 Meter anzubringen, welche hinten und vorn eine Trommel und in der Mitte Gleitrollen haben. Die eine Trommel wird durch eine endlose Kette von der die ganze Einrichtung betreibenden Maschine in Bewegung gesetzt.

Diese Niemen entleeren sich einer auf den anderen und transportieren, ohne bemerkliche Reibung, die Kohle von den Filtern zu den Waschapparaten, Darren, Oesen, Kühlern und schließlich oben in die Filter. Die ausstreifenden Niemen sind mit eisernen Streifen im spitzen Winkel versehen.

Bei großen Massen Kohlen kann man sich eines Füllkastens von passender Größe bedienen. Dieser wird vor das Mannloch jedes zu entleerenden Filters gestellt und empfängt die herabschlagende Kohle, um sie an die über die seitlichen Trommeln laufenden Niemen regelmäßig abzugeben, welche sie auf die darunter befindlichen Transportriemen fallen lassen. Die Schnelligkeit der Trommelbewegung reguliert die Menge der abgesüßten Kohle.

Auf diese Weise gelangt die erforderliche Menge Kohle regelmäßig und ununterbrochen zu den Wiederverdichtungsvorrichtungen.

Die zweite Art Wäsche bewirkt noch weniger Reibung und wirkt wie eine Siebwäsche. Sie ist mit dem Trockenapparat, der Darre, dem Osen und Kühlern vereinigt. Diese Wäsche besteht aus einem eisernen, durch eine geneigte Band in zwei Abtheilungen geteilten Gefäß; hierin bewegen sich vier ebenfalls geneigte Niemen und drei Schütteltische, letztere nur langsam. Das von den Kühlern kommende Wasser tritt von ein, durchstießt die Wäsche und fließt aus dem Ge-

Entwässerung. — Diese geschieht durch eine Art drehender Nutzie: Ein in Abtheilungen getheilter Cylinder enthält eine hohle Ähse, aus welcher die Luft entleert wird und die jebsmal in Verbindung mit dem gerade gefüllten Segmente steht, so daß während der Umderbung das Wasser der nassen Kohle abgesaugt wird, während die Dossunten der hohlen Ähse, soweit sie den zeitweife nicht gefüllten Abtheilungen entsprechen, geschlossen bleiben.

Auch kann man die Kohle auf einem Siebe entwässern, welches über einen luftleeren Raum gespannt ist; ferner kann man sich eines Siebzyinders bedienen, in welchen man durch eine centrale Kammer Luft einpumpt, oder man kann auch die Kohle ausflieutern, doch ist die oben beschriebene Methode besser als alle diese, da sie rächer ist und weniger Handarbeit benötigt.

Aus dem Entwässerungszyinder fällt die Kohle in einen Trichter mit sechs, den Abtheilungen des Zylinders entsprechenden Riemen. Diese bringen die Kohle in den Trichter, der unten durch eine anliegende, mit Borlrippen versehene Trommel geschlossen ist, welche durch ihre Umderbung die Kohle in die Darre schießt, ohne aus dieser Dampf entweichen zu lassen.

Glühsen. — Diese enthalten verticale Kammern von 18 Milli-
Gordon's Verfahren zur Wiederbelebung der Knochenohre.

meter Weite, oben durch eine gemeinschaftliche Kuppel geschlossen. Die vollkommen trockene Kohle fliesst wie Sand hinab und wird in wenig Minuten glühend.

Das Feuern geschieht gegen die gewöhnliche Methode in umgekehrter Ordnung: das Feuer trifft zunächst die Darre von unten beim Eintritt der Kohle, und dann erst die Glühröhren, so daß die kälteste Kohle die grösste Hitze empfängt; von dem Ofen gehen die Feuergase über die Darre, dann unter die Wäsche hin und bedienen schließlich noch vor dem Eintritt in die Esse einen Luftzuführungspannapparat. Die Feuerung selbst ist eine Art Gasfeuerung, d. h. eine solche mit geschlossenem Rauchschacht und besonderem Verbrennungsraum, in welchen die wie oben ausgedeutet erhiissete Luft durch besondere Röhren eingeleitet wird.

Durch diese Einrichtung des Ofens soll bewirkt werden, daß die kältesten Theile der Kohle die grösste, die glühenden die geringste Hitze erhalten, daß keine Wärme ungenutzt verloren geht und daß der Rauch vollkommen verbraucht wird.

Benutzung des von der Darremann的大，Dampfes.—Dieser geht durch ein Leitungsröhro del Schlange eines Verdampfapparates. Durch die in Folge der Dampf kondensation entstehende Druckemindierung wird das Trocknen beschleunigt, was durch eine zweckmäßig angebrachte Lüftungspumpe noch erhöht werden kann.

Eine andere Art, die bei der ganzen Wiederbelebsarbeit verloren gehende Wärme auszunützen, ist folgende: Die feuchte Kohle wird in einem Kasten oberhalb festrechter und conischer, zum Darren derselben bestimnter Röhren aufgenommen; diese mindern unmittelbar in die Glühröhren, dieselben legiert in die Kühlrohren. Im Innern der Trockenröhren befinden sich nun concentrische, aus vielen umgekehrten Trichtern zusammengesteckte aber sonst geschmiedete Röhren, welche oben in ein gemeinschaftliches Querrohr einmünden, das durch die Maschine in Zusammenhang mit den Entleerungsschiebern der Glühröhren in der Weise
auf und nieder gedrückt wird; daβ, so oft die Schieber sich schließen,
eine Bewegung der inneren Röhren erfolgt und so die Rohle abwärts
fortbewegt wird. Die Trichter nehmen dabei den entwickelten Dampf
auf, wodurch zugleich ein heftiger Zug entsteht.

Eine ähnliche Verrichtung läßt sich an jedem Glühofen anbringen
und durch die ganze Länge der Glühröhren hindurch fortsetzen.

Auch auf diese Weise mit drehenden Retorten ist diese Einrichtung
anzuwenden. Der Erfinder sieht es jedoch vor, diese Cylindere nur zum
Trocknen zu benutzen und die Rohle ohne Berührung mit der Luft nach
den Defen geben zu lassen.

Verhältnis der Rohle mit Säuren. — Erste Art. Diese
besteht in der Behandlung einer bestimmten Menge Rohle, aus welcher
die Luft entfernt worden, mit einem Säurebad von bestimmter Kon-
centrations, welche die Rohle augenblicklich durchdringt. In einen
gegengesetzt, mit den nötigen Rohrleitungen versehenen Behälter füllt
man zuerst die Rohle, pumpt dann die Luft aus und läßt nun die
Säure, deren Menge und Stärke vorher genau berechnet worden, plö-
zig einfließen. Nach gegebener Wirkung läßt man die Säure ab und
wascht wiederholt mit Wasser nach.

Zweite Art. In einem Gefäß von trapezförmigem Querschnitt
wird ein Säurebad zurecht gemacht und dessen Stärke durch Säurezufuhr
stets konstant erhalten. Durch daselbe geht ein durch Siebrotten nach
unten gehaltener Niemen, auf welchem die Rohle durch das Bad geführt
wird; vom Säurebad gelangt sie zu den Wäschen.

Auch kann man einfach die Wäsche mit drei Abteilungen anwenden
und nur die mittlere Abteilung mit Säurewasser speisen.

XXXIX.

Die Schießbaumwolle als Sprengmittel.

Unter der Uberschrift „eine neu entdeckte Eigenschaft der Schieß-
baumwolle“ bringt das am 31. März 1869 zu Berlin erschienene
„Militär-Bohnenblatt“ folgende, eine neue Anwendung dieses interessanten
Präparates ermöglichte Mitteilung:

Bisher hatte man eine Explosion der Schießbaumwolle nur in stark
zusammengebrüctem Zustande für möglich gehalten. Es gehört daher
zu den gewöhnlichen Experimenten bei Vorträgen über die Eigenschaften
der Siebenschlämmwolle, daß man ein Stückchen derselben auf die flache Hand oder auf eine Waagchale legte und dann anzündete. Die Hand wurde nicht verbrannt, die Waagchale kam nicht im mindesten aus ihrem Gleichgewicht, während dieselbe Quantität Siebenschlämmwolle, in eine starke Kapsel hineingelegt und dann angezündet, mit einer Kraft explodierte, welche diejenige des Pulvers sechsfach übertrifft.

Mehrfache Experimente im Laboratorium zu Woolwich 47 haben neuerdings aber gezeigt, daß auch nicht zusammengepreßte Siebenschlämmwolle mit einer Kraft explodierte, welche derjenigen des Nitroglycerins gleichkommt, diejenige des Pulvers aber zehnmal übertrifft, wenn man die Siebenschlämmwolle auf dieselbe Weise wie Nitroglycerin entzündet, d. h. mittels Explosion einer kleinen Quantität Anall-Pulvers, in Folge eines Schlages oder Stoßes. Während nichtzusammengepreßte Siebenschlämmwolle, auf gewöhnliche Weise entzündet, nicht die mindeste Wirkung auf die Unterlage ausübt, vermöge dieselbe Quantität gleichfalls frei, liegend, aber durch Stoß entzündeter Siebenschlämmwolle Granitblöcke zu zerschmettern und dicke eiserne Platten zu zerbrechen.

Durch diese Entdeckung werden Sprengungen aller Art zu friedlichen und kriegerischen Zwecken außerordentlich erleichtert und dürfte die Siebenschlämmwolle hierbei sowohl dem Nitroglycerin, als auch dem Dynamit bei weitem vorzuziehen sein, da bei ihr die gefährliche Operation der Ladung mit diesen beiden leichten Sprengmitteln fortfällt. Aber auch für Torpedo's und im Allgemeinen bei Sprengungen unter Wasser wird diese Entdeckung von beiläufigem Nutzen sein. Es erseint nicht mehr notwendig, die Siebenschlämmwolle zu diesem Zwecke in starke eiserne Kapseln einzufüllen; eine jede leichtere, nur wasserdichte Kapsel wird vollständig genügen.

S t a d e , im April 1869.

D a r a p s k y .

47 Chemical News. vol. XVIII p. 273; December 1868.
Ueber das Verhalten des Ammon's und des kohlenlauren Ammon's zu Guajacpapier; von Arno Greiner.

Ebenso wie diese nämlich dem Guajacpapier (vor seiner Anwendung mit einer äußerst verdünnten kupfernitriollösung befeuchtet) eine blaue Farbung ertheilt, erzeugen auch die genannten Ammoniakase eine solche, und zwar erhält man einen mehr blauen Farbenton, wenn das Neagenspapier den, bei gewöhnlicher Temperatur von concentrirter Aeziammoniaklauge erhaltirten Dämpfe exponirt wird, oder wenn man heisse Dämpfe von kohlenlaurem Ammon nur kurze Zeit darauf einwirken läßt, während bei längerer Einwirkung der letzteren das Papier einen deutlich blaugrünen Ton annimmt. — Blausäure erzeugt nun zwar stets eine rein indigblaue Farbung und nie diese blaugrüne Nuance, dennoch aber scheint es mir gewagt, hierauf eine Unterscheidung der hier in Betracht kommenden Gase basiren zu wollen, da die betreffenden Farbenübergänge unter Umständen kaum auseinander gehalten werden können; höchstens wird man in einem solchen Falle, in dem das Neagenspapier blaugrün wird, berechtigt sein, außer der möglichen Anwesenheit des Cyanwasserstoffes die Sache des kohlensauren Ammon's oder Aeziammon's anzunehmen; man wird aber umgekehrt nie aus dem Auftreten einer selbst rein blauen Farbung auf die Anwesenheit der Blausäure schließen dürfen, denn diese Reaction hat dieselbe unter Umständen mit den beiprochenen Ammondämpfen gemein und sie kann also ebenso gut von letzterer als von ersterer herrühren.

Von beiden gleichzeitig herrührend ist die fragliche Reaction beispielsweise, wenn wir das Guajacpapier der Einwirkung des Tabakrauches ausließen, in welchem Falle wir es mit beiden Gasen zu thun haben. 48 Trotz der positiven Anwesenheit des kohlensauren Amm-

48 Prof. v. Bögel hat den Ammoniakgehalt des Tabakrandes quantitativ bestimmmt; bei 10 Tabaksorten betrug das Ammoniumoxyd der Verbrennungsprodukte auf 100 Gewichtsteilige Tabak von 0,066 bis 1,075. Es ergab sich, daß der Am-
mons erhielt ich hier nie die oben erwähnte blaugrüne Nuance, sondern stets eine rein indigoblue Färbung; ein Beweis für die von mir ausgesprochene Ansicht, daß es in manchen Fällen ganz unmöglich ist, aus dem auftretenden Farbenton auf das eine oder andere der hier berührten Gase zu schließen.

Versuchsbalier ließ ich die genannten Ammoniakämpfe auch auf Guajacpapier wirken, welches nicht mit Kupfervitriollösung, wohl aber mit destilliertem Wasser besprüht worden war. Hierbei nahm das Papier eine zeigegrüne Färbung an, welche bei nachträglichem Benetzen mit Kupfervitriollösung sofort in eine blau, resp. blaugrüne überging.

Yanwasstoffe ist sich dem unbekannten Guajacpapier gegenüber bekanntlich ganz indifferent; er wird, wie es scheint, einfach in der feuchten Papierfaser kondensiert; ein späteres Benetzen mit Kupfervitriollösung genügt jedoch auch hier, um die Reaction hervorzurufen.

Miscellen.

Über die Widerstände der Eisenbahnzüge.

Für seine Arbeit für Eisenbahnzüge in Berlin referierte Dr. Riedlich über den Inhalt einer in den Mémoires de la Société des Ingénieurs civils veröffentlichten Presse der IHM. Briquet in, Onébhard und Dieudonné, betreffend die Bestimmung der Widerstände der Eisenbahnzüge. Diese ist auf ausgesuchten Ver suchen, welche auf der französischen DBahn angethan worden sind, zu ermitteln der Widerstände der einzelnen Wagen sind drei Versuchsweisen angewendet, indem man die Wagen nach Einhaltung einer bestimmten Geschwindigkeit selbst überschneidet und entweder nur den bis zum Stillstand zurückgelegten Gesamtstrecken und die darauf verwendete Zeit, oder die für einzelne Zeitabschnitte zurückgelegten Wege verzeichnet. Die dritte Versuchsweise, welche außerdem ausschließlich auf ganze Züge ausgeführt wurde, maß den Widerstand durch einen in einem besonderen, besonders folgenden Wagen befindlichen dynamometrischen Apparat, welcher die erforderliche Zugkraft selbständig und in Verbindung mit Zeit und zurückgelegtem Weg notierte. Unter anderen werden folgende Widerstände als hierbei ermittelt möglichst:

A. d. Red.
Geschwindigkeit in Kilojoulen in Kilogrammen
per Stunde per Tonne
zweispitzige bedeckte Güterwagen (Deichsmüre) 1 bis 5 2,0 Methode 1
25 7,6 2,0 Methode 2
25 4,5 Methode 3
Güterzüge (günstige Verhältnisse) 25 9,1 Methode 11
25 3,6 Methode 12
(ungünstige Verhältnisse, Eis, Wind, etc.) 25 bis 6,3
Personenzüge, gewöhnliche Umstände 45 6,0
" (lange Züge) 60 8,4
" (kürzeste Züge) 39 6,5
Sanftes Anziehen der Güterzüge 46 7,2
Sanftes Anziehen der Güterzüge 76 14,6
" (zügige Züge) 0 13 (bei langen Zügen bis 6)
Personenzüge 0 22

Es wird zuerst in der Frischschrift der Einfluß des Schnitthüllens, der Zuglänge, der Kurven, der Geschwindigkeit der Züge, des Windes spezifisch besprochen und durch Versuche nachgewiesen. Etwas tiefer ist in der Abhandlung unter Zugrundlegung der Form der

\[
r = \frac{27,9 + 0,0094 v - \frac{0,0048 v^2}{P}}{P}
\]

für den
Biberstand der Züge, Formeln für diesen Biberstand und zwar nach wachsender Ge-

schwindigkeit entwickelt angestellt:

a) Güterzüge bis 32 Kilometer Geschwindigkeit (horizontale Strecke, flache Kurven, schnelles Wetter, Temperatur = 150 C.),
1 für Deichsmüre \(r = 1,65 + 0,05 v \),
2 für Jettenschmier \(r = 2,80 + 0,05 v \).

b) Züge von 32 bis 50 Kilometer (Umstände wie vor)
\[
r = 1,80 + 0,08 v + \frac{0,009 S v^2}{P}
\]

c) Züge von 50 bis 65 Kilometer (Umstände wie vor)
\[
r = 1,80 + 0,08 v + \frac{0,006 S v^2}{P}
\]
d) Züge von 70 Kilometer (Umstände wie vor)
\[
r = 1,80 + 0,08 v + \frac{0,0048 v^2}{P}
\]

(Deutsche Bauzeitung, 1893, Nr. 5.)

Rohrenverbindungen für Wasserd- und Gasleitungen.

In England werden jetzt die gusseisernen Rohre für Wasserverlegungen vielfach ohne weitere Verbindung auf die Weise mit einander verbunden, daß sie im Innern der Elmaue eine kurze, etwas conische Fläche (1:40) genau ausgezogen und die zweite Rohre an ihrem Ende mit einer entsprechend abgedrehten Fläche verleimen, die nur einen Anstrich mit Wachs erhält. Diese Verbindung wird z. B. bei den Rohren von 36 Zoll Durchmesser der Liverpooler Wasserleitung ausfertig und mit dem besten Erfolg angewendet; ebenso liegen in Liverpool circa 80 geographische Meilen Gasrohren mit dieser Verbindung und der Gasverlust ist weit geringer als in anderen Städten. (Berggeist, 1893, Nr. 27.)

Neue Erfindung in der Weberei.

Einen vollständigen Umschlag in der Weberei, schreibt die „Elserfelder Zeitung“, lässt ein Verfahren, den Schußfaden in der Richtung eines Zirfelbogens die Reife
durchlaufen zu lassen, erwartete, weil es gestattet, eine Mannigfaltigkeit der Wässer nach Beschreibung und Farbe zu erzielen, wie dies bislang außer den Bereichen der Möglichkeit lag. Bei der bis jetzt gewöhnlichen Art zu wenden, die Stoffe in PNG gesenkt von welcher Art sie wollen, durchsteht der Schuss die Nette gerade, so daß beide unter einem rechten Winkel mit einander vereinigt werden. Diese neue, bereits patenterte, von Fabrikanz S. W. im Großherzogtum Luxemburg errundete Art zu wenden, eignet sich für alle Stoffe, für glatte wie für genähte, für leichte, baumwollene, wollene, seidene, halbseidene, etc., und kann eben so auf dem Handwebstuhl wie auf dem mechanischen Stühle ausgeführt werden, ohne daß die Ware an Qualität geringer wird, als die mit geraden Faden gewebt.

Die Walzenpresse zur Saftgewinnung aus Runkelrüben, von Poizot und Druelle.

Folgendes sind die wesentlichsten Schlußfolgerungen des auf Grund dieser Versuche aufgestellten Gutachtens:

5. Die Arbeit mit dieser neuen Presse ist eine vollkommen regelmäßige und von dem Arbeiter unabhängig.
6. In 24 Stunden verarbeitet die Presse bei einer Preßbreite von 1 Meter 40,000 Kilogramm Ruben.
7. Die Beaufschichtung ist leicht; ein Arbeiter reicht für zwei Pressen aus.
8. Die erste Pressung kann leicht ohne Wasserguss zum Brei gegeben.
9. Da der Saft fast angenähert ausgespreizt wird, so bleibt er weniger durch Berührung mit der Luft.
10. Die Ausgabe für Lüfter beträgt weniger als bei hydraulischen Pressen.
11. Der Preisraum ist leicht ganz rein zu halten. (Journal des fabricans de sucre, Jahrg. IX, Nr. 50.)

Über den unterirdischen Transport des Rubenhaustes zur Zuckersfabrikation.

Das System der zu einer Hauptfabrik gehörenden Neben Pressereien mit unterirdischer Saftleitung 49 gewinnen in Frankreich mehr und mehr an Ausdehnung. Nach den betreffenden Mitteilungen im Journal des fabricans de sucre hat sich dieses System sogar auf bestehende Fabriken ausgedehnt, welche ihren Pressraum ebenfalls an die Hauptfabrik abtischen.

Eine solche ist in Rivuy-le-Marcel errichtet und besitzt eine Saftleitung von 20 Kilometern, mit drei oder vier Nebenpressereien und einer Zuleitung nach der Zuckerfabrik Consecnet. Diese liefert nach einem auf längere Zeit abgeschlossenen Vertrag ihr gesammtes Saftsquantum zu 26 Kanonen die 1000 Liter bei einer Schwere von 49 Baumes, oder zu einem im Verhältnis mit dieser Schwere stehenden Preise, so daß also

jeder Grad Baunné in 1000 Liter mit 6,5 Franken bezahlt wird. Dem Berkaüfer bleibt jede Freiheit hinsichtlich der Dauer der Arbeit, der Art der Preßung u. s. w. belassen.

Über die Bestimmung des Eisens im Roheisen; von T. Meine

Haltbares Dicht- und Kittmittel für Eisen und Stein.

Die Fabrication der Kohlenziegel in Frankreich.

bigerirt etwa 10 Gramme der Kohlenziegel mit Schwefelsäurenstoff und bestimmt die Menge des aufgelösten Theeres oder Peches aus dem Gewichtsverlust oder durch Ber-
dunsten der Lösung. Der gefundenen Zahl legt man die dem angewandten Pech zu-
kommenden unlöslichen Theile dann zu, was die ganze Menge deselben ergibt.

Hat der Fabriquant ein fremdes Fabricat zu untersuchen, so kann er die Natur
des angewandten Peches oder Theeres bestimmen. Der Rückstand von der Verbrennung
des Auszuges mit Schwefelsäurenstoff wird auf 2000 C, erhitzt, Theer vertilt dabei
8,16 Proc. leichtflüssige Dele. Dann erhitzt man auf 3000. Das seite Pech vertilt
dabei 16,66 Proc. schwer flüssige Dele und das trockene nichts. Daraus lassen sich
die angewendeten Mengen der verschiedenen Arten Pech und Theer finden, wozu der
Verfasser die Rechnungsmethode mittheilt. Es kann aber deshalb auf die Original-Abhand-
lung um so eher verwiesen werden, da man Theer jetzt nur selten noch gebraucht wegen
des starken Rauches, welchen er gibt und von dem Pech meist das trockene (braun
deo) verwendet. Etw. (Mitteilungen des hannoverschen Gewerbevereines, 1869
5. 50.)

Verfahren zur Gewinnung des Jods und Broms aus dem Kelp, von
Laurop.

Nach diesem (in England patentirten) Verfahren wird die Lösung des Kelp durch
Abdampfen von den weniger lösslichen Salzen bereitet und bis zur Dickthätigkeit von 45
bis 55° Baumé concentrirt. Man fügt sie dann mit Salpürre und trennt den
dabei abgeschiedenen Schwefel von der Flüssigkeit. Diese wird darauf mit den jas-
perigen Gassen behandelt, welche bei der Einwirkung von Salpeteräure auf organische
Stoffe (wie bei der Vereinigung von Naphtha, Pfeninäure usw.) sich entwicken. Wenn
diese Gase hauptsächlich aus Sulfatinföllenz bestehen, wird ihnen Luft beigemischt. Man
lässt die Gase entweder in Schwefelsäure auf und verleigt die Flüssigkeit mit dieser
Lösung, oder man leitet, wenn die Flüssigkeit hierdurch Alkalii enthält (?), die Gase
direkt in bietelbe, so lange sie absorbiert werden, und fügt nachher eine Säure hinzuzu,
um das Jod wiederzuschlagen. Das Jod wird vollständig gefällt, das Brom dagegen
nicht frei gemacht. Nachdem das Jod von der Flüssigkeit abgeschieden ist, gewinnt
man das Brom aus bereitem auf die gewöhnliche Art. (Chemical News, vol. XIX
p. 44.)

Verbeffertes Verfahren zur Fabrication des Nitroglycerin;
von G. M.
Nowbray.

Einem stürmisch in einer Versammlung des American Institute gehaltenen Ber-
trage des Dr. D. Parmele e entnehme ich den nachstehenden Bericht über das auf
den Hoosac Tunnel Works befugte Verfahren zur fabrismässigen Darstellung von
Nitroglycerin:

Das Nitroglycerin wird in den zu diesem Zwecke in der Nasse des Schächtes an-
gelegten Laboratorium unter der Leitung des Ehr. G. M. Nowbray dargestellt,
welcher mehrere wertvolle Verbeffermungen in der Fabrication dieses Präparates einge-
führt hat. Häufig wird hier ein Quantum von 150 Fils täglich produziert. Der erste
Gegenstand, welcher den Besucher des Stablistaments in den Augen sättt, ist ein langer,
einer Pfeile ähnlicher, etwa drei Fuss über dem Boden stehender Trog, welcher
etwa 50 Fuss lang und mit einem Gemenge von Eis und etwas Kochsalz gefüllt ist.
In diesem Behälter stehen, etwa zwei Fuss von einander entfernt, Fläschchen von
Steingut, deren jede einen Galten Inhalt hat, und deren Mündungen zwei bis drei
Fuss aus dem Eis hervorstehen. Diese Fläschchen enthalten das Gemisch von Salpeter-
säure und Schwefelsäure. Grabe über ihnen, zwei Fuss höher, stehen in einem Holz
gefäße, deren jede ein Quart Glycerin enthält. Letztere tröpfelt in das Säuregemisch hinab; das entstandene Nitroglycerin flutet in den Fläschen zu Boden.
Nowbray benutzt zum Umführen des Säuregemisches kalte Luft; zu
diesem Zwecke leitet er den durch teilweise Expansion comprimierter Luft erzeugten kalten Luftstrom mittels eiserner Röhren in das Laboratorium; über jeder Flasche ist ein Hahn angebracht, an welchem ein an seinem unteren Ende mit einem Glasrohr verbundenen Kautschukschlauch befestigt ist. Während die Reaction in den Flaschen vor sich geht, reichliche Salpetriglaserdämpfe sich entwickeln und die Temperatur erhöhen, welche fortwährend niedergedrückt werden muss, stattfindet, bewegen die Arbeiter das Glasrohr in dem flüssigen Gemisch hin und her und seit in dieser Weise einen kalten Luftstrom in derselbe, durch welchen es in Bewegung gebracht und zugleich fälschlich erhalten wird; mit den Entweichen der eingepreßten Luft werden auch die Glaserdämpfe verlagert, deren möglichst beseitigung nach ihrer Entleerung so sehr wünschenswert ist.

In der Zeit, wo der Berichtsfahrer dieses Magazin besuchte, waren in demselben mehrere taufend Pfund Nitroglycerin in Flaschen von je drei bis fünf Gallons Inhalt voran, welche auf Gestellen standen.

Wmöhr y stellt seine Salpetrigläser in einem in der Nähe befindlichen Raume selbst dar; ebenso concentrirt er die zu verwendende Schwerspatfüße. Alle Materialien sind unter die vorzüglichen Materialien, sowie auf das sorgsames Umschaffen und auf die Vereinigung des Salpetrigläsergases durch den kalten Luftstrom vermehrten großen Erfolg zuschreiben, dass er sein Nitroglycerin in solcher Quantität und von solcher Qualität gewinnt, wie es in der That der Fall ist. Aus zwei und vierzig Pfund Glyzerin erhält er vierundzwanzig Pfund Nitroglycerin, welches bei der Temperatur von 90 °C. und darüber vollkommen klar und farblos ist. Etwas unterhalb dieser Temperatur gefriert es und gleich dann gepulvert wird.

Die Arbeiter, welche die in Folge des Ereignisses im Tunnel entwickelten Nitroglycerindämpfe einatmen mussten, äuserten sich gegen den Berichtsfahrer dahin, dass sie von den letzten nur wenig belästigt worden, während früher, bei Benutzung des importirten Praparates, welches stärker oder schwächer gelb und braun gefärbt war, von heftigem Kopfweh geplagt gewesen seien.

Wmöhr y und der Zeichner Brown haben in ihrer geöfneten Praparate abgeführt, bei denen man mit der flüssigen Substanz gefüllt wurden, vorwab man letzteren füllte sie. Auf den Inhalt einer dieser Häuser wurde eine Schieß- baumwolle, auf einen der zweiten Schnurgeschliteral, auf den einer dritten Schießschnur gelegt. Dann wurden die letzteren gewoben mit elektrischen Bündeln in Verbindung gebracht, die Zinnröhrchen zwischen schwere Eisbleche gestellt und hierauf die Ladungen angebracht. Das gescreene Nitroglycerin wird aus allen drei Röhren in Form von Kegels in das Eis hineingestrichen; eine Explosion fand durchaus nicht statt.

Wmöhr y schliesst aus den Resultaten dieser und noch anderer Versuche, dass das Nitroglycerin (wie schon vermeldet hat) in gescreemem Zustande sich ohne alle Gefahr transportiren läst. (Engineering vom 28. October 1868, S. 376.)
Ein Versuch mit dem Nobelschen Sprengpulver „Dynamit“

So großartig die Erfolge des Nitroglycerins auch sind, so haben mannigfaltige Unglücksfälle mit diesem Stoff dennoch eine gewisse nicht ganz ungerechtfertigte Scheu vor seiner Anwendung bewirkt.

Es gibt zwar Länder, in denen seit Jahren mit Nitroglycerin geschoßen wird (wie z. B. in Bayern), ohne daß ein Unglück ereignet hätte, und es ist auch in dem wichtigstes Werkstoff nicht gut möglich, allein man kennt die Zähigkeit der Arbeiter zu gut, die, sobald sie mit einer gefährlichen Arbeit vertraut sind, jedes Vorsichtsverhältnis und dadurch oft Beruhigung zu den durchsichtigen Unglücksfällen geben. Eine gewisse Zäheistigkeit hat jedoch das Nitroglycerin mit allernütziger Verwendung gemein und dieses bietet in zweifacher Beziehung gefährliche Momente, indem durch die sauren Sprengungsmittel aus den Sprengstoffen die Nitrogeflügel entstehen und aus Selbstzündung und durch Zufälligkeiten entzündet werden können, und auch andererseits eine mit Explosion verbundene Selbstzündung ganz gut möglich ist. Zuerst sollte Sprengöl das, das sich zu zerlegen beginnt, was durch Ausstoßen von der Dümpfel sich ernsthaft macht, gleichwegs unsicher werden.

Es darf deshalb nicht Wunder nehmen, daß in Beleuchtung dieser nicht zu läugnenden gefährlichen Eigenschaften die Einführung der Transport und der Transport des Sprengroßes in mehreren Staaten und auch in Deutschlands verbunden wurde, nur kam damit ein ganz unübliches Preissatz, „der Dynamit”, welches auch in seine Verwendung miteinbezogen wurde, ungerechterweise zu Schaden.

Auch dort hatte man anfangs große Sorge vor Unfällen und seine Transportunternehmung wollte das neue Sprengmittel weiter bestreiten, bis vor einer eigens zu diesem Zwecke eingeführten Besprechung sämtlicher Bittertender der dortigen Transportcompagnien durch vielfältige Experimente nachgewiesen war, daß ein Explosiv beim Transport nicht zu befürchten war, worauf der Dynamit auf allen Bahnen, Dampfschiffen und Zollpfosten und Zollmauern aufgegeben wurde.

Ein Fälschen mit Dynamit-Patronen gesucht, wurde von einer Bande des dortigen Steinbruches eines 15er bestehend heruntergelassen. Obwohl es zu wiederholten Male auf den Zellen aufschlug, sandt doch keinerlei Explosion statt. Ebenso wenig explodierten 2 Patronen, welche man an der unteren Fläche eines schwarzen Steinmetzels befestigt hatte und von einer Höhe von 3 Meter auf eine Steinunterlage fallen ließ. Die aufgefundenen Patronenreste waren ganz glatt gequetscht und sonst der Dynamit...
ganz unverändert. Hierauf wurden die als Stichproben aus dem Säcken genommenen Patronen untersucht. Man schnitt jede in zwei Teile, einen ließ man mittels Jährlindauer und Kapsel explodiren, während der andere Theil angesetzten sich mit Zündlade abbrannte. Auf einem Eisenbahnwagen über Feuer erhitzt, verdampfte das darin enthaltene Nitroglycerin ohne Explosion, ebenso wenig konnte man eine in das Feuer geworfene mit Dynamit gefüllte Blechbüchse zur Explosion bringen und das Anfangs erwähnte Säcken in’s Feuer gelegt, brannte ganz ruhig ab. Um zu zeigen, dass sich der Dynamit nur durch die härtesten Kapseln entzünden lasse, wurde eine damit gefüllte Blechbüchse mit einer Jährlindauer angesetzt, jedoch verjagte er total.

Nachdem durch diese Experimente die Ungefährlichkeit des Dynamits hingehaltenerweise dargebracht war, begann der zweite Theil der Versuche, die die mächtigen Wirkungen dieses neuen Sprengmateriales zeigen sollte.

Auf eine 2 Zoll dicke Bohle von Abornholz wurde eine Patrone gelegt und selbe entzündet. Sie schlug mit heftigem Knalle ein großes Loch durch.

Hieraus licht man aus einer 8 Millimeter dicken Eisenplatte 1/4 Pfd. Dynamit explodiren; die Platte wurde durchschlagen und zerriessen, ein beträchtliches runder Stück herausgerissen und weit weggeschleudert. Die riesige Wucht des Dynamits wurde aber durch folgendes Experiment in’s hellste Licht gestellt.

Apparat zur Entfernung des Naphtalins aus Gasröhren-Leitungen, von Prof. Pury.

Dieser Apparat besteht aus einer Pumpe (Saug- und Druckpumpe), einem Reservoir von 4 Litern Inhalt, in welchem die Luft bis auf 7 Atmosphären comprimirt werden kann, und einem Ventil, welches gestattet, daß man die comprimirte Luft beliebige Momente unter dem vollen Druck in das von Naphtalin zu reinigende Rohr einfassen kann. Er wird von der Société Génoise pour la construction d’d Instruments de physique in Genf, Plainpalais Chemin Gourgas No. 107, angefertigt und kostet 1000 Genf 165 Francs. (Deutsche Industrie-Zeitung 1869, Nr. 2.}
Roch ein Wort über die Preisausgangsrechnung der Mansfeldschen Gewerkschaft.

Ich hoffe, daß mein Gegner in diesen meinen Zeilen seine neue Erleuchtung und seine weitere Gelegenheit zu nicht furchtbar gewährten Ausbrüden finden wird. Was mich betrifft, so ist dies mein letztes Wort in dieser Angelegenheit.

F. Schwarz.

Berichtigungen.

Auf der Figurentafel dieses Heftes, Tab. III, fehlt in Fig. 11 (King's Dynamometer) bei S der in Fig. 9 vergrößert gezeichnete Apparat; ferner ist in dieser Figur statt A der Buchstabe T zu setzen.

In dem im vorhergehenden Heft enthaltenen Ausblase „über ein gleichförmiges Druckmaß“ hat der auf Seite 29 stehende untere Absatz zu lauten: „Droht Nr. 15 alt entspricht sas. genau Nr. 13, wie dies aus dem Holzschritte auf Seite 30 zu entnehmen ist.“ — Auf Seite 32 und 33 sind die nebene z. S. befindenden Ausbrüche $\frac{n^2 - 5n + 3}{2}$ und $\frac{n^2 - 3n}{2} + 1$ als Exponenten von z zu betrachten, wie dies aus der Herleitung folgt.

Buchdruckerei der J. G. Cotta'schen Buchhandlung in Augsburg.
XLI.

Direkt wirkende Dampfpumpe von W. Tijou, Civilingenieur in London.

Mit Abbildungen auf Tab. IV.

Die in Fig. 15—19 in 1/4 wirklicher Größe dargestellte direkt wirkende Dampfpumpe zeichnet sich durch die von dem Erfinder an ihr angebrachte Steuerung aus, durch deren Anwendung die Construction wesentlich vereinfacht wird.

Fig. 15 ist der Längsschnitt durch die Achse des Dampf- und des Pumpencylinders;

Fig. 16 der Grundriß;

Fig. 17 ein Querschnitt durch den Dampfkanal;

Fig. 18 ein Querschnitt durch den Auströmnungskanal; endlich

Fig. 19 ein durch die Mitte des Steuerungsmechanismus gehender Querschnitt.

Die Fundamentplatte, der Dampfzylinder mit dem Schieberkasten und der Pumpencylinder sind aus einem Guße hergestellt. In dem Dampfzylinder B sind wie gewöhnlich die Dampfkanäle a, a und der Auströmnungs kanal b eingegossen; während dem Gange der Maschine oszillirt der hohe Schieber E um einen bestimmten Winkel und bringt hierdurch abwechselnd die Auströmnungsrammer b' und den Dampfzuleitungskanal c mit den genannten Dampfkanälen a, a in Verbindung.

Bei der in den Figuren angezeigten Stellung der Maschine tritt der Dampf durch das Dampfzuleitungsröhr G nach c und den links liegenden Canal a unter den Kolben, während der Dampf über demselben durch den rechten Canal a nach b' zum Dampfableitungsröhr gelangt; dreht sich in Folge der Umstellung des Schiebers, so tritt eine umgekehrte Verbindung ein, es treten andere Öffnungen oder Kanäle des Schiebers vor die Mündungen a, a.

Diese oszillirende Bewegung des Schiebers E ergiebt Tijou auf eine einfache und zweckentsprechende Weise dadurch, daß er an der Schieberstange I einen Führungsrahmen K mit einer in sich zurücklaufenden
Nuth h anbringt, in welche ein an der Kolbenstange D sitzer und durch die Leitstange O eine sichere Führung findender Arm N eingreift; dieser trägt am unteren Ende die in die Führungsrinne eingreifende Frictionssrolle M.

Seht der Kolben die in der Figur angezeigte Bewegung von links nach rechts fort, so wird der Rahmen K und die mit diesem fire Schieberstange resp. der Schieber E im letzten Viertel der Bewegung gedreht, während in den drei ersten Vierteln keine Drehung derselben stattfindet. Dann erhält die Dampf-Zuleitung und Ableitung zum Kolben die entgegengesetzte Richtung und der Kolben bewegt sich zurück; der Rahmen K resp. der Schieber E wird wieder in die erste Lage gebracht.

Um einen sanften, ruhigen Gang der Steuerung zu erzielen, ist die Nabe der Frictionssrolle M aus einem elastischen Material wie Pochholz oder gepresstem Leber hergestellt, während die Führungsnut h und das Mittelstück L des Rahmens K mit demselben Material oder auch mit hartem Kautschuk ausgelegt sind.

In Folge neuerer Versuche gibt Tison der Führungsrinne h eine mehr elliptische Form, als sie die vorliegende Figur zeigt; er erzielt hierdurch nicht nur einen ruhigeren Gang des Schiebers, sondern erheilt demselben auch die nützige Voreilung.

Zur Abstellung der Maschine dient das in Fig. 15 unter dem Pumpenzyllinder gezeigte gebrachte Handräudchen.

Die Hauptdimensionen der Maschine sind:

Durchmesser des Pumpenzyllinders... 1 1/2 Zoll engl.

Pumpenzyllinders... 1 1/2 Zoll engl.

Die Hubhöhe ist... 5 1/2 Zoll engl.

Die Dampfspannung beträgt etwa 55 engl. Pf.

Die Pumpe liefert bei 300 Zügen pro Minute circa 300 Gallons Wasser pro Stunde.
der üblichen Anordnungen leicht beschädigen, dürfte diese Pumpe mit Borteil Verwendung finden.

In dem äußeren weiteren, zugeferterten Mantel A, Figur 5 und 6, liegt der Pumpenylinder B, an beiden Seiten offen. Zwischen diesem und dem Mantel A ist soviel Raum, daß sich die mitgerissenen fremden Beifantheile leicht ablageren und zeitweilig durch eine sonst verschlossene Öffnung entfernt werden können.

An den Cylinder A schließen sich die beiden Wasserkästen D und D, an, welche durch eine S-förmige Ventilkammer I gescheidet sind. Diese Kammer I wird durch eine horizontale Wand in zwei Abteilungen getheilt. Die obere communicirt mit der Saugröhre F; die untere dagegen mit dem punktet angedeuteten Steigrohr G. Beide Abtheilungen sind mit je zwei Klappen versehen; die oberen C und C, öffnen sich nach Außen, die unteren d und d', nach Innen.

Neben dieser Kammer I liegt der Recipient E, welcher durch Canäle mit den Räummern D und D in Verbindung steht, welche jedoch durch die Ventile a und a', unterbrochen werden. E bezeichnet den auch sonst üblichen Windscheel.

Bewegt sich nun der Kolben C im angezeigten Sinne, so tritt in Folge des äußeren Druckes die zu hebende Flüssigkeit durch das Saugrohr F, die sich hebende Klappe c, nach D, und füllt den Raum hinter dem Kolben aus. Etwa mitgerissene Luft tritt durch das Ventil a in den Luftrecipient E und von da in's Freie. Sollte hierbei etwas Flüssigkeit nach E gelangen, so wird sie hier angehämmert und zeitweilig durch einen am Boden befindlichen Hahn abgezogen, wenn man es nicht vorzieht, sie continuirlich abzuschneiden zu lassen.

Während dem preßt der Kolben C das vor derselben befindliche Wasser durch die Klappe d nach dem Steigrohr G, indes die Communication von D und E durch das Ventil a unterbrochen ist. Im entgegengesetzten Sinne der Bewegung öffnet sich die Klappe c', durch welche neue Flüssigkeit eintritt, während durch die Klappe d, entsprechend Wasser abgelassen wird. Der Recipient E wird somit nur angebracht, wenn Flüssigkeiten von Werth gepumpt werden, um hierbei jeden Verlust zu vermeiden.

Die Anordnung ist recht compendiös; die Klappen sind leicht zugänglich, indem zu diesem Behufe die in Fig. 5 ersichtliche angebrachte Deckplatte abzusehen ist. Die Klappen sind ferner der Abnutzung wenig unterworfen, da die schwereren Beimengungen, wie gesagt, am Boden des Gehäuses A niedergelassen und leicht entfernt werden.
XLIII.

Nach dem American Journal of mining, Februar 1869, S. 81.

Mit Abbildungen auf Tab. IV.

Die in Figur 3 und 4 in einer perspektivischen Ansicht und einem Durchschnitt dargestellte Druckpumpe von Fryer zeichnet sich durch eine möglichst vollkommene Dichtung der Ventile und des Kolbens, sowie noch dadurch aus, daß eine Erhizung des Pumpencylinders und der Ventile, welche die Dichtung beeinträchtigt, durch Einhaltung einer Flüssigkeitsmasse vermieden wird.

B bezeichnet den beiderseits offenen, horizontal liegenden Pumpencylinder, in welchem der Kolben C auf geeignete Weise hin- und herbewegt wird. Der Cyl. B ist von dem Mantel A eingeschlossen und in Verbindung mit den beiden aufrechtsstehenden, nach oben conisch zulaufenden Kammern F und F₁, von deßen aus dem Durchschnitt (Fig. 4) ersichtlich wird. Die Ventile E und E₁ vermitteln aber unterbrechung, je nach der Stellung, die Verbindung dieser Räume mit dem Rohr T, durch welches atmosphärische Luft, überhaupt das zu comprimirende Gas zugeleitet wird.

In der Verbindungsstelle der Kammern F und F₁ mit jenen K und K₁ befinden sich die Ventile G und G₁. Von K und K₁ führen die Canäle H und H₁ zu dem Recipienten I, von wo die geprefte Luftart abgeleitet wird. Es communizirt ferner I durch die Röhre M mit einem von Außen gestellten Regulator N. In dem Gefässe K oscilirt der Kreisflieber N und stellt dieser einmal — wie in Fig. 4 — die Verb. von I mit der rechtsseitigen Kammer F, das andernmal in entgegengesetzter Weise, also mit der Kammer F₁ her.

Die Wirkung ist nun folgende:

Geht der Kolben C in der Richtung des Pfeiles, so wird die Flüssigkeit vor demselben in die Kammer F₁ gedrückt, die darin befindliche Luft comprimirt, endlich das Ventil G geöffnet und die comprimirte Luft vollkommen aus der Kammer F₁ getrieben, da die Flüssigkeit dieselbe mehr als ausfällt, so daß etwas derselben über G₁ durch H₁ nach I gelangt. Während dieser Zeit füllt sich die zweite Kammer F, in welcher der Flüssigkeitsspiegel bis nahe der Pumpencylinderflächen füllt, mit Luft, welche von T durch das Ventil E unter dem äußeren Atmosphären-
druck eintritt.
Hat der Kolben nahezu das Ende des Hubes erreicht, so wird durch den in Figur 3 angezeigten Hebemechanismus f, g, h, i und m der Kreisscheiber N in die Stellung der Fig. 4 gebracht. In Folge des im Recipienten I herrschenden Überdruckes wird die Flüssigkeit aus demselben in den Canal b, b drücken und die Kugel c gegen die Öffnung o bewegen. Dadurch wird aber die in b, e enthaltene Flüssigkeitsmenge in den Raum P resp. in die Kammer F gelangen, in welcher nur Atmosphärendruck herrscht. Auf diese Weise wird stets ein geringer Wasserüberschuß in der Kammer erzielt, in welcher die Kompression der Luft erfolgen soll und damit stets eine Wasserabsicht der Ventile, wie dies deutlich bei G zu sehen ist, erzielt.

Nahm an dem Hubende steht der Anschlag m an i, wodurch der Regulator N in die entgegengesetzte Stellung gerückt wird, d. h. es wird nun eine gewisse Flüssigkeitsmenge in die leere Kammer F gepreßt, indem die Kugel c, welche somit als Ventil und Kolben wirkt, von o nach a in der Bohrung b, b, bewegt wird.

Diese Druckpumpe kann zu verschiedenen Zwecken dienen, bei Bergwerk- und Tunnelarbeiten, zur Ventilation bei submarinen Arbeiten, bei Gasanstalt, in Braubäckereien mit Luftheizung, für metallurgische Zwecke etc.

Ebenso kann diese Pumpe mit entsprechender Modification der Ventile und des Regulators als Luftpumpe zur Erzeugung eines Vakuums, also in Zucker- und Dextrifinierer, Milchensied- und Etablissements, bei Dampfmaschinen etc. dienen.51

Um ein Beispiel hervorzuheben, so wird jetzt eine derartige große Pumpe für die New Oxygen Gas Works in New-York gebaut für einen zu erzielenden Druck von 300 bis 500 Pfund pro Quadratzoll.

Jedemal wird durch die Einführung einer Flüssigkeit (Wasser oder vergleichbar) eine schädliche Erhitzung der arbeitenden Theile, welche um

51 Diese Pumpen können von Messrs. Fryer Brothers and Comp., Nos 8 and 10 Wall street, Room 43, New-York City, bezogen werden.
so größer ist, je stärker die Luft Art comprimirt wird; die hierbei freiwerdende Wärme geht an die Flüssigkeit, welche nebenbei eine höhere Dichtigkeit befördert.

J. B.

XLIV.

Ueber einige neure Versuche mit Feuerspritzen; von Professor Rühlmann.

Aus den Mittheilungen des hannoverschen Gewerbevereines, 1869 S. 32.

Mit Abtheilungen auf Tab. IV.

Damals hat ich am Schlusse meines Berichtes dringend, auch anderswärts mit gut konstruierten und sorgfältig ausgesuchten Spritzern weitere Versuche anzulegen, um meine Beobachtungen widerlegen oder bestätigen zu können.

Erst im vorigen Jahre (1868) wurde mir die Freude, einen Brief aus Riga von Hrn. Professor C. Vossis daehals zu empfangen, worinn u. a. Folgendes mitgetheilt wird:

"Der technische Verein (in Riga) hat sich schon seit zwei Jahren in besonderer Veranlassung mit der Prüfung von Feuerspritzen beschäftigt und bei einigen das Verhältnis der wirklichen Wassermenge zur theoreti schen ebenfalls größer als Eins gefunden, eben so wie es Ihnen bei der Spritze von Tidow und Wellhausen ergangen ist.

Von 19 überhaupt geprüften Spritzen gaben sieben im Mittel aus unseren Versuchen folgende Wirungsgrade:
1 Spritze von Mey in Heidelberg 1,03 (einsmal sogar 1,20);
6 Spritzen von Andreée in Riga resp. 1,03; 1,03; 1,09; 1,16; 1,19 und 1,19.

Die Erklärung dieser Thatsache wurde in unserem Vereine ebenso gegeben, wie sie von Ihnen ausgeprochen ist, nämlich, daß die lebendige
Kraft der angezogenen Wassermasse das Saugventil länger offen hält, als es die Bewegung des Kolbens durch sich bringt, und das in Folge dessen bei einem Kolbenhub mehr Wasser gefördert wird, als das geometrische Volumen des Stiefels zu fassen im Stande ist.

Wir freuen uns, Ihre Beobachtung bestätigen zu können, und machen Sie darauf aufmerksam, daß ein genauer Bericht über sämtliche von uns ausgeführten Sprühenprüfungen in unserem Notizblatte abgedruckt werden wird.52

Eine zweite Bestätigung haben meine Beobachtungen bei den höchst umfänglichen und mit aller nur erdenklichen Sorgfalt gemachten Versuchen gefunden, welche in Braunischweig bei Gelegenheit der 7ten Versammlung des Vereines deutscher Feuerwehrleute vom 7., 8. und 9. September 1868 angeschlossen wurden und wobei unter 27 Handfeuerpuppen (aller zwei Dampfpuppen) stellte das Verhältnis der wirklichen Wassermenge zur theoretischen ergaben zu: 1,056; 1,036; 1,040; 1,093; 1,017; 1,011; 1,091.58

Bei neun anderen Sprühen stellte sich das Verhältnis im Minimum zu 0,908 und im Maximum zu 0,987 heraus, was man überhaupt den Schluß zog, daß bei gut gebauten Feuerpuppen die wirklich pro Hub gelieferte Wassermenge der berechneten (theoretischen) nahezu gleich kommt.

Da diese Braunischweigischen Versuche überhaupt sehr viel Beachtenswertes und Interessantes enthalten, so dürfte es sich um die Aufstellung von einem amtlichen Berichte hier mitzuhehlen.54

Bemerkung ist dabei zu bemerken, daß der praktischen Versuchen mit den 29 vorhandenen (aus verschiedenen Theilen Deutschlands eingesandten) Feuerpuppen namentlich auch wieder das Verhältniss der von

52 Seidem erschienen im "Notizblatte des technischen Vereines zu Riga," VII. Jahrgang, 1868.

53 Der Berichtsfalter der Braunischweigischen Versuche bemerkt hierbei folgendes: "Da diese Erscheinung an Sprühen beobachtet wurde, bei denen der Unterdruck durch den Aufschlag des Druckbaumes auf ein elastisches Polster geschoben, so dürfte sich theoretische Erklärung erklären, daß der Kolbenhub bei der Berührung etwas größer gewesen ist als er gemessen und der Berechnung des theoretischen Wasserquarts zu Grunde gelegt wurde. Es ist allerdings bei diesen Sprühen der Hub in der Weise gemessen worden, daß sich immer eine Person oder zwei Personen vor auf den Druckraum setzten, um eine gewisse Kompression des Polsters zu bewirken; doch wurde an den Sprühen bei den Versuchen auf Berlangen der Fabrikanten der Aufschlag so häufig ausgeführt, daß die Kolben immerhin noch etwas tiefer herabgegangen sein können."

54 Im Buchhandel Braunischweig bei Bieweg unter dem Titel erschienen: "Mittteilungen über die siebenten deutschen Feuerehrleuten zu Braunischweig am 7. September 1868."
der Sprühe ausgeworfenen Wasser mengen zu der ermittelt wurde, welche
durch die Feuerstelle gelangte, beziehungsweise für letzteren Zweck in
einen sogenannten Fangkorb gespritzt wurde.

Die Braunschweiger Fangkorb-Anordnung (im Allgemeinen mit der
bereits in London, 55 Sydgenham und Hamburg benutzten übereinstimmend)
ist aus Fig. 14 ersichtlich, wozu folgendes bemerkt werden mag. Der
Fangkorb a, b war aus wasserdrücktem Segeltuch gesichert, welches man
über ein entsprechendes Gripe aus Schmiedeisen gespannt und einen
Mündungsdurchmesser von 6 Fuß engl. (5 Fuß 10 Zoll rhein.) gewählt
hatte. Scharf abwärts zog sich der Fangkörper zu einem vertical herau-
hangenden Schlauche c von 10 Zoll Weite zusammen. Zwischen vier
starren Ständern (Rüßbäumen) d, d an einem festen Zuge f aufge-
hangen, konnte der Fangkorb mittels Seilen leicht in beliebiger Höhe
beseitigt und entsprechend gedreht werden.

Das untere Ende des Schlauches c reichte nach zwei gehörig geach-
ten Meßbottichen g, g 1 herab, über welche man ein Dach h aus Segel-
tuch gespannt hatte. Der größere dieser beiden Bottiche hatte 60 Kubit-
füß rhein. Inhalt, der kleinere 20 Kubitsüß, und war ersterer vorneh-
lich zur Aufnahme des von den Dampfsprüthen geworfenen Wassers be-
stimmt.

Zwei gleiche Bottiche dienten zur Entnahme des von den Sprüthen
angeflogenen Wassers.

Neu und zweckmäßig war die Vorrichtung, wodurch man bei den
Braunschweiger Versuchen die Ausguß-e oder Strohrobren der Sprüthen
handhabte, wechselnd wir aus unserer Quelle deren Abbildung in Fig. 13
mitteilen.

Diese Vorrichtung bestand nämlich aus einem senkrecht stehenden
Quadranten A, A, der sich um die vertikale Achse B eines ruhenden,
horizontalen Grundkreises D drehen ließ. An dem Quadranten war
eine um die horizontale Achse E des letzteren drehbare Radialschiene C
so angebracht, daß sie außen am Quadranten ihre Führung fand. An
die Schiene C wurden die Ausguß-(Stroh-) Rohre der betreffenden
Sprüthen, der Längenrichtung nach, mittels Bügel, Holzfutter und Druck-
schrauben F, F befestigt. Eine Handdase G, in welche diese Schiene nach
rückwärts auslief, diente zur erforderlichen Drehung des Ausgußrohres
seitens des Rohrführers, sowohl in verticaler als horizontaler Richtung.
Die Gradeneinteilung am Umfange des Quadranten A benützte man be-

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kury in Stuttgart</td>
<td>Saupefreie ohne feuchtebenen Geistern, Bentheleit zugänglich.</td>
<td>5 1/2</td>
<td>5 3/4 1/4 4 1/2</td>
<td>14 1/4 3 1/2 weit 18 lang</td>
<td>17 1/2 52 1/2 13 1/4 12 1/2 45 1/2 11 1/4 8 1/2</td>
<td>44 11 1/2 89 44 1/2 11 1/4 74 20</td>
<td>14 2,6 1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bartels in Bremen</td>
<td>Auffrechtei mit feuchtebenen Geistern, Bentheleit zugänglich.</td>
<td>5 1/2</td>
<td>4 6 1/4 5 3/4 1/2</td>
<td>9 1/4 3 3/4 weit 20 3/4 hoch 24 lang</td>
<td>16 1/4 30 1/2 8 1/2 6 1/2 30 8 1/2 5 3/4 22 1/2 8 1/2 87 30 8 1/2 70 16</td>
<td>14 1,8 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hermann in Memmingen</td>
<td>Auffrechtei mit feuchtebenen Geistern, Bentheleit zugänglich.</td>
<td>5 1/2</td>
<td>4 1 1/4 4 1/2</td>
<td>9 1/4 3 3/4 weit 16 3/4 hoch 20 lang</td>
<td>15 1/2 43 1/2 8 1/2 6 1/2 41 8 1/2 2 1/2 41 8 1/2 86 42 8 1/2 62 16</td>
<td>14 1,8 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kury in Stuttgart</td>
<td>Auffrechtei mit feuchtebenen Geistern, Bentheleit zugänglich.</td>
<td>5 1/2</td>
<td>3 1/2 4 1/2</td>
<td>12 1/4 3 3/4 weit 16 1/2 hoch 20 1/2 lang</td>
<td>14 1/2 53 1/2 10 1/4 8 1/2 51 1/2 9 1/2 3 1/2 44 1/2 8 1/2 87 48 1/2 9 64 16 14 1/2</td>
<td>14 1,8 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kury in Stuttgart</td>
<td>Auffrechtei mit feuchtebenen Geistern, Bentheleit zugänglich.</td>
<td>5 1/2</td>
<td>3 1/2 4 1/2</td>
<td>12 1/4 3 3/4 weit 16 1/2 hoch 20 1/2 lang</td>
<td>14 1/2 53 1/2 10 1/4 8 1/2 51 1/2 9 1/2 3 1/2 44 1/2 8 1/2 87 48 1/2 9 64 16 14 1/2</td>
<td>14 1,8 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kury in Stuttgart</td>
<td>Auffrechtei mit feuchtebenen Geistern, Bentheleit zugänglich.</td>
<td>5 1/2</td>
<td>3 1/2 4 1/2</td>
<td>12 1/4 3 3/4 weit 16 1/2 hoch 20 1/2 lang</td>
<td>14 1/2 53 1/2 10 1/4 8 1/2 51 1/2 9 1/2 3 1/2 44 1/2 8 1/2 87 48 1/2 9 64 16 14 1/2</td>
<td>14 1,8 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kury in Stuttgart</td>
<td>Auffrechtei mit feuchtebenen Geistern, Bentheleit zugänglich.</td>
<td>5 1/2</td>
<td>3 1/2 4 1/2</td>
<td>12 1/4 3 3/4 weit 16 1/2 hoch 20 1/2 lang</td>
<td>14 1/2 53 1/2 10 1/4 8 1/2 51 1/2 9 1/2 3 1/2 44 1/2 8 1/2 87 48 1/2 9 64 16 14 1/2</td>
<td>14 1,8 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name des Fabrikanten</td>
<td>Wertbestimmung nach den Fangschlauchversuchen</td>
<td></td>
<td>Wertbestimmung nach den Weitspringversuchen</td>
<td>Wassermenge pro 1 Doppelhub in Kubitzellen</td>
<td>Verhältnis der wahren Wassermenge zur theoretischen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nahes Ziel Verhältnis der aufgesaugten Wassermenge zur ausgeworfenen Kubitzellen</td>
<td>Weites Ziel Verhältnis der aufgesaugten Wassermenge zur ausgeworfenen Kubitzellen</td>
<td>Producte aus dem pro Gescunde ausgeworfenen Wassergewichte und der Bursweite pro Mann</td>
<td>Theoretisch</td>
<td>Wirklich</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kury</td>
<td>0,909</td>
<td>0,625</td>
<td>0,744</td>
<td>0,437</td>
<td>52,6</td>
<td>44,7</td>
<td>428</td>
<td>452</td>
<td>1,056</td>
</tr>
<tr>
<td>Bartels</td>
<td>0,740</td>
<td>0,422</td>
<td>0,632</td>
<td>0,336</td>
<td>48,3</td>
<td>38,3</td>
<td>475</td>
<td>492</td>
<td>1,036</td>
</tr>
<tr>
<td>Hermann</td>
<td>0,760</td>
<td>0,406</td>
<td>0,308</td>
<td>0,156</td>
<td>44,9</td>
<td>32,9</td>
<td>326</td>
<td>339</td>
<td>1,040</td>
</tr>
<tr>
<td>Kury</td>
<td>0,791</td>
<td>0,531</td>
<td>0,384</td>
<td>0,219</td>
<td>46,9</td>
<td>37,0</td>
<td>290</td>
<td>317</td>
<td>1,098</td>
</tr>
<tr>
<td>Tidow</td>
<td>0,767</td>
<td>0,411</td>
<td>0,593</td>
<td>0,312</td>
<td>48</td>
<td>47,4</td>
<td>297</td>
<td>302</td>
<td>1,017</td>
</tr>
<tr>
<td>Kury</td>
<td>0,849</td>
<td>0,562</td>
<td>0,426</td>
<td>0,250</td>
<td>51,4</td>
<td>54,3</td>
<td>186</td>
<td>188</td>
<td>1,011</td>
</tr>
<tr>
<td>Kury</td>
<td>0,863</td>
<td>0,452</td>
<td>0,522</td>
<td>0,281</td>
<td>45,9</td>
<td>33,6</td>
<td>276</td>
<td>301</td>
<td>1,091</td>
</tr>
<tr>
<td>Franke (Dampfspritze)</td>
<td>0,857</td>
<td>?</td>
<td>0,417</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>177</td>
<td>?</td>
</tr>
<tr>
<td>Gegstorf (Dampfspritze)</td>
<td>?</td>
<td>?</td>
<td>0,810</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>312</td>
<td>218</td>
<td>0,699</td>
</tr>
</tbody>
</table>
greiflicher Weise zum Messen des jedesmaligen Elevationswinkels des Ausgussrohres.

Indem hinsichtlich sonstiger Details und bemerkenswerther Angaben, welche die Genauigkeit der Messungen und Beobachtungen zum Gegenstande haben, auf die angegebene Quelle verwiesen werden muß, theile ich in den beigeggebenen beiden Tabellen speziell noch Hauptmäße und Versuchsresultate berjenigen 7 Handsprüngen, sowie zweier Dampfsprüngen mit, wobei sich das Verhältniß der wirklichen Wassermenge zur berechneten höher als Eins herausstellte.

Am Schlusse des Berichtes wird hinsichtlich der Dampfsprüngenleistung noch folgendes hervorgehoben:

Wie aus der II. Tabelle ersichtlich, hat die beste Handsprüge auf das nahe Ziel eine Wassermenge von 0,625 Kubikfuß und auf das weite Ziel eine solche von 0,437 Kubikfuß pro Mann und pro Minute in den Hauptschlauch geworben, während nach der Tabelle I die Frank'sche Dampfsprüge 56 im Gang ein Quantum von bequemlich 6 und 2½ Kubikfuß Wasser pro Minute, die Egestorff'sche aber die auf das nahe Ziel verdachtete ein solches von 17 Kubikfuß beim weiten Ziele hineingebraucht hat. Hiernach würde sich die Leistungsfähigkeit der Frank'schen Dampfsprüge beispielsweise eine solche von

\[
\begin{align*}
6 & \quad = 10 \text{ Mann bei dem nahen Ziele und von} \\
0,6 & \quad = 6 \text{ bis } 7 \text{ Mann bei den weiten Zielen.}
\end{align*}
\]

Die Leistung der Egestorff'schen Dampfsprüge aber würde sich herausstellen zu

\[
\begin{align*}
0,4 & \quad = 42 \text{ bis } 43 \text{ Mann bei weitem Ziele.}
\end{align*}
\]

Der Berichtsteller bemerkt bei diesen Ergebnissen ganz richtig, daß sich die Leistungen der Dampfsprühen bei einer längeren Zeitbauer der Versuche als eine Minute (wie es in Braunschweig der Fall war) jedenfalls noch günstiger herausgestellt haben würden als vorstehend, da die Menicharbeiten gar bald zu erlahmen pflegt.

Ich möchte hierbei mein bereits früher über Nutzen und Vorzüge der Dampfsprühen (gegenüber den Handsprühen) ausgesprochenes Urtheil wiederholen, 57 darin bestehend, daß die Dampfsprühen nicht dazu bestimmt seyn können, die Handsprühen überflüssig zu machen, sondern ihre Aufgabe eine ganz andere, nämlich die ist, leigtere zu unterstützen, und zwar in den beiden Fällen, wenn eine Feuersbrunst nicht schnell zu bewältigen und große Massen Wasser auf weite Entfernungen (der bebeutenden Gips wegen) geworfen werden müssen, sobald man endlich Herr des Feuers werden will.

XLV.

Mit Abbildungen auf Tab. IV.

Der Mechanismus besteht im Wesentlichen aus einem auf dem Gebüse A sitzenden Schlitten B (Fig. 7 und 8) zur Führung des Supportes C, dessen obere Platte D rechtwinkelig zur Schlittenführung verschiebbar ist. Auf dieser Platte D ruhen nun die eigentlichen arbeitenden Theile.

Walker's Schärmachine ist nach dem System gebaut, daß ein einziger Menel (Pfeife) H eine auf- und abwärts Bewegung erhält, wodurch dieselbe mit Hilfe einer Leitpindel längs der Linie der zu hauenden Zürche verschoben wird.

Zur Verschiebung der Tischplatte D nach oder von dem Läufereiche L dient die Leitpindel J, deren Mutter am unteren Theile des Supportes C, nämlich bei e sich befindet. Die darauf senkrechte Berrührung bewerktstellt man mittels der Leitpindel K, welche in die Mutter h an der

57 Mittheilungen des hannoverschen Gewerbevereines, 1862 S. 112; polytechn. Journal Bd. CLXVIII S. 409
Platte D eingreift. Die Leitspindel I dreht den Arbeiter während der Arbeit mittels der Kurbel J. Hat die Pice die äußere oder die innere Stellung erreicht, so wird die Leitspindel K mittels des Jahrrades M gedreht, an dessen Zähne die federnden Klinken t oder g sich anlegen, so daß der Arbeiter durch die Zahl der Schläge leichter in Stand gelegt ist, eine stets gleiche Verrichtung vorzunehmen.

Was nun die auf- und abgehende Bewegung der Pice H betrifft, so geht diese von der Welle F aus, auf welcher die Daumen a, a stehen. Die drehende Bewegung erhält die Welle F von dem kleinen Motor E, welcher mittels Dampf oder comprimirter Luft betrieben wird. Das rechte Ende des Picehalters G wird durch die Daumen niedergedrückt, somit die Pice gehoben, welche sodann durch die eigene Schwere niedergab und darin unterstützt wird durch zwei starke Spiralfedern b, b, welche um die Stängelchen I, l gewunden sind und gegen das Querstück C drücken.

Die Tiefe des Nieberganges, also des Haushlages wird durch die Stellschraube N begrenzt.

Das Ganze ist auf dem Mühlestein durch die eigene Schwere um eine im Läuferauge eingesteckte Welle in fester Lage gehalten.

Soviel somit aus der Beschreibung und aus den Figuren zu entnehmen ist, dient Walfers Maschine zur Erzeugung der sogenannten Geraden auch amerikanischen Viertels oder Felderschärfung (mit parallel zu jeder Hauptflurche liegenden Nebenflurchen). Die Pice H erhält, wie oben angeführt wurde, die Hauptbewegung vom Läuferauge zum Steinumfang oder umgekehrt, und am Ende einer Flurche angelangt, wird sie rechtwinkelig darauf, d. i. parallel zur Hauptflurche weitergetrieben mit Hilfe des Indigrades M. Die Klinke g wird somit längs der Gleitflange N verstellbar sein, da die Länge der Nebenflurchen verschiebbar ist.

Es könnte jedoch ohne besondere Schwierigkeit das Rad M eine rückweise Drehung von der Hauptwelle F erhalten, somit die Pice in der gehobenen Lage vor- und zurückgeschoben werden, während der Arbeiter mit der Kurbel J die radiale Verrichtung derselben besorgt. Auf diese Weise könnte dann eine gekürmte Schärfe hervorgebracht werden, wenn dieser Mechanismus sonst praktisch befunden wird.

J. J.
XLVI.

Cylinderpresse zum Trocknen der ausgegerbten Lohe von Bréval, Mechaniker in Paris.

Nach dem Bulletin de la Société d'Encouragement, Januar 1869, 2. 9.

Mit Abbildungen auf Tab. IV.

Wo in Lohgerbereien der Dampfbetrieb Eingang gefunden hat, wird die ausgegerbte Lohe einen wesentlichen Theil des Brennstoffes zur Dampferzeugung abgeben.

Die Lohe enthält aber im feuchten Zustand 60 bis 70 Proc. Wasser; gewöhnlich breitet man sie zum Trocknen in dünnen Schichten, oft im freien unbebauten Raume aus, welches Verfahren — abgesehen von dem zeitweilig eintretenden Nebelstand, daß ein unverhöhfter Regen die fast trockene Lohe wieder näßt — niemals möglich ist.

Bréval (22, rue Vicq-d'Azyr in Paris) construirte nun die in Fig. 1 und 2 dargestellte Presse zur schnellen und genügenden Trocknung der Lohe.

Fig. 1 ist eine Seitenansicht und Fig. 2 ein Mittelschnitt der Cylinderpresse in 1/20 wirksamer Größe.

Im Wesentlichen besteht dieselbe aus zwei übereinander stehenden Cylindern D und G von 0,25 Meter Durchmesser. Die obere Walze D ist mit reich ausgebildetem und in der Lage ist, die untere G eine glatte Oberfläche darzubieten. In geringem Abstand liegt vor denselben eine dritte kleinere Walze E, von 0,16 Meter Durchmesser, ähnlich der ersten cannelirt.

Von dem Rumpfe B, durch den die Einführung der nassen Lohe erfolgt, geht diese durch den vierseitigen Canalis C zu den Walzen und zwar zunächst zwischen die zwei cannelirten, in einem entsprechend großen Abstande stehenden Walzen D und E.

Die obere cannelirte Walze ruht in verschließbaren Lagern, auf welche durch die Hebelanordnung P, N, K, L und M zu beiden Seiten ein Druck bis 25,000 Kilogramm, je nach der Größe der Belauffungsgewichte Q und Q₁, ausgeübt werden kann. Die Bewegungsrichtung der
Robertson's Aschen-Elevator für Dampfschiffe etc.

Walzen erfolgt im Sinne der ange deuteten Pfeile und wird die Drehung von der Hauptwelle mit den Niemenscheiben R, R' in einer einfachen Weise durch Kädervorgelege erzielt.

Hinsichtlich der Einlagerung der Druckwalze D mag noch erwähnt werden, daß die untere Lagerhälfte abgerundet ist, so daß die Walze auch in eine etwas geneigte Lage gebraucht werden kann, falls unverbrüchbare fremde Bestandtheile die Walzen passiren sollten.

Mit dieser Maschine können in 10 Arbeitsstunden 16 Kubikmeter Lobe getrocknet werden; sie erfordert zur Aufstellung bloß einen Raum von 2 Meter im Quadrat, und zum Betriebe eine Pferdekraft und einen Arbeiter.

J. B.

XLVII.

Elevator für pulver- oder grusförmige Körper von Robertson,
Ingenieur in Glasgow.

Nach dem Artisan, Februar 1869, S. 25.

Mit Abbildungen auf Tab. IV.

Die in Fig. 27 stehirte Anordnung — auf dem Prinzip der Strahlpumpe beruhend — steht bereits in ausgedehnter Anwendung bei britischen Handelschiffen und soll nun auch in der königl. Marine eingeführt werden. Sie bezieht die Entfernung der Alche aus dem Feuerraume in einer Weise, daß die auf den Schiffen befindlichen Personen nicht durch den Staub belästigt werden, welcher entsteht, wenn die Alche aus Rüben über Bord geschiert wird.

wobei diese Klappe die Fallrichtung der Asche bestimmt; gleichzeitig hat die Klappe E den Zweck, den Wassereintritt nach C zu hindern. Tritt daselbe beim Schaukeln des Schiffes benach ein, so gelangt es nur bis zu dem bei B eingeschalteten Schieber. Der Dampf treibt das angesammelte Wasser bei der nächsten Aschenerfassung wieder aus.

Die notwendige Dampfmenge entspricht jener für eine schwäberde-

kräfte Dampfmaschine; wenn man jedoch berücksichtigt, daß die alle vier Stunden angesammelte Asche in einigen Minuten ausgeblasen ist, so wird man den Dampferbrauch nicht erheblich finden. In diesem Falle braucht auch die Asche nicht mit Wasser geölt zu werden wie sonst bei ihrer Entfernung mittels Kübeln.

In Fig. 28 ist eine ähnliche Anordnung für die Entfernung der Asche bei einer vertieften Dampfgeschäuelage K dargestellt. Hierbei wird die Asche in den auf der Bahn laufenden Hund H befördert und von diesem an einem geeigneten Ort abgelagert.

3. J.

XLVIII.

Das Werder'sche Hinterladungsgewehr.

Anknüpfend an den in München der Kammer der Abgeordneten am 19. Februar d. J. vorgelegten Gesetzentwurf über Neubewaffnung der Infanterie mit Hinterladungsgewehren, — worauf 100,000 nach dem Werder'schen System construirte Gewehre nebst Ver-
dan'schen Metallhälften-Patronen beschafft, gleichzeitig aber auch die Versuche mit Verdan's Hinterladungsgewehr noch weiter fortgesetzt werden sollen, damit bei gleichem Kaliber und gleicher Patrone beider Gewehre dieselben eventuell auch nebeneinander zur Einführung gelangen können und so die gesammte Infanterie um ein Jahr früher mit neuen Hinterladungsgewehren auszurüsten steht, — liefert das zu Berlin erscheinende „Militär-Weekenblatt“ in seinen Nummern vom 27. und 31. März d. J. vom Wer-
der'schen Gewehr folgende Beschreibung:

„Das Werder'sche Gewehr gehört zu den einfachen Hinterladern: kleinen Kalibers (11 Millimeter) mit gasdichten Patronen. Das Verschlußsystem hat eine gewisse Ähnlichkeit mit dem bekannten Peabody'schen, zunächst infolge auch bei Werder das Verschlußstück um eine in seinem hinteren Theile liegende, zur Richtung der Seelenachse recht-

Bei der Bewegung abwärts wirkt das Verschlussstück mit seinem vorderen Theile auf den Extractor, welcher, ähnlich wie bei Peabody, einen Winkelhebel bildet, indem die Patronen an zwei einander diametral gegenüberliegenden Stellen packt, und durch die Abzugsfeder in seine Lage zurückgedrückt wird.

Das Schloss ist ein sogenanntes Mittelschloss und besteht aus Hahn, Schlageseder, Abzug, welcher zugleich die Stange bildet, und Abzugsfeder. Der Hahn bewegt sich innerhalb des hinteren gabelförmigen Theiles der Verschlussklappe; der Daumgriff liegt auf der rechten Seite des Schlosses.

Beim Zurückziehen des Haspels wirkt ein an demselben angelegter Arm mit Rolle aufwärtsdrückend auf das Verschlussstück.

Der Mechanismus des Systems ist nunmehr folgender: ist dieses Gewehr gespannt, so ist es zugleich geschlossen; wird abgezogen, so schlägt der Hahn gegen den Zündstift, und dieser wirkt auf die Zündung.

Will man, nachdem der Schuß heraus ist, öffnen, so geht der Zeigefinger der rechten Hand, welcher an der Jungen des Abzuges angelegen,
Um ein kleines Stück vornwärts und trifft gegen die Junge der Stütze, welche nunmehr unter dem Verschlußstück hinweggleitet und es der Einwirkung der (beim Schießen in Spannung versetzten gewordenen) Verschlußfeder überläßt. Letztere drückt daselbe mit dem hinteren Theile auf, also mit dem vorderen abwärts, und das Gewehr ist geöffnet, gleichzeitig auch der Extractor in Thätigkeit getreten und die leere Hülse entfernt. Der ganze Vorgang erfolgt, während der Schütze das Gewehr aus dem Anschlag senkt.

Auf der oberen Vertiefung der Klappe rutscht die neue Patrone in den Lauf; es erfolgt das Spannen des Hahnes, somit das Schließen, und das Gewehr ist schußfertig. Ein Druck gegen die Stütze vor dem Abdrücken brachte jetzt keine Wirkung hervor, da erstere durch einen Vorstand des Hahnes (so lange leiteter gepannt ist) an der Zuführungsbewegung gehindert ist. Ein vorzeitiges Deffnen der Klappe kann also nicht vorkommen.

Man hat es in der Hand, das Gewehr auch nur in Hülse zu sehen. Vom Ergreifen der Patronen abgesehen, sind somit folgende Griffe nöthig:

1) Abdrücken, womit beim Schnellfeuer:
2) das Deffnen fast als eine Bewegung gelten kann,
3) das Einführen der Patronen,
4) das Spannen.

Soll das Gewehr nach dem Schuß geschlossen bleiben, so hat die Vorwärtsbewegung des Zeigefingers nur zu unterbleiben.

Will man das Gewehr entladen, so läßt man den Hahn nacheinander und drückt gegen die Junge des Abzuges, dann öffnet sich das Gewehr und die Patrone springt heraus.

Beifälliger Verlegung des Schloßes löst man die Abzugsbügelinschraube, hebt die Verschlußmechanik aus, entfernt die linke Schloßplatte, worauf das Innere bloßliegt. Man kann nun (ohne feiner noch eines Instruments zu bedürfen) die drei Federn ausheben und die anderen Theile aus ihren Lagern entfernen.

Leiterte's hat eine kleine Expansionshöhlsung und auf dem cylindrischen Theil zwei Cannelrungen.

Als ein besonderer Vorzug der Einrichtung muß die leichte Zerlegung des Schloßmechanismus gelten, was eine sehr berechtigte Anforderung an Kriegswaffen bildet. Die ganze Construction ist äußerst solider und bietet alle Garantie gegen Geschädigung und Zerreißung.

Die Feuergeschwindigkeit betrug bei ganz geübten Mannschafien beim Laden aus der Tasche 14—15 Schüsse per Minute. Seitens geübter Schützen wurden in Amberg bei 18 Schüssen in der Minute 18 Treffer gegen eine 4 Fuß breite, 9 Fuß hohe Scheibe auf 200 Schritte erzielt.

Hieran sich noch reiβende Daten über die Percussionskraft und Flugbauchaffanzen der zugehörigen Geschosse berechtigen zu dem Schlüsse, daß diese Waffe den bisherigen Erfahrungen entsprechend, in allen haupt- sächlich zu berücksichtigen den Beziehungen, nämlich: Naßanz, Präcision, Percussion, Feuergeschwindigkeit, Behandlung, Solidität und Munitionsgewicht, als von vorzüglicher Leistungsfähigkeit zu betrachten ist.

Stade, im April 1869.

Daravštý.
Eine weitere Modifikation des v. Paschwijschen Militär-Distanzmessers.

Durch diese Anordnung ist während des Operirens der Beobachter samt Instrument hinter der Brustwehr verborgen, nur ragen die beschriebenen Prismen-Ausläufe theilweise hervor, welche bei einer ausge- setzten Fläche von 1/2 Decimeter im Quadrate den feindlichen Zielobjeckt darbieten. Da sich überdies bekanntermaßen das Rohr im Lager um seine horizontale Achse dreht, läßt, so können diese beiden Theile nach gemachten Gebrauchen zurückgelegt und so bei unveränderter Stativstellung ebenfalls unter den Schuß der Brustwehr gebracht werden.

Boden wöhr bei Regensburg, im März 1869.

Ernst v. Paschwig.

59 Weis wider im polytechn. Journal Bd. CXCI S. 200; elftes Februar- heft 1869.
L.

Ueber die Messung der Intensität des Lichtes und ein neues Photometer; von William Crookes.

Die Abbildungen auf Tab. IV.

Zum besseren Verständnis will ich zunächst das Prinzip erörtern, auf welches die Einrichtung des neuen Photometers gegründet ist. Fig. 10 stellt die verschiedenen einzelnen Theile des Instruments dar, allerdings nicht in den richtigen relativen Verhältnissen, sondern nur in einer flüchtigen Skizze.

D sei eine Lichtquelle, etwa eine durch künstliches oder natürliches Licht beleuchtete Scheibe von weissem Porzellan oder von Papier. C sei eine eben solche, in gleicher Weise beleuchtete Scheibe. Es sollen nun die photometrischen Intensitäten von D und C mit einander verglichen werden. (Weder D noch C darf polarisirtes Licht enthalten, oder das von ihnen ausstrahlende Licht, welches durch die beiden in Kreuzesform sich rechtwinklig schneidenden Linien angedeutet ist, muß gänzlich depolarisirt sein.) H ist ein achronisches, aus Doppelpflaster angesetztes, doppelschichtiges Prisma, welches die Scheibe D in zwei, in entgegengesetzten Sinne polariserende Scheiben d und d' zerlegt, und zwar so, daß die Ebene von d horizontal und die von d' horizontal polarisirt ist. Ebenso gibt das Prisma H zwei Bilder der Scheibe C, das horizontal polarisirte Bild c und das vertical polarisirte c'. Die Dimensionen der Scheiben D und C, und das Zerlegungsmögen des Doppelpflasterprismas H müssen so gewählt werden, daß das vertical polarisirte Bild d und das horizontal polarisirte Bild c sich genau decken und, wie die Figur zeigt, eine zusammengezogene Scheibe c, d bilden, welche eine Hälfte des Lichtes von D und eine Hälfte des von C ausgehenden Lichtes enthält.

13
Durch Messung der Quantität des polarisierten Lichtes auf der Scheibe c, d ergeben sich die relativen photometrischen Intensitäten von D und C. J ist eine Blendung (Diaphragma), in der Mitte mit einer freisich in genügendem Maße sehr genügend in vorzüglichem Lichtes ein rothes Bild und als Complementärfarben Grün gibt. — K ist ein dem Prisma H ganz gleiches doppeltbrechendes Kalkspathprisma, welches in solcher Entfernung von der Blendeneinrichtung angebracht ist, daß die beiden Scheiben, in welche J dem Anscheine nach ausgelöst ist, von einander getrennt erscheinen, wie bei g, r. Wann die Scheibe c, d kein polarisiertes Licht enthält, so sind die Bilder g, r weiß, weil sie durch zwei Strahlen weissen Lichtes gebildet werden, welche in entgegengesetztem Sinne polarisiert sind; sobald aber eine Spur von polarisiertem Licht in c, d ist, sind die beiden Scheiben g, r in Complementärfarben gefärbt, und der Kontrast zwischen dem Grün und dem Rot ist um so stärker, je mehr polarisiertes Licht c, d enthält.

Die Wirkung dieser Anordnung ist leicht begreiflich. Nehmen wir zunächst an, die beiden Lichtquellen D und C seien einander genaus gleich. Sie werden durch das Prisma H jede in zwei Scheiben d, d' und c, c' zerlegt, und da die zwei polarisierten Strahlen, aus denen c, d zusammengelegt, einander auch an Intensität absolut gleich sind, so neutralisieren sie sich gegenseitig und bilden gewöhnliches Licht, ohne Spur von Polarisation. In diesem Falle sind die beiden Lichtscheiben g, r ungefärbt. — Nehmen wir nun an, die eine Lichtquelle, z. B. D, sey stärker als die andere C. Dann werden die beiden Bilder d, d' lichtstärker sein als die beiden Bilder c, c' der vertical polarisierte Strahl d wird stärker sein als der horizontal polarisierte Strahl c. Die zusammengelegte Scheibe c, d wird dann theilweise in polarisiertem Lichte erscheinen und die Menge des freien polarisierten Lichtes wird der Lichtmenge, von welche die Intensität von D größer ist als die von C, genau proportional sein. In diesem Falle wird das Bild des vor der Deblance angebrachten Gypsophattplättchens durch das Prisma K in eine rothe und in eine grüne Scheibe zerlegt.

Fig. 11 zeigt das Instrument vollständig zusammengestellt. A ist das (in Fig. 12 in vergrößerter Durchschnitte dargestellte) Decular. G, B ist ein im Inneren geschwärztes Messingrohr, welches an seinem dem Decular entgegengesetzten Ende B, mit einem einzuführenden Einlagstücke (bei D, C gesenbert vertikal) versehen ist. Die schrägen Seiten D, B
und B, C dieses Stückes sind mit einer weissen Fläche (weissem Papier oder abgeschliffenem und polirtem Porzellan) bedeckt, so dass, wenn D, C in das Rohrende B eingesetzt ist, die eine dieser beiden weissen Flächen B, C durch die Kerze und die andere, B, C durch die Lampe beleuchtet werden kann (wie in Fig. 11 dargestellt). Wenn nun der Beobachter das Dcular A abnimmt, so sieht er am Rohrende B eine weisse, leuchtende, vertikal in zwei Theile getheilte Scheibe, deren eine Hälfte von der Kerze E und die andere von der Lampe F beleuchtet ist. Berührt man nun z. B. die Kerze E auf der graduirten Leiste oder dem Maass- stabe, so kann man die Helligkeit der Hälfte D, B beliebig abändern, während die Helligkeit der anderen Hälfte B, C unverändert bleibt.

Mit Hilfe der Fig. 10 lässt sich die Einrichtung des (in Fig. 12 vergrössert abgebildeten) Dculars A leicht begreifen. Bei L ist eine Linie, um die von D, B, C (Fig. 11) kommenden Lichtstrahlen zu sammeln und das Bild an die gehörige Stelle des Rohres G, B zu werfen. Bei M ist eine zweite Linie so angebracht, dass sie ein scharfes Bild von den beiden Scheiben gibt, in welche J durch das Prisma K zerlegt wird. N ist ein Arago'sches Polarimeter, daselbe besteht aus einer Schicht von dünnen Glasplatten, welche sich um die Achse des mit einem Zeiger und einem getheilten Kreise versehenen Rohres (A, G, Fig. 11) drehen lässt. Mittels dieser Glasplattenräume kann man die von den beleuchteten Scheiben kommenden Strahlen in einen oder in anderen Sinne polarisiren und auf diese Weise das teilweise polarisierte Strahlenbündel o, d (Fig. 10) in den neutralen Zustand überführen, so dass die Bilder g, r ungefärbt erscheinen. Dieses Polarimeter wird so eingestellt, dass es, wenn der Zeiger auf Null steht, auf beide Scheiben eine gleiche Wirkung ausübt.

Der Apparat wird in folgender Weise angewendet. Nachdem die Normallampe auf einen der auf dem graduirten Stabe (Fig. 11) verschiebbaren Träger aufgestellt worden, justirt man sie auf die nothwendige Höhe und verzieht sie auf dem Maassstabe auf eine geeignete Distanz, welche von der Intensität des zu messenden Lichtes abhängt. Da der Stab etwa über 4 Zoll (1,20 Meter) lang ist, so kann jedes Licht 24 Zoll (60 Centimeter) von der Scheibe entfernt aufgestellt werden. Dann schüttet man die Flamme vor Luftzug mittels schwarzer Schirme, und beseitigt das mit ihr zu vergleichende Licht aus dieselben Weise an der anderen Seite des Photometers. Der ganze Apparat muss sich in einem dunklen Raume befinden oder mit Schirmen umgeben werden, welche kein Licht reflectiren; ebenso muss das Auge vor den von den beiden Flammen kommenden directen Strahlen geschützt sein. Blickt man nun in

Mit Hilfe eines Photometers dieser Art ist es möglich, Flammen von verschiedenen Farben mit einander zu vergleichen, eine Aufgabe, welche durch Anwendung der allgemein gebräuchlichen Photometer in Folge ihrer Einrichtung nicht gelöst werden konnte. Nehmen wir mit Bezugnahme auf Fig. 10, B. an, die Scheibe D sei durch ein Licht von röthlicher Farbe und die Scheibe C durch ein grünliches Licht beleuchtet, so werden die polarisierten Scheiben d', d röthlich gefärbt erscheinen, die Scheiben c, e' grünlich und die centrale Scheibe c, d wird eine aus der Vereinigung beider Bilder entstandene Färbung zeigen. Mittelst
des Analyseur K und der Gypscheibe I ist man aber im Stande, freies polarisiertes Licht auf der Scheibe c, d, wenn dasselbe farbig ist, mit der selben Leichtigkeit zu erkennen als wenn es weiß wäre; der einzige Unterschied wird der sein, daß man die beiden leuchtenden Scheiben g, r nicht auf eine gleichmäßig weisse Farbe bringen kann, wenn das von D und von C ausgegangene Licht gleiche Intensität haben, jene Scheiben werden aber eine der Scheibe c, d ähnliche Färbung annehmen. Wenn der Kontrast zwischen der Farbe von D und von C sehr stark ist, wenn z. B. die eine glänzend grün und die andere scharlachrot erscheint, so ist der Neutralpunkt einigermaßen schwierig aufzufassen; dadurch wird jedoch nur die Genauigkeit der Vergleichung beeinträchtigt, letztere aber nicht unmöglich gemacht, wie dies bei Anwendung anderer Instrumente der Fall sein würde.

LI

Ein Diaphanometer zu praktischen Messungen; von Ferdinand Jirinsky

Mit Abbildungen auf Tab. XV.

Die rationelle und einfache Bestimmung der Durchsichtigkeit verschiedener Glasarten dürfte für die meisten Zwecke sehr wünschenswert sein.

Mein hierzu dienendes Instrument stützt sich zunächst auf den Lehr- satz, daß die Lichtstärke einer Lichtquelle im quadratischen Verhältnis der Distanzen ab- und zunimmt, und ferner auf die Erscheinung, daß ein früher durch Gläser gespeiste Lichtbündel auf einem weissen Schirm einen lichten Fleckchen erzeugt, dessen Lichtintensität der Durchsichtigkeit des Glases entspricht.

Die äußere Form des Diaphanometers ist, wie Fig. 20 zeigt, dieselbe wie jene des Bunsen'schen Photometers und es kann jedes Bunsen'sche Photometer mit einigen Abänderungen zu diaphanometrischen Messungen benutzt werden.

A und B, Fig. 20, ist ein und dieselbe Lichtquelle in zwei Exemplaren. An beiden eignen sich dazu Petroleumlampen. a und b sind geschwärzte Cylinder, jeder mit einem Tubus von etwa 2 Centimeter Durchmesser und 6—8 Centimeter Länge. Diesen Cylinder, welcher beim Versuch über die Flamme gehoben wird, zeigt Fig. 22 im Detail. Darin ist am Ende des Tubus eine Kreiszahneibe mit zwei Federn ersicht-

Der Schirm D muß auf den Theilstrich 0 eingestellt sein und ist unbeweglich für alle Messungen. Aus der Theilung ist auch ersichtlich, daß die Lichtquelle A nur in engen Grenzen vertauschbar sein kann, während sich die Lichtquelle B in einer bedeutenden Dimension bewegt. Die Versuche müssen in einem dunklen Zimmer ausgeführt werden.

Auf den Tubus des Lichtes A steckt man ein wenig durchsichtiges dunstes Glas, dessen Durchsichtigkeit zu 1 angenommen wird. Auf den Tubus des Lichtes B steckt man die zu prüfende Glasscheibe. Wenn nun das Licht A aus dem Theilstrich 1 und der Schirm auf 0 steht, so erscheint auf einer Seite des Schirmes ein schwachleuchtender Fleck von dem Licht A und ein hellerer von dem Licht B.

Jetzt zu untersuchen, wie viel das Glas von dem Gesamtlicht durchläßt, so beieilt sich die Scheibe auf A und reißen an ihre Stelle jene von B, während der Tubus von B frei bleibt. Jede Lichtquelle in
der Distanz 1 vom Schirm entfernt gibt einen Lichtschein, wovon jener
der freien Lichtes stärker ist. Wir bestimmen die Lichtintensität des
totalen Lichtes im Vergleich zu dem Lichtschein von A dadurch, daß
wir B zurückschieben. Hat dabei B den Theilsstrich 4 getroffen, so ist
die Intensität des Fleckens von B mit 16 und jene von A mit 1 zu
bezeichnen. Das Verhältnis der Lichtintensitäten ist also hier mit $\frac{1}{16}$
ausgedrückt.

Es fragt sich nun, mit welcher Zahl ist die Lichtintensität des
Fleckens bei A zu bezeichnen, wenn wir jene des totalen Lichtes mit
100 ausdrücken? Dies ergibt sich aus dem Quotienten $\frac{400}{16} = 6,25$.

Die Ergänzungssäule zu 100, nämlich $100 - 6,25 = 93,75$ be-
zeichnet uns das nicht durchgelaufene Licht. Es wäre somit das geprüfte
Glas ein 6,25 procentiges zu nennen in Bezug auf die durchdringende
Lichtmenge, während es ein 93,75 procentiges zu nennen ist, wenn
man die Dunkelheit des Glases in Betracht zieht.

Die angegebene Messungsmethode gilt aber nur für den Fall, daß
man Glasarten von gleicher Dicke anwendet. Da bei einem praktischen
Vorgehen Absorptionskoeffizienten nicht in Rechnung gebracht werden
nen, indem dies der Einfachheit bededenden Eintrag thut, so muß man
die Messung bei verschieden starken Gläsern in folgender Weise ausführen:

Bäre die zu prüfende Gläser Scheibe auf B, Fig. 20 dicker als jene
auf A, so erhielt man mit Anwendung der angegebenen Messung für
die Durchsichtigkeit des Glases eine zu geringe Zahl. Es müssen die
Gläser auch vor den Versuche auf ihre Dicke gemessen werden. Zu
genauer Ergebnissen brauchte man allerdings ein Späthometer; in
der Praxis wird aber ein genauer Längennaßstab hinreichen, um die
Starke der Gläser auf einer gut abgeschlossenen Stelle abzugehen.

Nehmen wir an, es wäre die Scheibe auf B um 0,2 stärker als
jene auf A, so brauchen wir bloß die Lampe A um 0,2 der Länge
einheit am Maßstäbe zurückzuschieben und dann wie früher fortzugehen.
Im entgegengesetzten Falle, wenn die zu prüfende Scheibe dünner ist,
bräuchten wir die Lichtquelle A nur um die gefunden Differenz auf dem
Maßstäbe dem Schirme D zu nähern.

Die letztere Messungsmethode würde, da sich Gläser von gleicher
Dicke selten zusammenfinden, häufiger Anwendung finden.

In jenen Fällen, wo nur eine Lichtquelle möglich wäre, ist das
Diaphanometer in der Form, welche Fig. 21 zeigt, anzuwenden.

Der Winkelmaßstab stellt uns hier den gebrochenen Längennaßstab
C, C aus Fig. 20 vor. Seine Arme müssen in einem Gelenke beweglich
gezogen. Beim Versuche ist der Winkel des Maßstabes auf etwa 5° ein-

Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden
gefördert von der Deutschen Forschungsgemeinschaft
zustellen. Die Lichtquelle A befindet sich dann in dem Scheitel. Es ist gut, wenn sie fernen dem Gestell und Fuß mit Hülfe eines Stielös als Verlängerung des Ständers in einen Ring des Winkelmaßstabes (natürlich senkrecht auf die Winkelflache) aufgesetzt und auch dem Gebrauche wieder herausgehoben werden kann. Der Cylinder hat die Form von Fig. 23 und 24 im Grundriss. Seine beiden Tuben entsprechen den Winkel des Massstabes. An beiden Armen des Massstabes ist ein Schirm B und C (Fig. 21) aus dünnem, etwas durchsichtigem Milchglas. Beide sind verschiebbar. Dabei dient der Schirm B in der Distanz 1 von der Lichtquelle, während C die ganze Länge des zweiten Armes zu Gebote steht. Das Gesicht ist bei dem Versuche entgegen den Tuben zu halten und die gleich Intensität der beiden Lichtscheibe durch Verschieben des Schirmes C zu erreichen. Dieses Instrument erfordert schon ein etwas geübteres Augen, denn hier sind die beiden Lichtscheiben entfernt von einander als der ersten Instrumente, daher ihre Vergleichung schwieriger ist. Das Verfahren ist dasselbe wie beim ersten Instrument. Sollte man Glashüften in Beziehung auf das Sonnenlicht prüfen, so müssen die beiden Arme des Winkelmaßstabes parallel gestellt sein und ebenso parallel die Tuben angewendet werden, welche entweder zu einem Heliostat passen oder in Fensterschauben angebracht werden können.

Dieses Diaphanometer dürfte für Gläser, Glashändler oder Optiker am ehesten geeignet sein.

LII.

Aus Armengaud's Genie industriel, Januar 1869. S. 43.

Mit Abbildungen auf Tab. IV.

Man besitzt noch kein billiges und allgemein anwendbares Instrument, welches seinem Konstructionsprinzip nach sowohl zur Beobachtung der Temperatur und des Druckes, als auch zur Messung des Feuchtigkeitsgrades der Atmosphäre dienen kann. Das von Bertora angegebene Prinzip, welches diese Aufgabe zu lösen sucht, besteht darin, daß eine mit Quecksilber oder einer anderen Flüssigkeit gefüllte Nichte, welche frei beweglich in einer schiefen Lage aufgehängt wird, bei der geringsten Veränderung der Temperatur oder des Luftdruckes die Lage ihres Schwerpunktes verändert.
Man kann beispielsweise auf diese Art ein Thermometer aus einem kleinen einfachen, ungeheizten Zylinder, welcher mit Quecksilber gefüllt und an beiden Enden geschlossen ist, herstellen, wenn man den silber zwischen zwei Punkten, zwischen denen er beweglich ist, ohne aus der Gleichgewichtslage herauszukommen, in schräger Lage hängt. Mit jeder Temperaturveränderung verändert sich die Lage des Schwierpunktes und mithin auch die Neigung der Röhre, wenn man nun die Röhre durch Rückenwerk mit einem Zeiger in Verbindung setzt, so kann man die Veränderungen an einem hinter dem Zeiger angebrachten Zifferblatte ablesen. Es genügt zwei Lagen der Röhre, etwa für 0° und für 100° C., durch Versuche zu bestimmen und innerhalb dieser Grenzen, sowie auch noch unter und über dieselben hinaus, die Theilung gleichförmig aufzutragen.

Auf Fig. 25 und 26 ist dieses Instrument in der Seitenansicht und im Querdurchschnitt dargestellt. a ist die mit Quecksilber oder Spiritus gefüllte geschlossene Röhre, welche an dem leichten Träger x aufgehängt ist; der obere Theil dieses Trägers bildet einen Zahnfeder, welcher in ein kleines Getriebe d eingreift, und an diesem liegt wieder der Zahnfeder c, welcher in das kleine Getriebe b an der Zeigerachse eingreift. Bei der geringsten Temperaturveränderung ändert sich die Lage des Schwierpunktes, und diese Lagenveränderung wird durch die Zahnzähne und Getriebe auf den Zeiger A am Zifferblatte B übertragen.

Nimmt man sehr große Röhren, so kann man die Temperaturngrade auch an einem sehr großen Zifferblatte, wie die Minuten an dem Zifferblatte einer Uhr, sichtbar machen.

Benutzt man eine gewöhnliche Thermometerröhre mit einem engen Rohrenstück und hängt dieselbe so auf, daß die Tempuratschwankungen die Veränderung der Schwierpunktslage, also auch der Neigung, in welcher die Röhre aufgehängt ist, bewirken, so wird die Lagenveränderung um so größer, je näher der Anhängepunkt der Röhre liegt, und zwar in dem Maße, daß man mit einer einfachen Räderüberlagerung ohne Vor-gelege sehr verschiedene Neigungen und daher auch große Theilungen erhalten kann.

LIII.

Ueber die physikalischen Eigenschaften und die Heizkraft des Petroleum und der Mineralöle; von H. Sainte-Claire Deville. (Zweite Abhandlung.)

Und den Comptes rendus, t. LXVIII p. 349; Februar 1869.

In der früher erschienenen Abhandlung 60 teilte ich die ersten Ergebnisse der in Auftrag und auf Kosten des Kaisers Napoleon von mir ausgesuchten theoretischen und praktischen Untersuchungen über das Petroleum mit, und schloß nun diese Mittheilungen im Nachstehenden mit einer gebrängten Auseinandersetzung der von mir abgeführten Versuche zur ökonomischen und gefahrlosen Verbrennung der dick- und zähflüssigen Petroleumölkarten und Mineralöle, welche als Brennmaterial die besten sind.

Einen solchen Rost haben Dupuy de l’Orme und ich, mit Beihilfe des Hrn. Fougère, aus der Kaiserlichen Yacht „Puebla“ mit

Die von Feuge ère im Verlaufe dieser Probefahrt aufgenommenen Zahlenresultate, welche ich nachträglich veröffentlichen werde, bestätigen vollkommen die in meinem Laboratorium in der École normale über die Heizkraft dieser Substanzen ausgeführten theoretischen Bemühungen.

1) Zunächst experimentierte ich in meinem Laboratorium in der École normale mit einem verticalen Kessel, dessen Öffnungen so be-
rechnet waren, daß hinter demselben eine bestimmte Quantität Mineralöl
ohne Rauchbildung und ohne Verbrauch eines merklichen Luftüberchusses
verbrennen konnte. Diese letztere Bedingung ist eine wichtige; ich habe,
wie man sich erinnern wird, nachgewiesen, daß einer der größten Vor-
theile der Mineralöle in ökonomischer Beziehung darin besteht, daß man
bei gebördig regulirter Verbrennung dieselben der ganzen, dem Brenn-
stoffe zugeführten Luftmenge ihren Sauersstoff entziehen kann.

2) Je tiefer in den Herd hinein ein solcher Holz aufgestellt wird,
desw. mehr wird derjenige der abkühlenden Einwirkung der Luft entzogen,
oder, was auf dasselbe hinausläuft, je stärker (dicker) er ist, ohne über
die Herdwände hinauszugehen, desto stärker wird er während der Ver-
brunnung der Mineralöle erhitzen. Läßt man das Del in eine zwischen
den-Hopfständen ausgesparte tiefe innere Rinnen laufen, so kann man durch
Versuche die Stärke bestimmen, welche man dem Gußeisen des Ofnes
gehen muß, damit sich das Del, indem es sich auf der inneren Hops-
fläche verbreitet, vollständig verflüchtigen kann, ohne daß ein irgend be-
deutender Anteil des Brennmateriales in anderem als dampfförmigem
Zustande auf die Herdsohle gelangen könnte.

Auf diese Weise stellt der Ofen eine Nische von Lampen dar; die
Hopsstände bilben die Dächer desselben, indem sie das Del durch ihre
innere Rinnwe verdampfen. Die Luft, welche durch den zwischen den
Stäben befindlichen freien Raum in den Herd einströmt, erzeugt eine
sehr lebhafte und sehr kurze Flamme von ungefähr 25 Centimetern Länge.
Außerhalb dieser Flamme sind die Verbrennungsprodukte unsichtbar;
wen man aber in diesen dunklen Theil einen starken Platindraht ein-
führ, so wird das Metall sofort glühend — ein Beweis, daß die Flamme
hier bloß dehyd unmittelbar ist, weil sie ihres Kohlenstoffes bedarf, wie
in der äußeren (Oxydations-) Flamme des Ölbrenners, mit welchem mein
Apparat sich auch vergleichen läßt.

3) Will man die Delver dampfungsfläche ohne Vergrößerung der
äußeren Dimensionen des Ofnes beträchtlich vergrößern, so bracht man
nur die hintere Wand dieses Ofnes nach einem geeigneten Winkel zu
neigen. In diesem Falle durchläuft das Del einen längeren Weg, die
in einer gegebenen Zeit verdampfte Menge ist bedeutender und folglich
muß der Zug der Esse in einem solchen Verhältniss verstärkt werden,
ß, daß die Menge der in den Herd einströmenden Luft zur vollständigen
Verbrennung des Brennstoffes hinreicht.

Man begnügt bemach, daß der zum Heizen einer Locomotive bes-
immte Apparat in nichts Weitem besteht, als in einem Ofne, welcher
in dem Herde in solcher Weise angebracht ist, daß man die möglicher
größte Heizfläche erhält. Hierzu genügt es, diesen Kasten an der Mündung des Aschenfasses einer Locomotive (oder irgend eines Heizapparates) anzubringen.

Man kann folglich die Herdsohle aus Kupfer anfertigen, und zwar so, daß sie innerlich von Wasser bepflastert wird und einen Theil des Kessels selbst bildet. Für eine ausgiebigliche Heizung mit Mineralöl bestimmte Locomotive ist dennoch eine Einrichtung zu empfehlen, bei welcher der Herd und alle anderen Flächen ganz cylindrisch sind, alle ebenen Theile der Feuerbüchse wegfallen und die Stehbolzen vermieden sind.

An seinem oberen Theile ist der Kasten einer Reihe von Löchern verbunden, durch welche das Öel eintreten kann; dasselbe fließt über die vollen Theile dieses Kastens, welcher am unteren Theile einer innen und außen vorspringenden gußeisernen Unterlage ruht, um zu verhindern, daß das Öl durch die Erdschüttungen der Maschine aus dem Herde herausgeschleudert wird oder auf die Sohle fällt.

Die Locomotive Nr. 291, welche zu meinen Heizverbinden mit Mineralsölen benützt wurde, erhielt keinen so vollkommenen Apparat. Man mußte nämlich den Kasten vor den Aschenfall legen, letzteren mittels einer Blechplatte verschließen, welche nicht durch das Kesseltöpfers, sondern durch eine höhere Fläche geschützt wurde. Außerdem mußte der eiserne Rahmen, auf welchem der Druck an unteren Ende der Feuerbrücke lastet, selbst vor der Wirkung des Feuers mittels eines aus Ziegelsteinen hergestellten Mantels geschützt werden, welcher inneren durch ein Gewölbe aus feuerfestem Thon geschützt wurde. Indessen lehrte die Erfahrung, daß die Höhe des Herdes und die Erdschüttungen der Maschine, ungeachtet der mittelmäßigen Qualität dieses Thones und einer Geschwindigkeit der Locomotive von 60 bis 70 Kilometer per Stunde, diesen provisorischen Apparat nur wenig benachteiligten.

Die Verteilung des Deles auf den Kasten wird durch einen einzigen graduirten Hahn bewerkstelligt. Er, Briese, zweiter Director der Eisenbahnwerkstätten in Epernay, hat diesen Hahn durch einen außerordentlich einfachen Apparat ersetzt, dessen Beschreibung hier nicht gegeben werden darf. Der Maschinist kann nämlich mittels einer im Begriffe seiner Hand angebrachten, an einem geteilten Kasten sich bewegenden

62 In diesem Falle mußte der Kasten kreisförmig hergestellt werden und mehrere Tagen erhalten, welche sammlich wie der von mir angewendete rechtzügige Kasten constriert sind.

63 Die Ummischung der Locomotive für den Betrieb mit Mineralöl kostete bloß 900 Francs.
Schraube nach Belieben die Quantitäten Del zuziehen lassen, welche der zu erzeugenden Dampfmenge entsprechen.

Der Zug der Esse wird wie bei einer gewöhnlichen, mit Steinkohle geheizten Locomotive durch das Blasrohr erzeugt.

Beider richtiger Verwendung der Mineralöle hat man wedge Rauch, noch Schläfen zu befürchten. Bei bedeutender Geschwindigkeit der Locomotive ist der durch das Dampfauflassen vorgebrachte Zug so stark, daß man den Dampfverbrauch und somit die Dampferzeugung beliebig steigern kann, ohne Rauchbildung befürchten zu müssen.

Die Leitung des Feuers mittelst eines einfachen Hahnes nach dem Anziehen der aus der Esse abziehenden Gase, welche eine sehr schwache gelbliche Färbung zeigen müssen (was anzeigt, daß man keinen Luftüberschuß hat), ist eine so leichte Arbeit, daß man sie dem Lokomotivführer neben seinen gewöhnlichen Funktionen übertragen kann.

Bei Unfällen oder Stößen kann der Dampfleitungsablauf durch einen selbstwirkenden Apparat geschlossen werden, worauf das Feuer im Herbe plötzlich erlischt und somit nicht seine Brände veranlassen kann, durch welche bisher so entsetzliches Unglück herbeigeführt wurde.

Ich muß noch bemerken, daß die als Brennstoff mit Bortbeil verwendbaren Mineral- und Petroleumöle stets schwere und zähflüssige Dämpfe sind, welche sich nur schwierig entflammen lassen. Man probirt sie, indem man sie bis auf 100° C. erhitzt und dann eine gut brennende Bechafuß in die Flüssigkeit taucht, wodurch die Flüssigkeit erlischt muss.

30. Juni: 8: 60: 18 "
30. Juli: 11: 60: 18 "

Dampfverbrauch: Gewicht der Bemerkungen: Wagen.

3,70 Kilogr.: 50000 Kilogr.: Gewöhnliches Wasser.
4,58 ": 50000 ": Chemie.
4,71 ": 90000 ": Schönes Wasser.
4,70 ": 30000 ": Sehr schlechtes Wasser.

Die erwähnte Locomotive Nr. 291 ist unter kleines Modell (mit einer einzigen Treibachse; Gesammtgewicht 20,000 Kilogramm; Gewicht auf
der Treibachse 8,400 Kilogramm; Heizfläche 60 Quadratmeter. Bei den
gelungenen Versuchen vom 30. Juli (90,000 Kilogramm, Saft; 60 Kilomet.
Geiischwindigkeit) stieg die entwickelte Leistung auf ungefähr 250 Pferde-
kräfte, entsprechend 4.1/4 Pferdebätschen per Quadratmeter Heizfläche. Dies
ist sicherlich ein sehr befriedigendes Resultat.

Das Anzünden des Feuers beansprucht mit dem Glaskrobere einer
benachbarten Maschine fünf Viertelstunden; soll die Maschine durch den
gewöhnlichen Zug ihrer Ölle angefeuert werden, so sind dazu dritthalb
Stunden erforderlich. Die mit Kohlen geheizten Maschinen erfordern
zum Anfeuern dritthalb bis drei Stunden."

Diese Beobachtungen eines erfahrenen Ingenieurs lösen mir das
größte Vertrauen zur Locomotiven-Heizung mit Mineralölen ein, sofern
diese Dele aus dem Brennmaterialwelt austreten können.

II. Heizkraft des Petroleums und der Mineralöle.

In einem ungefähr 540 Kilogramm, Wasser fassenden Rohrenfessel ließ
ich einen gänzlich von Wasser umgebenen Herd aus Ziegelsteinen anbrin-
gen, an dessen Vorderseite eine mit Lüchern versehene Gussisenplatte
gleichzeitig das Del und die Luft zuführte. Das Del verbrannte sich auf
der Sohle, verschüttete sich und verbrannte in Berührung mit der durch
die Lücher einziehenden Luft ohne Rauch.

Das Mineralöl befand sich in einem aus Blech angeseiherten Ma-
rötte'schen Gefäß, welches mit einem langen, in Millimeter geteilten
Glasrohre versehen war. Das Volum des cilyndrischen Schnittes, welches im Gefäß jedem Millimeter Höhe der äußeren Höhe ent-
spread, hatte ich vorher mit der größten Sorgfalt bestimmt.

Die zur Verbrennung erforderliche Luft wurde durch einen von
einer kleinen Dampfmaschine getriebenen Ventilator zugeführt und mit-
telt eines, in der eingreifenden Luft entgegengelegter Richtung einge-
spült. Der Verbrannten eignete sich rasch. Es wurde ein Thermometer angezeigt die Luft konnte mittels zwei Bun-
lien'scher Brenner, welche das Verbindungshügel zwischen Hurd und
Ventilator erhielten, beliebig erhöht werden.

Der schon in einem mehrfachen Mantel eingewickelte Kessel wurde
von der umgebenden Luft noch vollständig durch eine kontinuierliche
Umfaßung mit Bleirohren isolirt, welche das zur Speisung bestimmte
kalt Wasser durchließ. Auf diese Weise wurde der Wärmeausfall von
Nutz herabgedrückt, mit Ausnahme einer einzigen Stelle, wo der sehr
geringe Einfluß dieses Verlustes auf experimentell besser bestimmt
wurde.

Dingler's polyt. Journal 8. CXII. 8. 3.
Die im Inneren des Herdes entwickelte Wärme erzeugte im Locomotivfessel Wasser dampf, welcher mittels eines Schlangenrohres kondensiert wurde. Das kondensierte Wasser wurde in graduierte und geschlitzte eisenblechernen Behälter geleitet, und aus diesen mittels (durch die Maschinen selbst) comprimirter Luft in die den Kessel umgebende Bleirohrenleitung getrieben, von welcher aus es ohne Verlust und mit einer bekannten Temperatur in den Kessel zurückkehrte.

Man hatte so die im Generator erzeugte Wärme. Es blieb noch die mit dem Rauche oder vielmehr mit den ungesäuerten Verbrennungsprodukten entweichende Wärme zu bestimmen. Diese Gase wurden in ein horizontales, mit einem doppelten Mantel versehenes Rohr geleitet, traten aus diesem in einen Raufen oder Condenstar, dessen Flächen, wie das horizontale Rohr, abgefüllt werden konnten, und entwickelten nach zahlreichen Umgängen in diesem Condenstar in der Gase, in welcher ein Thermometer angebracht war.

Eine aus einem Compoteur ablesende bekannte Wassermenge bespülte zwischen zwei Metallschalen alle vom Rauche beleckten Flächen, trat zwischen die beiden Mäntel des horizontalen Rohres und floh endlich nach außen ab. Die Temperatur des Wassers bei seinem Eintritte in den Kühlapparat, sowie bei seinem Austritte aus demselben, wurde mittels zweier sehr empfindlicher Thermometer gemessen.

Die Verbrennungsgase besaßen bei ihrem Entweichen eine Temperatur, welche um 2 bis 3 Grade höher war als die umgebende Temperatur, und die zur Speisung des Herdes dienende Luft wurde in der Weise erhitzt, daß sie genau dieselbe Temperatur wie die Verbrennungsgase bei ihrem Austritte aus dem Apparate besaß. Somit war die durch die umgebende Luft dem Herde zugeführte Wärmemenge der durch die Verbrennungsgase aus dem Apparate abgeführten Wärmemenge vollkommen gleich. In diesen Gassen ist zwar ein Theil des Sauerspoffes durch ein gleiches Volum Kohlenfäure ersetzt, da aber die spezifische Wärme der beiden Gase bei gleichem Volum dieselbe ist, so wurde dem Apparate durch die Kohlenfäure nicht mehr Wärme entzogen, als durch den Sauerspoff zugeführt. Was den Stoff und den Wasser dampf anbelangt, so traten dieselben mit der selben Temperatur und in derselben Menge aus, wie sie eintrat, dieses System besaß den großen Vortheil, daß wenn mehr Luft eingeleitet wurde, als zur Verbrennung erforderlich war (vorausgesetzt daß das Abführen der Verbrennungsgase in zweckentsprechender Weise geschehe), dieser Luftüberschuß die Genauigkeit des Verfahrens nicht beeinträchtigte.
Die zur Bestimmung der Verbrennungswärme erforderlichen Berechnungen sind übrigens ziemlich einfach. Die Wärmemenge ergibt sich durch die Formel:

\[Q = \frac{(637 - T) \cdot P + K (t - t')}{M} \]

in welcher bezeichnet:

- \(Q \) die Verbrennungswärme;
- \(P \) das Gewicht des im Generator erzeugten Dampfes;
- \(T \) die Temperatur des Speisewassers;
- \(K \) das Gewicht des den Rauch abführenden Wassers;
- \(t' \) die Temperatur des Wassers bei seinem Eintritte in den Rauchabfuhrer;
- \(t \) die Temperatur dieses Wassers bei seinem Austritte;
- \(M \) das Gewicht des angewendeten Deles.

Nachdem der Apparat in Thätigkeit gesetzt worden, fuhr ich mit dem Heizen fort, bis die Werte \(t - t' \), \(P \) und \(M \) absolut constan wurden. Dann bestimmte ich sie während zwei bis etwa drei Stunden, und ermittelte so die Verbrennungswärme mit großer Genauigkeit.

Im Allgemeinen ist diese Wärmemenge geringer als sie sich aus der Rechnung nach dem Dulong'schen Gesetze und nach der von Fabre und Silbermann bestimmten Verbrennungswärme des Wasserdampfes und des Kohlenstoffes ergibt, wenn man mit sauerstofffreien Deles arbeitet.

Für sehr sauerstoffreiche Deles, wie Steinföllmil, findet man hingegen eine größere Verbrennungswärme als die mit Zugrundlegung des Dulong'schen Gesetzes berechnete. Derartige Deles würden dem nach zur Classe der explosiven Körper gehören, welche mehr Wärme enthalten, als die sie constituirenden Elemente im isolirten Zustande besitzen.

Ich muß schließlich der Verwaltung der Pariser Gasgesellschaft für ihre Unterstüzung meiner Arbeit, deren Durchführung ohne ihre Hülfe sehr schwierig und kostspielig gewesen wäre, meinen Dank aussprechen; diese Gesellschaft überließ mir zwei Dampfmaschinen, ließre mir alles zu meinen Versuchen erforderliche Steinföllmil, und stellte einen ausgeschickten Maschinenaarbeiter zu meiner Versügung, und dieser alles unentgeltlich.

Herr Rolland, dem Generaldirector der Staatsfabriken, verdanke ich den Vorteil, über eine Belleville'sche Maschine zu verfügen.
welche es mir ermöglicht, die durch das im Vorstehenden beigebrachte Verfahren erhaltenen experimentellen Daten mit denen der Praxis vergleichen zu können.

LIV.

Ueber Verbesserung saurer Grubenwässer zum Gebrauche für den Dampfkesselnbetrieb; von Dr. Erwin Willigk, Privatdocent an der Prager Hochschule.

In einem der größten Kohlenwerke Böhmens traten stark saure Grubenwässer auf, welche, weil sie mittels Pumpwerken geboden und auch als Speisewässer für einen sehr ausgedehnten Dampfkesselnbetrieb verwendet werden mußten, nicht nur Steigröhre und Bentile, sondern auch die Kesselnähte stark angriffen.

Es handelte sich, da kein anderes Wasser zur Speisung der Kessel vorhanden war, darum, daselbe von den die Metalle angreifenden Verbindungen zu befreien oder dieselben unschädlich zu machen.

Zunächst wurde das Wasser der Analyse unterworfen, deren Resultate hier folgen.

Probe A ist Wasser so wie es aus der Grube zu Tage gehoben wird; daselbe ist von ausgezeichnetem Ordn und aufgeschwemmtem Thone trübe, hat filtrirt einen schwachen Stich in's Gelbliche, ist geruchlos, besitzt einen tinctenhaften Geschmack, reagirt stark sauer, trübt sich auch nach mehrtägigem Stehen an der Luft nicht und hat ein Bolumgewicht von 1,016 (bei 15°C). Beim Kochen bildet es ein bedeutendes Sediment; der feste Rückstand schwärzt sich bei hoher Temperatur durch Zersetzung der beigemengten organischen Substanz.

Probe B ist Wasser aus derselben Grube, welches, um es von den aufgeschwemmten Substanzen zu befreien, an der Grube wiedeholt durch Rohrfeinder filtrirt und dann unmittelbar zur Speisung der Dampfkessel verwendet wird. Das Wasser war klar, zeigte daselbe Bolumgewicht sowie die übrigen physikalischen Eigenschaften wie Probe A.

A. Die qualitative Analyse ergab folgende Uebergemengtheile: Kali, Natrium, Kalk, Magnesia, Eisenspat, Eisenoxyd, Manganerzspat (Spur), Zinkoxyd, Natrium, Chlor (Spur), Schwefelsäure, Kieselsäure und organische Substanz. Der Chlorgehalt ist für die Gewichtsbestimmung zu klein.
Bei der quantitativen Analyse wurden: Kali, Natron, Kalk, Magnesia, Thonerde, Jinkoryd, Schwefelsäure und Kieselsäure für sich, Eisen (als Gisenoryd) zugleich mit dem Manganoxyd, und die organische Substanz aus dem Verluste bestimmt.

Berechnet wurden die Salze sämtlich im wasserfreien Zustande.

| Wasserange | in 1000 Tön. | 308,2 Grm. gaben | 0,5595 Grm. | 1,8458 | 345,6 | 0,6375 | 1,8446 | 1238,5 | 0,0315 | 1,8449 feinen Rückstand | 624,6 | 0,0376 | 0,05012 | Kali | 404,5 | 0,1092 | 0,29920 | 625,6 | 0,0843 | 0,13470 | Natron | 416,9 | 0,0640 | 0,1530 | 417,4 | 0,0634 | 0,1519 | 629,8 | 0,0210 | 0,0339 | 613,9 | 0,0185 | 0,0301 | 416,9 | 0,0125 | 0,0299 | 417,4 | 0,0109 | 0,0261 | 307,3 | 0,3364 | 1,0840 | 310,5 | 0,3406 | 1,0970 | 416,9 | 0,0085 | 0,0240 | 417,4 | 0,0110 | 0,0260 | 0,0254 Grm. Kali verlangen 0,0216 Grm. Schwefelsäure

0,0601 Natron 0,0775
0,2692 Kalk 0,3988
0,1847 Magnesia 0,2694
0,1625 Gisenoryd 0,2208
0,0317 Thonerde 0,0740
0,0280 Jinkoryd 0,0275

Dann folgt sich das quantitative Verhältniss sämtlicher Überschüsse des wasserfreien Rückstandes folgenderweise heraus:

Gesammtmenge des feinen Rückstandes in 1000 Tön. = 1,8449
Schwefelsaures Kali 0,0470
Schwefelsaures Natron 0,1376
Schwefelsaure Kalk 0,6680
Schwefelsaure Magnesia 0,4041
Schwefelsaures Gisenoryd 0,0845
Schwefelsaure Thonerde 0,1057
Schwefelsaures Jinkoryd 0,0555
Kieselsäure 0,0251
organ. Substanz u. Verlust 0,0264

1,8449
B. In diesem Wasser wurden der Menge nach bestimmt: der feste Rückstand; Eisenoxyd (Manganoxyd), Thonerde und Zinkoxyd zusammen; Kalk, Magnesia, Schwefelsäure und Kieselsäure für sich.

<table>
<thead>
<tr>
<th>Wasserstoffe in 1000 Ltr.</th>
<th>412,8 Grm. gaben 0,759 Grm. = 1,338 Grm. festen Rückstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>818,5</td>
<td>0,9664</td>
</tr>
<tr>
<td>605,5</td>
<td>0,1628</td>
</tr>
<tr>
<td>345,6</td>
<td>0,0454</td>
</tr>
<tr>
<td>575,5</td>
<td>0,1338</td>
</tr>
<tr>
<td>455,5</td>
<td>0,5009</td>
</tr>
<tr>
<td>625,6</td>
<td>0,0150</td>
</tr>
</tbody>
</table>

Die Übereinstimmung dieser Zahlen mit den bei A gefundenen macht jede weitere Berechnung überflüssig und zeigt, daß bei der Filtration über Rostbinder keine basischen Salze ausgezogen wurden, sonach die beiden Wasser identisch sind.

Zehn Centner dieser Wässer enthalten, annähernd und in rundem Zahlen ausgedrückt, die bedeutende Menge von 1 Pfund 25 Pfennig (1 Kilogramm) festen Rückstandes; und dieser enthält, als für die Verwendung des Wassers besonders nachtheilig:

- 11 Lochen schwefelsaures Eisenoxyd
- 3 Lochen schwefelsaure Thonerde
- 20 Lochen schwefelsauren Kalk

Um eine Methode zu finden, das Wasser für die Kesselspeisung tauglich zu machen, wurden nachfolgende Versuche angestellt:

Eine Probe mit körnigem Kalk in Berührung ergab erst nach drei Tagen Ausködern der sauren Reaction und Ausseheidung von Eisenoxydhydrat.

Eine Probe mit Kreidestücken in Berührung, zeigte schon nach 30 Minuten Ausködern der sauren Reaction und geringe Abscheidung von Eisenoxydhydrat.

Eine Probe über Magnesit stehen gelassen, war nach 24 Stunden noch sauer und zeigte keine Abscheidung.

Mit Witherit in Berührung, zeigte das Wasser schon nach zwei Stunden, viel rascher noch beim Schütteln, Abwesenheit von Eisenoxyd und Ausködern der sauren Reaction.

Nach diesen Versuchen eignet sich zur Verbesserung des fraglichen Grubenwassers am besten Witherit, indem Magnesit sehr langsam wirksam, wohl auch zu kostspielig ist, bei Anwendung von Kalk (wenn auch in Form von Kreide sehr schnell wirksam) aber die ohnehin sehr be-
deutende Menge des im Wasser enthaltenen Gypses unnötig vermehrt würde, was bei Anwendung von Witherit wesentlich, indem die durch Zersetzung der schwefelsauren Säfte ausgeschiedene Schwefelsäure in Form von unlöslichem schwefelsaurem Barpt zu Boden fällt.

Zur genaueren Ermittlung der Wirksamkeit des Witherites wurde eine größere Wassermenge wiederholt durch ein langes Glashrohr geleitet, welches mit kleinen Stückchen desselben gesüßt war.

Bei 50 Fuß Gesamtlänge der Witheritquelle hörte die saure Reaction auf, bei 110 Fuß Länge der selben waren keine Eisenfäße in dem Wasser mehr nachzuweisen.

Die qualitative Analyse des so behandelten und filtrirten Wassers ergab, daß von den ursprünglichen Ubergemengtheilen deszelfen: Eisenovyd (Manganovyd), Thonerde und Zinkovyd vollständig ausgeschieden wurden; nachweisbar blieben: Schwefelsäure, Alkalien, Kalk und Bittererde.

Um zu ermitteln, wie weit die Zersetzung der im Wasser gelösten schwefelsauren Säfte durch Einwirkung des Witherites erfolgte, wurden:
1) die Gesamtmenge des festen Rückstandes, 2) die Schwefelsäure und 3) der Kalk der Menge nach bestimmt.

1) 370,5 Grm. Wasser gaben 0,519 Grm. d. i. in 1000 Tö 1,3198 Grm. Rückstand
2) 370,5 " " " 0,2873 " " " 0,7754 " Schwefelsäure
3) 410,0 " " " 0,10770 " " " 0,260 " Kalk

Es enthält demnach das Wasser in 1000 Theilen:

<table>
<thead>
<tr>
<th>aus der Grube</th>
<th>mit Witherit behandelt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rückstand</td>
<td>1,8449 Th.</td>
</tr>
<tr>
<td>Kalk</td>
<td>0,2692</td>
</tr>
<tr>
<td>Schwefelsäure</td>
<td>1,0955</td>
</tr>
</tbody>
</table>

Sonach stellt sich heraus, daß durch die Filtration über Witherit die Verbindungen der Schwefelsäure mit KO, NaO, CaO und MgO unzerlegt blieben, während sie aus ihren Verbindungen mit FeO, AI2O3 und ZnO in unlöschlicher Form ausgeschieden wurde; nach folgender Berechnung:

Der Rückstand des ursprünglichen Wassers betrug: 1,8449
" " " filtriret: 1,3198
Differenz = 0,5251

Durch Filtration wurden ausgeschieden:

- Schweif. Eisenovyd: 0,3755
- Thonerde: 0,1057 im Ganzen: 0,5257
- Zinkovyd: 0,0555
Das ursprüngliche Wasser enthielt an Schwefelsäure: 1,0955
filtrirt währ. die nach der Filtration im Wasser zurückgebliebenen:
0,1525 Th. Eisenoxyd an S03 : 0,2208
0,0317 " Hörnerde " : 0,0740 im Ganzen = 0,3233
0,0280 " Hinterkopf " : 0,0275
während die nach der Filtration im Wasser zurückgebliebenen:
0,0254 KO an S03 verlängert
0,0601 NaO
0,2962 CaO
0,1347 MgO
im Ganzen = 0,7673

Im filtrirten Wasser wurde an S03 gefunden : 0,7754
Der Kalkgehalt im ursprüngl. Wasser wurde gefunden = 0,2692 ;

Die angewendete Reinigungsmethode erscheint nach dem Angeführten brauchbar, insofern das Wasser nicht nur völlig neutralisiert, sondern auch die Abtheilung von basisch-schwefelsauren Eisenoxyden, welches erfahrungsgemäß nicht unwesentlich zum Erhärten des Kesselfeines beiträgt, unmöglich gemacht wird, ohne daß der Gehalt an schwefelsauren Kalk steigen würde.

Die Kosten der Herstellung einer Vorrichtung, in welcher das Speiseswasser eine 110 Fuß lange Witteritaule durchlaßt, verdienen wohl keine Beachtung und stellen sich, mit Rücksicht auf die großen Verhältnisse saurer Speisewasser, auch übrigens kaum zu hoch, indem von ihnen unter- suchten, unwöhnlich schwefelsaurereichen Grubenwasser 1000 Ctr., in rund 80 Pf. Witterit zur Reinigung benötigen.

Prag, im März 1869.
LV.

Neuer Versuch zur Fabrication von Bessemer-Wolframstahl; von Capitän Leguen in Brest.

Aus den Comptes rendus, t. LXVIII p. 592; März 1869.

64 Polytechn. Journal Bd. CLXXXIV S. 480.
65 Polytechn. Journal Bd. CLXXXIII S. 220.

„Die auf dem Ostbahnhofe probirten Wolframstahlschienen müssen zu den weichsten und zähesten Schienenformen gerechnet werden.“

„Beim Ausschmieden und beim Stauchen verbre dich dieser Stahl durchaus nicht und gab Drehstäbe von bemerkenswerther Festigkeit.“

„Um das Verhalten dieses Stahles beim Härten kennen zu lernen, wurden aus demselben mehrere Stäbe von 25 Millim. Seite geschmiedet; jeder Stab wurde, nachdem ein Stück abgebrochen war, bei Stichfeuer bis genug gehärtet. Das vor dem Härten ziemlich grobe, weiche, glänzende, etwas härte Korn erschien nach dieser Operation sehr fein, grau und lammtartig. Dieses Reaktions wird mit den sprödesten in Terre-Noire dargestellten Stahlsorten erhalten und diese sind dann für Schienen gewöhnlich zu brüchig; wogegen der Wolframstahl eine sehr grobe rückwirkende Festigkeit zeigte, obgleich er sich sehr gut harten läßt.“

Aus diesen Beobachtungen folgt, daß der Wolframstahl sehr weich
und sehr fest sein und sich dabei gut härten lassen kann. Dieses Verhalten würde sich mit Vorteil benutzen lassen, um z. B. an bestimmten Stellen gewisse Maschinenteile zu härten, ohne die Weichheit des Stahles an den anderen Teilen zu ändern.

Um die vergleichsweise Dauerhaftigkeit dieser Wolframstahlstählen kennen zu lernen, beobachtet die Verwaltung der Öfisbahn, dieselben an Punkten legen zu lassen, wo sie am meisten abgenutzt werden.

um 3,80 Frs. und per laufenden Meter um 1,44 Frs. höher zu sein kommt. Diese Differenz würde aber nicht großer sein, als bei Anwendung guter Staßsorten und durch die vom Wolfram bewirkte Qualitätsverößerung reichlich ausgewogen werden.

LVI.

Über Darstellung von pulverförmigem hydraulischen Kalk; von J. de Villeneuve.

Aus dem Comptes rendus, t. LXVIII p. 389; Februar 1869.

Der Erfolg der durch diese ausgezeichneten Männer im größten Maßstab ausgeführten Arbeiten hat allen Bedenkenfeinden ein Ende gemacht und ich will nun die Methode zur sicheren Benutzung meines schon sehr verbreiteten Verfahrens genau mitteilen. Sie besteht darin, daß man 1) zunächst den hydraulischen Kalk zerschlagen läßt, und zwar nicht etwa durch Besprühen mit einem Minimum von Wasser, sondern im Gegen teil durch Begießen mit der größten Wassermenge, welche er zu absor biren vermag; man darf mit dem Zulaufe von Wasser erst an der Grenze

A. d. Red.
ausbleiben, wo das Kalkpulver teigartig wurde; 2) hierauf bringt man den benetzten Kalk in Haufen und läßt ihn mindestens acht Tage liegen, damit alle Klumpen desselben vollständig zerspalten können; 3) dann wird der zerfallene Kalk durchgesiebt, damit die darin enthaltenen unvollkommenen Stückchen abgeschieden werden; gleichzeitig werden die von einer früheren Operation herrührenden Steinehen oder Knoten, welche bereits durch Anziehen von Feuchtigkeit aus der Luft oder durch leichtes Beiprengen mit Wasser hydropatisirt worden sind, zerrieben und der übrigen Masse beigemengt. Das auf diese Weise erhaltenen pulverförmige Gemenge wird nun vollständig gelöst; es kann sich dann in den Mauerwerke, zu welchem es verwendet wird, nicht weiter desaggregiren. Die Maschen des zum Durchschieben oder Durchheultn dienenden Drachtmeshes dürfen nicht über 1/2 Millimeter Durchmesser haben; denn je seiner das Kalkpulver ist, desto rächer und inniger wird es von den zum Anmachen des Mörtels benutzten Wasser durchdrungen und desto besseren Kalkbrei gibt es. 4) Damit der Kalk seinen pulverförmigen Zustand behält, muß ein dichtes Aushäufen desselben vermieden werden, indem sofort das durch die atmosphärische Kohlenstoffwasserstoffzusammen- theilung der Kalkpulvertheile begünstigt würde. Auch durch die Verpackung in Kässen würde das Kalkpulver zu nicht werden; man muß es daher ganz lose aufgeschüttet in Schuppen aufbewahren, welche gegen den Regen gehörig geschützt sind.

Die Bortheile, welche die Anwendung von hydraulischen Kalk in Pulverform gewährte und die von den Pariser Architekten und Ingenieuren seit sehr wohl gewürdigt worden, bestehen in der Erzügung von Material, Verbindung des Erhärtens, Erzügung an Arbeit beim Anbrinnen des Mörtels, vollständiger Bescheidung der mit dem Lochen des gewöhnlichen hydraulischen Kalkes verbundenen Nebelstände, Leichtigkeit des Trans-
portes in Säcken und zuverlässiger Conservirung großer Borräthe des Materials.

Durch die Darstellung von pulverförmigem hydraulischen Kalk ist die Ausführung sehr großartiger öffentlicher Bauten, selbst in weit entfernten Ländern, in unerwarteter Weise begünstigt worden. Die riesigen Arbeitsplätze auf der Landenge von Suez, sowie die Werkräume der algerischen Eisenbahnen werden jetzt vom Marseiller Hafen aus mit regelmäßigen Zustellungen von pulverförmigem hydraulischen Kalk versieht.

LVII.

Über die Analyse des Cementmergels; von Dr. G. Lindenmeyer.

Die quantitative Bestimmung des Kalkes als Carbonat, beziehungsweise die Überführung des oralauren Kalkes in solches, erfordert eine gewisse Kunstoffigkeit insofern als durch eine zu sehr gesteigerte Temperatur leicht das Entweichen eines Theiles Kohlensäure veranlasst wird. Man empfiehlt daher wohl die zu wägende Probe nur gelinde zu erhitzten oder höchstens bis zum schwachen Glühen zu bringen.

Genauere Angaben über das Verhalten des kohlenstoffreichen Kalkes in höherer Temperatur finden sich in den „Gelehrten Anzeigen der königl. bayerischen Akademie der Wissenschaften“ (Nr. 33 vom 20. März 1858) mitgetheilt. Darnach eignet sich zur quantitativen Bestimmung des Kalkes als Carbonat die Höhe der einfachen, mit 90 procentigem Weingeist getränkten Weingeistflasche unter Anwendung von Platintiegeln mit etwa drittelb Kubikcentimeter Inhalt. Unter diesen Umständen gibt der kohlensaure Kalk, für sich allein erhitzt, keine Kohlensäure ab, wie es hingegen bereits in der Weingeistflasche mit doppeltem Luftsorge oder der Flamme des Bunsen'schen Gasbrenners in starkem Grade der Fall ist. Vielmehr nimmt der Kalk bei dieser Anordnung im trockenen Kohlensäurestrom rasch über ein halbes Äquivalent Kohlensäure auf; es war die Absorption derselben in einem Versuche dann circa das Dreißigfache
von derjenigen bei gewöhnlicher Temperatur und dieselbe geht derartig energisch von Statten, daß die Probe in Folge davon sichtlich stärker erglühnt.

Man könnte nach diesen Thatsachen geneigt sein, ein Glühen des Mergels in der einfachen Weingeistlampe beziß der Wasserbestimmung in demselben anzuwenden, da ja der Versuch mit reinem kohlenäurem Kalk bewies, daß derartige hierbei unveränderlich ist. Die eventuelle Gewichtsabnahme, organische Substanzen u. s. w. abweisend vorausgesetzt, wurde dann also direkt dem Wassergehalt des Mergels entsprechen.

Bei Ausführung dieses Verfahrens sieht man sofort, daß Etwas bezüglich der Methode nicht ganz in Ordnung fehlt muß, indem die Probe auch nach oft wiederholten Glühen nicht constant im Gewicht wird, wie es doch nach dem Verhalten des reinen kohlenäurem Kalkes unter diesen Umständen der Fall sein müßte. Die Probe zeigt aber dagegen beim Mergel nach abermaligem Erhitzen immer wieder eine geringe Gewichtsabnahme, und die Operation geht zuletzt faul und ohne exakten Abschluß von Statten.

Versucht man in dieser Weise die Wasserbestimmung auszuführen und benutzt dafür eine eigene Separatprobe des Mergels, eine andere für die Bestimmung der übrigen Bestandtheile, so fällt auch bei sorgfältigem und gewandtem Operiren das schließlich Ergebnis der Analyse nicht zufriedenstellend aus; man erhält einen namhaften Ueberschuß.

Führt man mit dem bei berechter Wasserbestimmung erhaltenen Glübungszustand die weitere Analyse durch, so stimmen die Resultate nicht mit der Analyse der ungeglühten Probe; in der Kohlenäurebestimmung ist diese Abweichung am beträchtlichsten.

Bildt die Bestimmung des Wassergehaltes aus directem Wege, durch Absorption im Chlorcalciumrohre, ausgeführt, und vergleicht man allsdann das Ergebnis deselben mit der Gewichtsabnahme, welche die dem Versuche unterworffene Probe des Mergels erlitt, so ist letztere weit beträchtlicher.

Eine weitere experimentelle Verfolgung dieser Thatsachen hat nun ergeben, daß, obwohl kohlenäurem Kalk unter den erwähnten Umständen vollständig stabil ist, bei Annäherung von Kieselsäure — wie im Mergel der Fall vorliegt — dagegen bereits Kohlenäure ausgetrieben wird.

Die auf solche Weise aus dem Mergel bei sehr schwachem Glühen entwollte Kohlenäure ist auch leicht qualitativ durch Kalkwasser u. s. w. nachzuweisen.

Durch Anführung einiger Wägungsdaten will ich versuchen ein
Bild davon zu geben, wie groß der durch dieses Verhalten bei der Mergelanalyse verursachte Fehler ausfallen kann.

Als Material für diese Belege diente ein Mergelkalk von Veitshöchheim mit Eingriffen weit zu Töpf an der Yar, welcher mir als ein sehr qualifiziertes Rohmaterial von dem Eigentümer einer bedeutenderen Mergelsteinbruch, wo derselbe zur Verwendung kommt, behufs der Analyse zugestellt war.

Um die Proben von Unterbringungsmaterialien dieser Kategorie mit einem bestimmten Feuchtigkeitsgehalte zur Ausgangswägung zu bringen, ist es am besten dieselben längere Zeit bei gewöhnlicher Temperatur im Exsiccator über Schwefelsäure verweilen zu lassen. Es stellt sich dabei meist schon nach einigen Tagen Constanz im Gewichte ein, und auch bei sehr langem Verweilen im Exsiccator findet alsdann keine weitere Gewichtsabnahme statt. Es gab in solcher Weise ein Gramm meines lufttrockenen Unterbringungsmaterials im eingegluerten Zustande 0,010 Grm. Wasser ab, entsprechend also gerade einem Procente. Von dem Material mit diesem Feuchtigkeitsgehalte wurde ein größerer Vorrath zum Entnehmen der Proben bei Durchführung der Analyse und der betreffenden Belegeversuche im vollverstopffeten Gefäß ausgebrochen.

Man konnte das Ergebnis dieses Versuches nun aber noch dadurch kontrollieren, daß man in dem Nüchteren des Zerlegungsrohres abermals eine Kohlensäurebestimmung ausführte und dieselbe mit dem Gesammt-
gehalt an Kohlensäure in dem Mergel und dem gefundenen Wasserbetrag in Relation brachte.

säure zu 0,453 — 0,438 = 0,015 Grm. Der Betrag um welchen die Abnahme des Verhältnisrohres die Zunahme des Chlorcalciumrohres übersteigt, vereinigt mit der im Mergel noch verbliebenen Kohlensäure, gab also genau wieder die in der frischen Probe vorhandene Kohlen-
säuremenge.

Nachdem so erweisen war, daß die beobachtete Differenz in den Mergelanalysen wirklich von schwacher Glühspur ausgetriebener Kohlensäure herrührte, in dem oben mitgeteilten Versuch aber in der Verhältnisrohr so sicher in einem geringeren Temperatur erbrachte als im Platintiegel bei der oben angegebenen Anordnung, so habe ich noch das Ergebnis einer derartigen Versuchsreihe im Platintiegel mitgeteilt.

Es ergab ein Gramm des lufttrockenen Mergels beim Beobachtung in der Eingangs erwähnten Weise, im Platintiegel über der einfachen Weingeistlampe geglüht, folgende Gewichtsabnahme, ausgedrückt in Pro-
centen der lufttrockenen Substanz:

<table>
<thead>
<tr>
<th>Nach einer Stunde</th>
<th>9,5 Procente</th>
</tr>
</thead>
<tbody>
<tr>
<td>zwei Stunden insgesamt</td>
<td>11,0</td>
</tr>
<tr>
<td>drei</td>
<td>12,1</td>
</tr>
<tr>
<td>vier</td>
<td>12,4</td>
</tr>
<tr>
<td>fünf</td>
<td>12,7</td>
</tr>
<tr>
<td>sechs</td>
<td>13,2</td>
</tr>
<tr>
<td>sieben</td>
<td>13,5</td>
</tr>
</tbody>
</table>

Nach der direkten Bestimmung betrug nun der Wassergehalt im lufttrockenen Mergel 2,45 Procente (W oben). Es fand also während der ersten Stunde des Erhitzens bereits eine sehr beträchtliche Kohlen-
säureentwicklung, 7,05 Proc. statt; dieselbe sank indes dann rasch herab und ging nach dreistündigem Glühren nur noch so träger voran, daß auf die Stunde durchschnittlich bloß ein Drittel Proc. kommt. Die Ge-
samatausgabe an Kohlensäure während zweistündigem Glühren betrug

11,05 Procente der lufttrockenen Substanz und 37,02 Proc. der in dem Mergel überhaupt vorhandenen Kohlensäure.

Analog musste sich voraussichtlich ein fühlbares Gemenge von Kohlensäurem Kalk und Kieselsäure verhalten; auch hierüber habe ich einige direkte Versuche ausgeführt.

Von diesem Kohlensäurer Kalk wurden nun 0,5 Grm. mit der gleichen Gewichtsmenge reiner frisch ausgeguffter Kieselsäure innig gemischt und das Gemenge abseits von der Luft erhitzt.

Der Betrag der ausgetriebenen Kohlensäure ergab sich hierbei bezogen auf 100 Gewichtsteil in dem Gemenge vorhandenen Kohlensaurem Kalkes, resp. Kohlensäure:

<table>
<thead>
<tr>
<th>Zeit (Stunde)</th>
<th>Kohlensäure (Proc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>2,6</td>
</tr>
<tr>
<td>1/2</td>
<td>3,4</td>
</tr>
<tr>
<td>1</td>
<td>4,2</td>
</tr>
<tr>
<td>1 1/2</td>
<td>4,8</td>
</tr>
<tr>
<td>2</td>
<td>5,4</td>
</tr>
</tbody>
</table>

Im Rückstande wurde wieder die noch vorhandene Kohlensäure bestimmt, und ergaben sich dafür 38,00 Proc. des anfänglich vorhandenen Kohlensäurem Kalkes. Diese mit dem lebten zugehörigen Werthe der obigen Zusammenstellung vereinigt, gibt als Kontrolle der Kohlensäuregehalt im angewandten Kalkcarbonat zu 5,4 + 38 = 43,4 statt 44 Procenten, welche die Rechnung verlangen würde, und 43,6 desjor durch den Versuch gefundenen Werthes dafür.

In einem anderen Versuche musste ich Kieselsäure und Kohlensäuren
Kalk ohne dieselben zuvor ausgegösst zu haben, also mitammt ihrer hygroskopischen Feuchtigkeit gewogen, da ja im Mergel auch immer noch ein geringer Wasserrichhalt zugegen ist.

In einer Parallelprobe hatte die verwandte Kieselsäure einen Wassergehalt von 10,4 Procenten, der kohlenfkte Kalk wie oben 3,2 Proc. ergeben.

Ein Gramm des Gemenges von beiden Substanzen zeigte nun unter den bekannten Umständen folgenden Verlust an Kohlensture, nach Abzug des Wasserhaltes:

<table>
<thead>
<tr>
<th>Nach ½ Stunde</th>
<th>0,4</th>
<th>0,9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,4</td>
<td>5,4</td>
</tr>
<tr>
<td>1/2</td>
<td>3,4</td>
<td>7,8</td>
</tr>
<tr>
<td>2</td>
<td>5,4</td>
<td>12,5</td>
</tr>
<tr>
<td>2 1/2</td>
<td>6,4</td>
<td>14,5</td>
</tr>
<tr>
<td>3</td>
<td>7,8</td>
<td>17,7</td>
</tr>
<tr>
<td>3 1/2</td>
<td>9,4</td>
<td>21,4</td>
</tr>
<tr>
<td>4</td>
<td>10,3</td>
<td>23,2</td>
</tr>
<tr>
<td>4 1/2</td>
<td>10,6</td>
<td>24,1</td>
</tr>
</tbody>
</table>

Es war hier also bereits nahe der vierte Theil der überbaupt vor dem Glühen vorhandenen Kohlenstüre entwichen.

Auch in dem Glührückstand von diesen Versuche wurde zur Controlle die Bestimmung der darin verbliebenen Kohlenstüre ausgeführt. Dieselbe fiel indes etwas geringer aus, als die Gewichtsabnahme der Mischung von kohlenfurem Kalk und Kieselsäure erwarten lie. Es rührt dieses wohl von einer bereits weiter vorangeschrittenen Verbreitung des gebil- deten Kalksilicatates her, welche sich einer vollkommenen Veröhrung durch die Salpetersäure einigermaßen widersehe.

Ich erhielt nämlich aus dem Rückstande nur 0,152 Grm Kohlenstüre. Verruthsichtig man nun, daß in dem Gemische 0,500 Gramme luftrodenen kohlenfuren Kalkes mit 3,2 Proc. kohlenstüre der Feuchtigkeit, entsprechend also 0,016 Grm., enthalten waren, und außerordm die gleiche Menge der Kieselsäure noch 0,052 Grm. Wasser, entsprechend 10,4 Proc. der Kieselsäre, dem Gemische zugeführt wurden, also der Wassergehalt in Ganzen 0,052 + 0,016 = 0,068 betrug, so bleibt, da die Gesamtanbahn beim Glühen in Folge des ent- wischten Wassers und eines Theiles der Kohlenstüre sich auf 0,121 Grm. belie, für die entwickelte Kohlenstüre also 0,121 — 0,068 = 0,053 Grm. Im Rückstande wurden bei der Bestimmung nun noch 0,152 Grm. Kohlenstüre gefunden, und diese mit der entwickelten vereinigt gibt 0,053 + 0,152 = 0,205 Gesammtkohlenstüre, welche von 0,500 — 0,016 = 0,484 Grm. reinem kohlenfurem Kalk herstammte. Von 100 Ge-
wichtigkeiten des letzteren erhielten wir also \(\frac{100 : 205}{484} = 42,36 \text{ Proc.} \)
während 44 Proc. verlangt werden. Diese Abweichung ist abermals viel beträchtlicher als die durch die gewöhnlichen Fehlerquellen der Methode und muß wohl wieder als eine Folge der bereits weiter ausgegebildeten Verkrüppelung angesehen werden.

Ein zweiter Versuch mit denselben Materialien ergab folgende Werte für die beim schwachen Glühen in bekannter Weise ausgetriebene Kohlensaure:

<table>
<thead>
<tr>
<th>Nach 1 Stunde</th>
<th>2 Stunden</th>
<th>3 Stunden</th>
<th>4 Stunden</th>
<th>5 Stunden</th>
<th>6 Stunden</th>
<th>7 Stunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>verloren 100 Ge. Kohlensaure</td>
<td>3,7</td>
<td>5,8</td>
<td>7,6</td>
<td>8,1</td>
<td>8,5</td>
<td>9,1</td>
</tr>
<tr>
<td>Kohlensaure</td>
<td>8,4</td>
<td>13,2</td>
<td>17,2</td>
<td>18,4</td>
<td>19,3</td>
<td>20,7</td>
</tr>
</tbody>
</table>

Auch hier ließ die Bestimmung der Kohlensaure einen namhaften niedrigeren Werth finden als die Synthese verlangte, indem sich selbst analog der vorigen Deduction zu 42,6 Procenten ergab.

Als Beleg wie rasch sich die Kohlensaureausgabe bei höherer Temperatur steigert, mag noch dienen, daß eine ganz gleiche Probe, über dem Bunsen'schen Gasbrenner geglührt, nach einer Stunde bereits 50 Procente, nach zwei Stunden 57,8 Procente der im Gemenge vorhandenen Kohlensaure ausgegeben hatte.

Schließlich will ich noch die Gesammtzusammenlegung des für die obigen Versuche benutzten Mergels anführen, welche nach übrigens be-
kannter Methode ermittelt wurde. Für die Bestimmung der Alkalien wurde nach Wöhler der Mergel einfach durch starkes Glühen aufgeschlossen u. s. w.; die Alkalien wurden durch Ermittlung des Schwefeläuregehaltes in dem eventuellen Gemenge der Sulfate bestimmt; die erhaltene Schwefelsäure entsprach indes genau der von reinem Kali beanspruchten und es war also kein Natron vorhanden. Hundert Gewichts-
theile luftrochenen Mergels enthielten:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kali</td>
<td>36,84</td>
</tr>
<tr>
<td>Kohlenäure</td>
<td>28,50</td>
</tr>
<tr>
<td>Schwefelsäure</td>
<td>23,24</td>
</tr>
<tr>
<td>Tonerde</td>
<td>4,30</td>
</tr>
<tr>
<td>Eisenoxid</td>
<td>1,14</td>
</tr>
<tr>
<td>Magnesia</td>
<td>0,96</td>
</tr>
<tr>
<td>Kali</td>
<td>1,48</td>
</tr>
<tr>
<td>Wasser, im Exsicator bei 1100 °C</td>
<td>0,83</td>
</tr>
<tr>
<td>beim Glühen</td>
<td>0,62</td>
</tr>
<tr>
<td>Gesamt</td>
<td>98,91</td>
</tr>
</tbody>
</table>

Hiervon waren 29,16 Procente in zehnprocentiger Salzsäure (1,048 spez. Gewicht) unlöslich.

LVIII.

Über die Bestimmung der Schwefelsäure auf volumetrischem Wege; von Dr. Ad. Clemm.

und nimmt für eine Bestimmung beinahe eine halbe Stunde Zeit in
Anspruch.

In einigen Fabriken ist dieses Verfahren seinem Prinzip nach ge-
bräuchlich, doch zur schnelleren Ausführbarkeit etwas modifiziert. Die
verdünnnte, mit Salzsäure übersättigte Lösung wird in einer Vorratlan-
sche zum Kochen erhitzt und mit titrierter Chlorbariumlösung so lange
verseift, bis kein Niederprall mehr entsteht. Man erkennt diesen Punkt,
dem man ein kleines Filterchen in die Lösung taucht, zwei Tropfen
auf eine Glasplatte mit dunklem Untergrund fallen läßt und dann zu
dem einen Tropfen Chlorbarium und zu dem anderen einen Tropfen
Schwefelsäure zusetzt. Entsteht in dem mit Chlorbarium versetzten
Tropfen ein Niederprall, so ist noch Schwefelsäure vorhanden, entsteht
in dem mit Schwefelsäure verseiften ein Niederprall, so ist bereits
Chlorbarium im Ueberschuß zugefügt. Wenn auch die Methode ziemlich
schnell ausführbar ist, so kann sie doch aus leicht zu erhebenden Gründen
keinen Anspruch auf große Genauigkeit machen.

Weit genauer ist die von Carl Mohr angegebene Methode. Sie
beruht darauf, daß man die Schwefelsäure als schwefelsauren Barpt
durch übersättigte titrierte Chlorbariumlösung fällt, den Ueberschüß dieser
mit kohlensaurem Natron oder kohlensaurem Ammoniak wegnimmt, den
gelösten kohlensauren Barpt mit Normalsalpetersäure löst und mit Normal-
alkali zurückgeht. Aus der so gefundenen Menge kohlensauren Barpts
läßt sich die durch Schwefelsäure zersetzte Menge Chlorbarium und somit
die Schwefelsäure selbst leicht berechnen. Arbeitet man mit Normal-
lösungen, so ist die Rechnung sehr vereinfacht.

Ich gehe nun in meiner Verarbeitungsweise, welche eine doppelte
Nestanalysfe genannt werden kann, noch einen Schritt weiter, indem ich
den Ueberschüß des Chlorbariums durch kohlensaures Alkali von bekanntem
Gehalt wegnimme und den Rest dieses titriere. Meine Methode ist also
kurz folgende: Die Lösung wird mit Lackmustinctur verfeucht und genau
neutralisiert, sodann durch titrierte Chlorbariumlösung im Ueberschuß alle
Schwefelsäure als schwefelsaurer Barpt gefällt, hierauf titriertes kohlen-
saures Natron zugefügt (sehr passend eine dem angewendeten Chlorbarium
equivalente Menge), um allen Barpt zu fällen und endlich der Ueberschuß
des kohlensauren Natriums mit Schwefelsäure titriert. Es bildet sich bei
den verschiedenen Umsetzungen kein lösliches Salz, welches auf die Lack-
mustinctur farbenverändernd einwirkt. In solchen Salzen, deren Salze
durch kohlensaures Natron gefällt werden, wird diese Fällung zueifellos
verganommen. Das Filtrat, welches nun die Schwefelsäure an Natrium
gebunden enthält, wird neutralisiert und nach Angabe weiter behandelt.
Das die Methode bei Anwesenheit von Phosphorsäure, Drasiläure und überhaupt bei Gegenwart von Säuren, welche in neutraler Lösung Barytsalze fallen, nicht anwendbar ist, bedarf kaum der Erwähnung.

Der Vortheil dieses Verfahrens vor der Mohr'schen Methode besteht darin, daß ich den gefallten Kohlenäuren und Schwefelsäuren Baryt nicht auswaschen habe, was immer langwierig ist, da die legten Spuren Kohlenäuren Altaliis lebhaft zurückgehalten werden. Man umgeht dies einfach dadurch, daß man die Hälfte der Flüssigkeit abfiltrirt. Mohr hat den Niederschlag weiter zu behandeln, ich dagegen das Filtrat. Man kann daher auch ebenfalls einen geringeren Bruchtheil als die Hälfte des Filtrates mit der Pipette herausnehmen, titrieren und auf die gange Menge berechnen. Ferner ist es nicht in einer durch suspendirten Schwefelsäuren Baryt getrübten Flüssigkeit zu titrieren, was die Erkennung der Farbe bei einigermaßen erheblicher Menge immerhin beeinträchtigt.

Ferner ist zu bedenken, in wie weit die Nichtverlässigtheit des Volums des Niederschläges einen Einfluß auf das Resultat ausübt. Es kann hieraus allerdings eine Fehlquelle entstehen, welche man jedoch auf eine bei der Analyse des gebrannten Kieses weiter unten zu besprechende Weise verhüten kann. Hat man mit kleinen Mengen eines Salpeters zu thun, was sich bei häufig wiederkehrenden Analysen immer erreichen läßt, so entstehet ein ganz zu vernachlässigender Fehler, wie mir wiederholte Versuche gezeigt haben.

Es bedarf wohl kaum der Erwähnung, daß man die Normallösungen genau zu prüfen hat, so zurt, ob das Kohlenäure Natron und die Schwefelsäure sich genau sättigen. Ist dies der Fall, so nehme man eine beliebige Menge Chlorbariumlösung, füge etwas Kohlenäures Natron im Neberchuß zu, titriere diesen Neberchuß mit Schwefelsäure und sehe zu, ob das gefunden Resultat mit dem berechneten stimmt. Eine Correction läßt sich, wenn nötig, dann leicht anbringen.

Neben die Anwendbarkeit meines Verfahrens für technische Zwecke, wozu ich es als sehr rasch ausführbar und dabei hinreichend genau
vorzugsweise empfiehlt, habe ich mit Herrn Dr. G. Lunge viele Ver-
 suche gemacht und mag speziell für die in Sodafabriken vorkommenden
 Arbeiten folgendes von uns gesagt seyn.

Für die Analyse der Rohsodaflage (tank liquors) verwenden wir
 stets dieselbe Probe zur Schwefelsäurebestimmung, welche wir schon zur
 Alkalinitätsbestimmung benutzt haben. Diese letztere wird natürlich dann
 mit Normalsalpetersäure oder Normalsalzsäure ausgeführt. Zu der so
 neutralisirten Flüssigkeit wird sofort Chlorbarium und die äquivalente
 Menge kohlensauren Natron zugelegt, filtrirt und 50 K. C. des Filtrates
 mit Schwefelsäure titrirt. Dasselbe gilt von der Analyse der Soda-
 Probe (black balls). Hinsichtlich der Bestimmung des Schwefelnatriums
 in demselben vergleiche man Dr. Lunge’s Abhandlung „über die ana-
 lytischen Arbeiten in Sodafabriken“ in diesem Journal Bd. CLXXXVI
 S. 205.) — Man könnte hier den Eindruck erheben, daß der Gehalt an
 Kieselsäure, welche in kleiner Menge gelöst bleibt, auf das Resultat
 nachtheilig einwirken könne. Dr. Lunge hatte eine 7 bis 8 Proc.
 Kieselsäure enthaltende Soda als Probe erhalten, worin er die Schwefel-
 säure auf gewichtsanalytischem und volumetrischem Wege bestimmte.
 Beide Analysen stimmten vollkommen überein. Erst beim letzten Aus-
 titriren des tohlfenaren Natrons schied sich Kieselsäure, welche gelöst
 gewesen war, langsam ab.

Was die Bestimmung des Schwefels in den Kiesen und insbesondere
 in den abgerösteten Kiesen betrifft, so läßt sich auch hierzu die Methode
 sehr wohl anwenden. Nachdem man mit Salpetersäure ausgeschlossen
 und gelöst hat, überläßt man sofort, ohne vom Rückstand abzusfiltriren, mit
 einem tohlfenaren Natron oder mit schwefelsüfersreiem Natronlauge
 bis alles Eisen r. ausgefällt ist, füllt mit heissem Wasser bis zur Marke
 200 auf, läßt abzifern und filtrirt dann die Hälfte ab. Dieses Filtrat
 wird sorgfältig neutralisirt und dann mit dieser Lösung wie gewöhnlich
 weiter verfahren. Bei einer solchen Kiesanalyse (namentlich beim ge-
 brannten Kies) kommt das Volum des ersten Niederschlags, des Eisen-
 oxyphosphates, in Betracht. Wenn man bei den Analysen stets die gleiche
 Menge der zu untersuchenden Substanz nimmt, z. B. 1/2 Grm. frischen
 Kieses, was hierzu vollkommen ausreicht und 1 bis 2 Grm. gebrannten
 Kieses, so wird man auch bei den Ausfällungen des Eisens immer dasselbe
 Volum für diesen Niederschlag in Anzah zu bringen haben. Eine
 Differenz von selbst 10 Proc. Eisen macht im Volum des trockenen
 Niederschlages einen merklichen Unterschied. Nimmt man sich daher
 einmal die Mühe, den ganzen Eisenverdünnung auszuwählen und zu
 trocknen, und das Volum desselben dann zu bestimmen, so kann man dasselbe
stets als richtig ansehen. Man fülle das 200 c. c. fassende Kölsch
mit Wasser bis zur Marke, wobei den sofort getrockneten Nieder-
ischlag hinein und markre sich für beide Fälle, für frischen und
genbrannten Kies, wie hoch die Flüssigkeit steigt, und fülle dann immer soweit auf.
Die auf solche Weise erhaltenen Resultate zeigten stets gute Überein-
stimmung.

Um zu sehen, ob bei der Fällung des Gijons durch kohlensaures
Natron nicht auch basisches Sulphat gefällt werde, nahm ich eine und
dieselbe Flüssigkeit zur Gewichtsbestimmung und zur volumetrischen Be-
stimmung. Die Resultate waren der Art, daß das Eintreten dieses,
von vornherein schon unwahr scheinlichen Falles nicht angenommen wer-
den darf.

LIX.
Verludge, die directe Zersetzung des Schwefelcalciums resp. der
Sodarückstände mit Manganchlorür betreffend; von Dr. E. Rich-
ters, Chemiker an der Bergschule zu Waldenburg.

Als Nachtrag zu den in den beiden vorhergehenden Heften dieses
Journals S. 60 und S. 133 veröffentlichten Abhandlungen werde ich
im Folgenden einige Versuche mittheilen, welche die directe Zersetzung
der Sodarückstände mit Manganlauge bezeugen. — Die Versuche sind
keineswegs als abgeschlossen zu betrachten; auch fehlt es mir gegenwärtig
an Zeit und Gelegenheit dieselben weiter fortzuführen. Bei dem großen
Interesse aber, welchem das Bestreben, die Rückstände der Chlorcalc-
und Soda fabriken auf möglichst ökonomische Weise aufzuwerben, allerorten
begegnet, und in der Boraufsicht, daß jene Bestrebungen, trog
der glänzenden Resultate, welche durch die Bemühungen Hofmann’s,
Schäffer’s u. a. erzielt wurden, wohl kaum schon ihren Abschluß
gemacht haben, dürften die Versuche, so uneracht sie in ihren Ergeb-
nissen seyn mögen, und obwohl sie nur zu den für die Praxis gewöhn-
lich nicht als maßgebend angesehenen zählen. Laboratoriumsver-
suchen gehören, immerhin der Mittheilung werth erscheinen.

Würde sich die vollständige Zersetzung der Sodarückstände durch
Manganchlorür erreichen lassen, so müßten die resultirenden Produkte
einerseits aus Mangangybdystub und Schwefel, denen etwa 18—20
Proc. kohlensauren Säure beigemengt wären, und andererseits aus einer
ohne Nachteil zu beiseitigenden Lösung von Chlornacæium bestehen. Aus
dem ersten Gemenge den Schwefel durch Cs² zu extrahiren und den Rückstand behufs Gewinnung eines saures sortgereihter Manganoxydes
durch Salpeter säure höher zu oxydiren, würde die Anwesenheit des kohlen-
sauren Kalkes und der dadurch bedingte eventuelle Verlust an Salpetersäure verbieten.

Wollte man aber das Gemenge abrösten, so würde ein Theil des
Schwefels verbrennen und als SO² in den Bleifämmern zur Werthung
gelangen können, während das Röstgut, mit Wasser behandelt, an dieses
den größten Theil seines Mangans als schwefelsaures Salz abgeben
würde, welches auf bekannte Weise mit salpetersaurem Natron weiter
verarbeitet werden könnte. Ich muss indessen bemerken, daß Versuche
in dieser Richtung nicht angestellt wurden und kann daher das Gesagte
nur die Bedeutung eines vielleicht der Erwägung und näheren Prüfung
werthen Vorlieges in Anspruch nehmen. Bei den mitzuteilenden
Ver suchen wurde nur die Zerlegbarkeit des Schwefelcalciums resp. der
Sodarückstände mit Manganchlorür in's Auge gefaßt. — Als Material
diente mir:

a) Eine Lösung von reinem Manganchlorür, welche in 100 Kubik-
centimeter 6,823 Grm. MnCl enthielt, mit ein wenig verdünnter, war,
als es die rohen Manganutzungen wohl durchschnittlich zu sehn pflegten;
es wurde eben Rücksicht darauf genommen, daß eventuell nicht die
trockenen, sondern die feuchten, eine große Menge Wasser enthalten-
tenden Sodarückstände zur Verwendung gelangen würden.

b) Ein durch Glühen von reinem schwefelsauren Kalk mit Kienrüh
bereitetes Schwefelcalcium mit 86,5 Proc. CaS.

c) Die in der ersten Abhandlung sub a) erwähnten trockenen Soba-
rückstände; ich habe dabei zu bemerken, daß ich zur Zeit als die Veruche
ausgeführt wurden, sämtlichen als Sulfurat vorhandenen Schwefel
als CaS, das Eisen aber als Oxid in Rechnung gebracht hatte, während
in der erwähnten Zufarnenstellung letzteres, jedenfalls richtiger, als
Sulfurat ausgeführt ist. Berechnet man, wie zuerst eben angegeben,
so beträgt der Gehalt der trockenen Rückstände an hier in Betracht
cornendem Schwefelcalcium 39,16 Proc., an Kalk 5,80 Proc., statt
37,62 resp. 6,49 Proc. 67

Weder die Rückstände, noch das erwähnte Schwefelcalcium wurden
durch eine Manganchlorürflüssigkeit von obiger Concentration bei gewöhn-

67 Man vergl. in diesem Bande S. 61 (erstes Aprilheft 1869).

II. 100 Ä. C. Manganchlorürflüssigkeit wurden mit 2,251 Grm. des Schwefelsalzes (CaS = 2 MnCl) wie vorhin behandelt. Von der angewandten Mangannenge konnte günstigsten Falles nur die Hälfte = 3,4115 Grm. zerfetzt werden, von letzteren wurden aber nur 2,640 Grm. = 77,38% Proc. gefällt.

Das abfiltrirte Schwefelmangan u. j. w. ließ ich auf den Filtern trocknen; nach 24 Stunden entwickelten I und II bei Behandlung mit Säure noch reichlich Schwefelwasserstoff (in Folge des beigemengten Schwefelcalciums, welches sich der Zersetzung entzogen hatte?), III nicht mehr. Alle drei gaben an Schwefelkohlenstoff Schwefel in bedeutender Menge ab.

IV. 50 ml C. Manganalösung wurden mit 4,97 Grm. der Sodarückstände (CaS = MnCl) 8 Stunden im Wasserbade digerirt. Bei nicht vollständig erfolgter Zersetzung des Schwefelcalciums waren 93,64 Proc. des angewandten Mangans gefällt woran.

V. 50 ml C. Manganalösung wurden mit 4,234 Grm. Sodarückstand (CaS + CaO = MnCl) 8s Stunden lang digerirt. Zersetzung des Schwefelcalciums unvollständig; 76,89 Proc. des angewandten Mangans gefällt.

Bergleichende Zusammenstellung

<table>
<thead>
<tr>
<th>4,234 Grm. Sodarückstände</th>
<th>Bei dem beschriebenen Verf. enthalten Schwefel:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,737 Grm. als CaS</td>
<td>a) im ursprünglichen Filtrat als SO3 und</td>
</tr>
<tr>
<td>0,048 " " CaO, SO2</td>
<td>SO2</td>
</tr>
<tr>
<td>0,005 " " CaO, SO3</td>
<td>b) als Schwefelsäure bei der</td>
</tr>
<tr>
<td>0,017 " " CaO, SO3</td>
<td>Dämpfung des Rückstandes entstanden</td>
</tr>
<tr>
<td></td>
<td>c) aus dem Rückstand durch</td>
</tr>
<tr>
<td>0,807 Grm. Summa.</td>
<td>CS3 extrahierbar</td>
</tr>
<tr>
<td></td>
<td>Summa 0,7611 Grm. S</td>
</tr>
</tbody>
</table>

Differenz mithin 0,0459 Grm.

Zu dem mit Schwefelstollenstoff extrahirten Rückstand wurden CO2, MnO und CaO bestimmt; es enthielt berfelbe an MnO und CaO, CO2 auf obige 5,362 Grm. berechnet:

1,570 Grm. MnO (gefordert 1,754 Grm., daher 0,184 Grm. als MnO, SO3 in Lösung gegangen)

0,981 " " CaO, CO2 (die berechnete Menge, woraus sich ergibt, daß der Schwefelsäurekalk an der Zersetzung des Mangan chlorürs nicht theilgenommen).

IX. 12,70 Grm. Rückstand wurden wie bei den vorigen Versuchen behandelt (CaS + CaO = Mn Cl). Eine vollständige Zersetzung wäre in diesem Falle möglich gewesen; dieselbe wurde aber nicht erreicht. Von dem angewandten Mangan wurden nur 52,17 Proc. gefällt. Der durch
CS² aus der oxybiren Masse erhaltene Schwefel wog 1,043 Grm. = 46,35 Proc. der in 12,70 Grm. Rückstand als Sulfurat enthaltenen Menge.

Ich unterlasse es, die in Vorliegendem angeführten Thatsachen zu interpretiren. Vielleicht geben diese Mittheilungen Veranlassung, daß die Versuche von Anderen weiter fortgezogen werden.

LX.

Ueber Kryolithglas (Hot-cast Porcelain); von H. C. Benrath, Director der Siegelgusshütte bei Dorpat.

Die Probe, ein gepreßter Lampensuß, ist gleichmäßig und gut geschmolzen, milchweiß in der mittleren Schicht, opalisirend bis durchsichtig an der Außen- und Innenfläche; Härte und Bildungsfähigkeit gegen Eis und Schlag sind derjenigen guten Glases wenigstens gleich; der Bruch ist muschelig, mit Glasglanz; spec. Gew. = 2,471.

Bei der Analyse wurde die folgende Zusammenstellung gefunden, wobei das Natron aus dem Prozentbescitt berechnet ist:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kieselsäure</td>
<td>67,07</td>
</tr>
<tr>
<td>Thonerde</td>
<td>10,99</td>
</tr>
<tr>
<td>Eisenoxyd</td>
<td>1,02</td>
</tr>
<tr>
<td>Manganoxyd</td>
<td>1,09</td>
</tr>
<tr>
<td>Kalt</td>
<td>Spuren</td>
</tr>
<tr>
<td>Natron</td>
<td>19,83</td>
</tr>
<tr>
<td></td>
<td>100,00</td>
</tr>
</tbody>
</table>

Eisenoxidablagerungen mechanisch befreit, kaum Spuren von Eisenverbindungen erkennen läßt.

Die vorläufig noch hypothetische Zersetzungsgleichung wäre für diesen Fall:

\[
(3 \text{NaF}, \text{Al}_2\text{F}_3) + 14\text{SiO}_2
\]

1 Kryolith

\[
\overset{=}{(3\text{NaO}, \text{Al}_2\text{O}_3, 11\text{SiO}_2) + 3\text{SiF}_4}
\]

Fluorsilicium

und kann das Glas mithin ausgesagt werden als 3 (NaO, 3SiO\text{)} + Al\text{)}\text{O}_3, 2Si\text{O}_2, d. h. als eine Lösung von Al auf in Natrontrioxid.

Die berechnete prozentische Zusammenziehung wäre:

\[
\begin{align*}
3\text{NaO} & = 93 \text{ entsprechend 19,6 Proc.} \\
\text{Al}_2\text{O}_3 & = 51,4 \text{ 10,9 } \\
11\text{SiO}_2 & = 330 \text{ 62,5 } \\
3(\text{NaO, 3SiO}_2) + \text{Al}_2\text{O}_3, 2\text{SiO}_2 & = 474,4 \text{ 100,0 Proc.}
\end{align*}
\]

Das Gemenge schmolz im Ofen leicht und läuterter vollkommen. Als der Tiegel aus dem Ofen genommen wurde, war das Glas vollkommen durchsichtig und blieb so auch, wo es, den rauh erkaltenden Rändern in dünner Schicht anhaftend, fast plötzlich abfühlte, während im
Boden des Tiegels, wo die Glasfliecht etwa 5 Millimeter dicß war, gleichzeitig mit dem Gestein der Rasse, von mehreren Punkten aus zunächst stammenförmig ausstrahlend, ein Milchweisswerden ausging, und endlich die ganze Schicht in Milchglas übergegangen war.

Dieses Verhalten erklärt die oben erwähnte durchsichtige Oberfläche des hot-cast porcelain. Die mit der metallenem Form in Berührung gekommene äußere Schicht wurde zu rauß abgetönt, um zum Entglätzen Zeit zu haben.

Die Analyse ergab die Zusammenstellung:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Gewicht in Proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kieselsäure</td>
<td>70,01</td>
</tr>
<tr>
<td>Thonerde</td>
<td>10,78</td>
</tr>
<tr>
<td>Natron</td>
<td>19,21</td>
</tr>
<tr>
<td>Total</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Die gefundenen Zusammenstehung im Vergleich mit der oben berechneten bejühtigt die Richtigkeit der letzter zu Grunde gelegten Zersetzungslegrichung, und sie stimmt andererseits auch mit der Zusammenstehung der amerikanischen Probe so weit überein, daß das Gewährthabnis 1 Kryolith und 2 Sand zur Herstellung der letzteren benutzt seyn muß.

Bezüglich des von Ellis angegebenen Verhältnisses 1 Kryolith und 4 Sand erhielten Zweifel von vorneherein gerechtfertigt. Das daraus resultierende Glas müßte 25 SiO₂ auf 8NaO + Al₂O₃ enthalten und die procentische Zusammenstehung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Gewicht in Proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kieselsäure</td>
<td>83,8</td>
</tr>
<tr>
<td>Thonerde</td>
<td>5,8</td>
</tr>
<tr>
<td>Natron</td>
<td>10,4</td>
</tr>
<tr>
<td>Total</td>
<td>100,0</td>
</tr>
</tbody>
</table>

haben. Nun konnte Pelouze 69 schon ein aus Thonerde, Soda und Sand gewonnenes Glas der Zusammenstehung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Gewicht in Proc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kieselsäure</td>
<td>75,0</td>
</tr>
<tr>
<td>Thonerde</td>
<td>7,6</td>
</tr>
<tr>
<td>Natron</td>
<td>17,4</td>
</tr>
<tr>
<td>Total</td>
<td>100,0</td>
</tr>
</tbody>
</table>

trotz 120 stündiger Gucth im St. Gobain'schen Spiegelglasöfen nicht vollständig lauter bekommen, und es ist daher im höchsten Grade unwahr-

Das Weißwerden des heis durchsichtigen Kryolithglases (mag es immerhin den Milchglasefabrikanten nicht neu sein) ist, so scheint es mir, theoretisch von Interesse, indem Belouze der Thonerde eine entglahnungs-
widrige Wirkung zuschreiben will, namentlich da sein oben angeführtes Gläs sich nicht entglaste. Im vorliegenden Falle entglaste sich dagegen ein an Kieselsäure bedeutend ärmeres Gläs ohne weiteres, und scheint somit auch dieser Fall dafür zu sprechen, daß es bei dieser Erscheinung auf die relativen Verhältnisse der Einzelbestandteile weit mehr als auf die Art derselben ankommt.

Von besonderem Interesse erscheint die Fabrication des Kryolith-
glases aber noch wegen des bei derselben auftretenden Nebenproductes, nämlich des entweichenden Fluorsiliciums, welches allem Anschein nach bisher unvermerkt geblieben ist. Unter den Verbindungen welche die chemische Technik in neuester Zeit nutzbar zu machen wünschte, be-
ginnnt die Kieselsiliciumwässersoffäure oder Kieselsiliciumsaure eine bedeutende Rolle zu spielen. So wiez z. B. die lehre Pariser Welt-Ausstellung in Classe 44 Kiesalk und andere Alkaliflasche auf, welche von Teijlo durch Zerlegung von Stasfurter Salz mittels Kieselsiliciumsäure hergestellt waren. Zur Erhöhung der Säure hat man sich bisher genötigt gesehen, direkt auf dieselbe zu arbeiten, so z. B. in Großbritannien bei Saargegenden (Moiselpartement), wo in einem Hobofen Fluorsilicium durch Zusammentase von Flußpat, Sand und Kohle gewonnen und dann mittels Wasser in geeigneten Condensationskammern zersetzt wird. (Dieses Ver-
fahren war in Classe 51 ausgestellt.)

Wie oben erwähnt, tritt das Fluorsilicium bei dem Kryolithschmel-
zen als Nebenproduct auf, welches leicht lähmbar vorsteht; gelingt es nun dagegen, indem man etwa in gedeckten Häfen schmilzt, abzuhalten (wofür in diesem Falle durchaus ein Sauapparat erforderlich wäre) und es in einer geeigneten Condensationskammer mit Wasser in Verbindung zu bringen, so würde es sich mit demselben in Kieselsiliciumsäure und abgeschiedene Kieselsäure nach der Gleichung $2 \text{SiF}_3 + 2 \text{HO} = 2 \text{HF}, \text{SiF}_2 + \text{SiO}_2$ umsetzen.

Zur Beurtheilung der auf diese Weise zu gewinnenden Quantitäten beider Säuren mögen die folgende Rechnung dienen.

Ein Hafen, welcher nur einen Inhalt von 300 Pfd. Gemenge (100 Pfd. Kryolith und 200 Pfd. Sand) hat, würde 54 Proc. des Ge-
wichtes des Kryoliths, also 54 Pfd. Fluor liefern, welches sich mit
20 Pfd. Sillicium zu 74 Pfd. Fluorsilicium verbindet. Diese würden
sich mit Wasser umgeben in 60 Pfd. wasserfreie Kiesel sulfäure und 26 Pfd. trockene gesaltete Kieselsäure. Man gewinne somit 20 Proc.

des verwendeten Gemenges an Kiesel sulfäure, ganz abgesehen von ca. 8,5 Proc. gesalteter Kieselsäure, auf deren Werth für die Fabrication von Wasserglas noch neuerdings von Goffage (tieses Journal Bd. CLXXXVI S. 245) hingewiesen worden ist.

LXI.

Über Coupier's Verfahren zur Anilinroth-Fabrication; von
Dr. Greiff.

Wegen der im Verhältniss zu früheren Methoden so gatt verlaufen

den Reaction der Arsenfäure auf Anillin ist es um so schwieriger, ein

für die Praxis brauchbares Verfahren der Anilinroth-Darstellung anzu

zufinden, das bei Bequemlichkeit der Ausführung und Ergiebigkeit die

jenigen Nachtheile auszuschleichen, welche die jetzt gebräuchliche Nadelfabritellung für den Fabriquanten oft zu einer Quelle von Sorgen und Beschwerden machen.

Seit einiger Zeit macht ein von Coupier angegebenes neues Verfahren die Runde durch die technischen Zeitschriften und wird daselbe von Schüzenberger 70 warm empfohlen. Es besteht in der Einwirkung der Nitroprodukte auf die Anilinverbindungen des Benzols, Toluols etc. unter Zusatz von metallischem Eisen oder Eisenchlorid.

Seit dem Patente, welches im J. 1861 Laurent und Castelaz für Erythrobenzin erhielten, 71 ist die Reaction von Nitrokörpern der Kohlenwaassstoffe auf Anillin etc. vielfach verjüht worden.

Volle 72 wiederholte und variierte die in diesem Patente angegebene Methode, ohne zu günstigeren Resultaten zu gelangen.

71 Mitgetheilt im polytechn. Journal, 1862, Bd. CLVI S. 239.

72 Schweizerische polytechnische Zeitschrift, Bd. VIII S. 26; polytechn. Journal Bd. CLXVIII S. 60.
Laut h gab schon vor langer Zeit an, dass ein Gemenge von Anilin, Nitrobenzol und Jinchlorür Roth ließere, und in neuerer Zeit hat Städel er die Einwirfung von Nitro- und Azobenzol auf salzaures Anilin beschrieben; für die Praxis brauchbare Angaben wurden aber bis jetzt nicht gemacht.

Es liegt sehr nahe, den Sauerstoff der Nitrogruppe als Oxidationsmittel zur Rothbildung zu verwenden, und auch der Verfasser hat schon im Jahre 1865 durch Einwirkung von Nitrobenzol auf Anilin, Salzsäure, Jinn, Zink und Eisen vielfach Rothschmelzen sowohl in kleineren als größeren Quantitäten vorgestellt. Es wurden aber keine Resultate erhalten, welche im Stande gewesen wären, das Verfahren mit Arsen säure zu verdrängen, da die Reaction niemals ganz glatt verlief und die Reinigung des erhaltenen Farbstoffes sehr schwierig war.

Couper's günstige Resultate sind wohl hauptsächlich dem Umstand zuzuschreiben, dass er mit nahezu chemisch reinen Stoffen arbeitete, und wie weit verschieden die Reactionen und Endprodukte berieseln von denjenigen der Handelsware sind, ist jedem Fabrikanten bekannt.

Ein neues Verfahren der Rothfabrication, welches jetzt in der Praxis Eingang zu finden beantragt, muß es ermöglichen, aus einem im Handel vorkommenden guten Rothanilin ein schönes Fuchsin darzustellen.

Verlangt das Verfahren die Darstellung reinen Koblenwaßersstoffes, reinen Nitro- und Amido-produkte, so würde dadurch wenigstens in Deutschland der Stand der Anilin- und Anilinfarben-Fabrication ganz andere Verhältnisse annehmen.

Ob überhaupt die Darstellung chemisch reinen Anilins und Toluidins für den Farbenfabrikanten diejenigen Vorteile bieten würde, welche er erwartet, und ob diese Darstellung bei dem jetzigen ausgedehnten Stand der Fabrication in nächster Zeit möglich wäre, halten wir noch für sehr zweifelhaft.

Die Hauptschwierigkeit in der Rothdarstellung mittels Nitroprodukte der Koblenwaßersstoffe liegt in dem Umstand, dass bei noch so vorzüglich geleiteter Reaction eine theilweise Jerseung derselben unter Bildung von harziger und huminartiger Substanz oder gar ein Freiwerden von sauren Dämpfen bei längerer Erwärmung eintritt. Selbst bei vollständig gereinigtem und säurefreiem Nitrobenzol treten diese Jerseungen ein und bei Quantitäten, wie sie die Größe der heutigen Fabrication voraussetzen, können sie unter Umständen gefährlich werden.

73 Unter Nitrobenzol und Anilin keine chemisch reinen, sondern Handelsprodukte verstanden.

Eine Erklärung der Reaction zu geben, waren wir nicht. Das Eisen, Zink usw. scheint nur prädisponirend zu wirken, und es steht keineswegs fest, ob und wie der aus dem Nitrobenzol verbleibende Rest nach Abgabe von Sauerstoff in das Rosanilinmolekül eintritt.

Versuche mit größeren Quantitäten müssen bald ergeben, ob sich auf diese Reaction ein Verfahren bauen läßt, welches in Bezug auf Quantität und Qualität des Produktes den heutigen Anforderungen genügt, und ob ein Modus gefunden wird, die Nitrokörper bei der Reaction vor zu tief gehender Zersetzung zu schützen.

LXII.

Über die Conservierung des Weines durch Erhitzung.

Auszug eines Berichtes von de Lapparent, Director der Marinebauten, an den französischen Marine- und Colonialminister. — Aus den Annales de Chimie et de Physique, 4. série, t. XV p. 107; September 1868.

Am 20. Juni 1868 versammelte sich die Commission, welche vom Minister mit der Prüfung des von Pasteur zur Verhütung der Krankheiten des Weines empfohlenen Verfahrens beauftragt wurde, in einer Sitzung, deren Zweck zunächst dahin ging, von den Beobachtungen der drei nach dem südlichen Frankreich entsendeten Mitglieder Kenntnis zu nehmen und dann die dem Minister zur Genehmigung vorzulegenden Vorschläge zu erörtern. Nachdem der Gegenstand im Allgemeinen gründlich besprochen war, wurden die nächstehenden Fragen zur Discussion gebracht:

Erste Frage. — Ersehnt das von Pasteur zur Verhütung der Krankheiten des Weines empfohlene Erhitzung desselben entschieden als so wirksam, daß die Anwendung dieses Verfahrens auf die für die Marine und die Colonien bestimmten Weine anzurathen ist?
Diese Frage wurde von der Commission einstimmig bejaht, und zwar auf Grund der nachstehenden Thatsachen.

1) Alle von Pasteur mit Flaschenwein angefüllten, in seinem großen Werke „Études sur le vin“ beschriebenen Versuche bejaht diese Frage. Von der Richtigkeit einiger dieser Versuche konnte sich die Commission bei Pasteur selbst überzeugen. So z. B. hatte im Jahre 1863 ein gelehrter Weinbergsbesitzer im Departement Côte-d'Or zu Mâcon-Monge an Pasteur an eine Anzahl Flaschen gewendet, von denen letzterer die Hälfte erhitzte, während er die andere Hälfte in ihrem normalen Zustande ließ. Im März 1868 wurde von jeder Partie eine Flasche an die Commission zur Untersuchung abgegeben und diese sand, daß der erhitzte Wein auf das Vollkommenste conservirt war, während der nicht erhitzte Wein einen sehr deutlich bitteren Geschmack hatte, welcher die spezifische Krankheit ist, von der die seinen Burgunderweine heimgesucht werden. Pasteur brachte einen Tropfen dieses Weines unter das Mikroskop und zeigte den Commissionsmitgliedern den dieser Krankheit (der „amertume“) eigentümlichen Pilz.

die erforderliche Temperatur anzeigt, hört man auf zu feuern und zieht den Wein aus das Faß ab, in welchem er lagern und conservirt werden soll. — Neben den Werth des Verfahrens befragt, verriette Rossignol, seitdem er seinen Kunden erhitzten Wein liefer, sei ihm von denselben kein Vorwurf in Bezug auf die Haltbarkeit des Gewächses gemacht worden, während er gleichen Klagen früher ziemlich häufig vorgekommen seyen.

Diese Thatsachen bestätigen die in mehreren unserer Kriegsblättern, besonders in Brest und Rochefort, gemachten Beobachtungen, welche mittelständisch sind.

3) In Brest theilte eine besondere Commission ein Faß Wein von 500 Liter in zwei Theile; die eine Hälfte wurde auf 63° C. erhitzt, die andere blieb in natürlichem Zustande; jede Portion wurde in ein Faß
gesüßt und beide Fässer wurden wohl verwahrt und versiegelt an Bord des Schiffes „Jean Bart“ gebracht, auf welchem sie die Campagne von 1866 mitmachten, welche zehn Monate dauerte. Nach der Rückkehr des Fahrzeuges konstatirte die Commission, nachdem sie sich von der vollkommenen äußeren Unverletztheit der Fässer überzeugt hatte, Folgendes:

a. Der erhielte Wein war klar, mild, kräftig und zeigte die den alten Weinen eigenthümliche, schönge gelbe Farbe (couleur de rancio), kurz er war vollkommen in dem Zustande, um als „gereister“ Wein (vin de campagne) verkauft werden zu können.

b. Der nicht erhielte Wein war gleichfalls klar, aber dunkler, und hatte einen adstringirenden, an das Saure streifenden Geschmack; er war zwar noch trinkbar, doch erachten es rathsam, ihn zu verbrauchen, wenn sein gänzliches Verderben verhüttet werden sollte.

4) Zuletzt stellte die Commission in Orleans selbst einen Versuch mit Wein an, welcher in ihrer Gegenwart erhielt worden war. Aus zwei Flaschen, von denen die eine erhielten, die andere nicht erhielten Wein deselben Sorten enthielt, wurden zwei Gläser voll ausgegossen und dann wurden die Flaschen wieder verstopft. Nach Verlauf von drei Tagen

hatte sich auf dem nicht erhitzen Wein ein sehr deutlicher Schleier gebildet. Unter dem Mikroskop erkannte man, daß dieser Schleier aus Weinblumen (Mycoderma vini; fleurs de vin) bestand, welche sich jedoch bald in Gipsblumen (Mycoderma aceti; fleurs de vinaigre) verwandelten. Dieser Wein wurde bald ganz ungenießbar, während der erhitze Wein in Folge der längeren Berührung mit atmosphärischer Luft zwar etwas an Kraft und Güte verloren hat, indessen keine Spur von Säure zeigt und noch ganz trinkbar ist.

Aus dem Vorscheinenden ergeben sich offenbar die großen Vorzüge des Erhitzens solcher Weine, welche nach Gegendenden verdient werden sollen, wo sie in Folge der hohen Lufttemperatur, des Mangels an ausreichenden Aufbewahrungsräumen und an sorgerfältiger Behandlung Veränderungen ausgesetzt sind, durch welche dieses edle Getränk seiner stärkenden, die Gesundheit fördernden Eigenschaften beraubt wird.

Zweite Frage. — Bis zu welchem Temperaturgrade muß der Wein erhitzt werden?

Anfangs erhielt Pasteur den Wein auf 75° C; indessen zeigten ihm spätere Beobachtungen, daß eine weit niedrigere Temperatur zur Erreichung des angestrebten Zweckes ausreicht. Jetzt sagt er ausdrücklich, daß man eine zwischen 55 und 60° C. liegende Temperatur einzuhalten habe.

Die Anfichten der Commission über diesen Punkt waren geteilt. Die Mehrzahl der Mitglieder war der Meinung, es sei, da eine stärkere Erhitzung als nicht nachtheilig wirksam erkannt worden, anzuraten, sich in der Nähe der oberen Temperaturgrenze zu halten, und zu bestimmen, daß die Temperatur des erhitzten Weines zwischen 55 und 60° C. bestragen müsse. Die Minderzahl der Commissionsmitglieder sprach dagegen den Bunde, daß die Temperatur von 55° nicht überschritten werde, einerseits damit der mit dem Erhitzen des Weines stets verbundene ge-ringe Alkoholverlust 76 vermindert werde, andererseits damit der Wein rascher seine Normaltemperatur wieder annehmen könne. Indessen kommt auf den Grad der Erhitzung, namentlich bei ordinären Weinen, nicht viel an; bei seinen Weinen ist es nach meiner Meinung ratsam, eine Temperatur von 52° C. nicht zu überschreiten, um Alles zu vermeiden, was durch das Bouquet des Weines vermindert werden könnte.

Dritte Frage. — Sollen die erhitzten Weine, wie es gewöhnlich geschieht, gespritzt, d. h. vor der Verladung mit 1 Procent Alkohol verseift werden?

76 Ein solcher Verlust finde gar nicht statt. (Anmertung der Redaktion der Annales de Chimie et de Physique.)
Das Spritzen (vinage) des Weines hat nicht allein den Zweck, ihm eine größere Widerstandsfähigkeit gegen die Ursachen des Verderbens, denen er ausgesetzt ist, zu verleihen, sondern auch seine tonisirende Wirkung und seine stärkenden Eigenschaften zu erhöhen, was besonders in heißen Klimaten, wie z. B. in den französischen Colonien nötig ist. Was die Vermehrung der Haltbarkeit anbetrifft, so verfehlt Rätsel, dass der Zusatz von Alkohol zur Conservirung des Weines durch das Erhitzen unnütz wird (was auch einleuchtend ist), auf den Märkten wird jedoch verlangt, dass die zur Versteuerung gebrachten Weine mindestens 12 Proc. Alkohol enthalten, solglich müssen die für die Flotte oder für die Colonien bestimmten Weine einen Alkoholgehalt von 13 Proc. haben. Die Commission sprach einstimmig die Ansicht aus, dass ein solcher Gehalt auch für die erhitzen Weine beibehalten werden müsse; da nun dieselben beim Erhitzen ungefähr 1/2 Proc. Alkohol verlieren, 77 so dürfte es angemessen sein, sie vor der Abjungung mit 1 1/2 Proc. Alkohol zu versegen.

Wird der Wein auf schon gebrauchte Fässer gefüllt, so müssen dieselben selbstverständlich zur Zerstörung aller etwa an ihren inneren Wändungen entstandenen Pflanzenbildungen mit fogenem Wasser ausgebürcht, oder besser noch mit Wasser dampf gereinigt, dann ausgewässert und zulezt geschweift werden. Das Schwefeln ist eine sehr wesentliche Operation, insofern die dabei entstandene Schwefelsäure sich im Weine löst und die Entwicklung von Pflanzenbildungen verhindert, deren Sporen mit der Luft in die Fässer eingedrungen sein könnten, wenn in Folge der Verdampfung eines Theiles ihres Inhaltes eine Leere entstand.

Es braucht wohl kaum noch bemerkt zu werden, dass die Fässer, welche erhitzen Wein enthalten, nur mit gleichfalls erhitzen Weine aufgefüllt werden dürfen.

VIerte Frage. — Welcher Apparat soll zum Erhitzen des Weines angewendet werden?

Hinsichtlich der für die kaiserliche Marine bestimmten Weine, mit denen sich die Commission ausschließlich beschäftigte, hat der Berufeungscommisär zu Toulon die Erklärung abgegeben, dass der anzuwendende Apparat groß genug sein müsse, um per Arbeitstag von sehn Stunden etwa 500 Hektoliter erhitzten Wein liefern zu können.

77 Es ist nicht einzulegen, wie ein solcher Verlust stattfinden kann. Es findet auch in Würlichkeit nicht statt. Rätsel, welcher den Verursachen der Commissionen beinhaltet, hat das Weine sowohl vor als nach dem Erhitzen auf ihren Alkoholgehalt geprüft und gefunden, dass seine Spur von Alkohol verloren geht. (Anmerkung der Redaktion der Annales de Chimie et de Physique.)

Temperatur des Weines vor dem Erhitzen 250 °C.

nach

Menge des per Stunde erhitzten Weines

5820 Liter.

Druck des Dampfes

3 Atmosphären.

Temperatur des Dampfes

1350 °C.

Gewicht des per Stunde kondensierten Dampfes

266 Kilogramm.

Temperatur des kondensirten Wassers

390 °C.

Anzahl der vom Weine absorbierten Wärme-Einheiten

161920 " " " " " " Dampfe abgegebenen

171836

Verlust von Wärme-Einheiten

6916

Gewicht der zur Erzeugung von 266 Kilogramm. Dampf erforderlichen Kohle

44 Kilogramm.

Preis der Kohle, die 1000 Kilogramm, zu 34 Frs. gerechnet 1 Fr. 51,3 Cent.

" der per Hektoliter erhitzten Weines verbrannten Kohle 0 Fr. 2,8 Cent.

Demnach vermag der Apparat per Arbeitstag von zehn Stunden 532 Hektoliter erhitzten Wein mit einem Kostenaufwand von 5 bis 6 Centimes per Hektoliter zu liefern. Allerdings war bei diesem Versuch die anfängliche Temperatur des Weines bereits ziemlich hoch; aber bei einer definitiven Anordnung muß man die Einrichtung treffen, daß der erhitzte Wein in einem zweiten Apparat an Stelle des Dampfes tritt und einen Theil seiner Wärme an den kalten Wein abgibt, welcher dann in den ersten Apparat geleitet und in demselben fertig erhitzt wird.
Die Mehrzahl der Commissionsmitglieder spricht den Wunsch aus, daß der den Kühlaparatur umgebende Kasten aus Platten von seinem Zinn oder aus vergießtem Eisenblech angefertigt werden möge; die Minderzahl ist der Ansicht, daß innen mit feinstem Zinn verzinntes Kupferblech vollständig genügen wird, um so mehr als der Apparat leicht unterricht werden kann, überdies die ganze innere Oberfläche sich durch den Absatz des Farbstoffes aus dem Weine mit einer anhaftenden Schicht überzieht, durch welche sie von der Flüssigkeit isolirt wird. Es hatte sich die Ansicht verbreitet, daß der erhitzte Wein nur mit Silber oder Platin in Berührung kommen dürfte; indessen hat sich die Commission, namentlich in der ausgedehnten Anstalt von Privat und Thomas, von der Zulässigkeit dieser Ansicht überzeugt, indem dort kupferne Leitungsrohren ohne Nachteil für den Wein in großem Maassstabe benutzt werden, da sich die Wände dieser Rohren, wie schon erwähnt, sehr bald mit einem isolirenden Zinnüberziehen. Indessen kann die Commission die Anwendung von nicht verzinktem Kupfer keineswegs billigen, sondern sie empfiehlt die Benützung von ganz reinem Zinn, welches im Handel leicht zu beziehen ist.

Schlussfolgerungen.

1) Das Erhitzen der Weine schützt dieselben (ohne daß man behaupten kann, ihre Haltbarkeit werde dadurch aus unbegrenzte Zeit gesichert) mindestens sehr lange vor jeder Veränderung und diesem Verfahren verdient daher bei allen Weinen angewendet zu werden, welche auf den Handels- und Kriegsschiffen verwendet, namentlich bei solchen, welche in die Colonien versendet werden sollen.
2) Der Wein muß aus einer zwischen 55 und 60° C. liegenden Temperatur erhielt werden.
4) Der zum Erhitzen des Weines angewendende Apparat ist der in geeigneter Weise abgeänderte Kühlapparat des Ingenieurs Perron, welcher anstatt des aus verzinktem Eisenblech bestehenden Mantels mit einem aus reinem Zinn oder stark verzinktem Kupfer angefeuertem versehen ist.

LXIII.
Selbstähnlicher, für die Behandlung abgeltender Dämpfe bestimmter Kochapparat für Zuckerfäße; von G. Gordon in St. Francisco (Californien).

Aus Arnegammb's Genie industriel, Februar 1869, S. 68.

Mit einer Abbildung auf Tab. IV.

Dieser Apparat ist in Fig. 9 im senkrechten Durchschnitt dargestellt. A ist eine gewöhnliche Blase, an der unten das Rohr B angeeignet ist, in welchem sich das nasse Gewicht p befindet, das mittels eines Eifendrahtes an dem Hebel h hängt, welcher an seinem anderen Ende das Gegengewicht P trägt. Wenn das Gewicht p am unteren Ende seines Weges sich befindet, so schwebt das Gewicht P in der Höhe, es

Die Wirkung des Apparates beruht auf der Minderung in der Dichtigkeit der verdampfenden Flüssigkeit. Ist diese sehr verdünnt, so ruht p auf seinem Sitz und P bleibt gebeugt; wird aber die Flüssigkeit so dicht, daß sie p hebt, so wird das Ansteigen von p in die Blase selbst durch das Einführen von P in's Wasser verhindert.

Je mehr die Concentration der Flüssigkeit zunimmt, desto höher steigt aber p und man erkennt daher den Grad derleben an der Nabel bei C. Der ganze Apparat, welcher noch auf mancherlei Weise abgeändert werden kann, stellt also eine Art Sacharometer für die verdampfende Flüssigkeit dar.

Um nun die Blase nach Belieben zu entleeren und zu füllen, bedient man sich der folgenden Einrichtung:

Außerhalb der Kammer H befindet sich ein Gewicht J, welches schwer genug ist, um beim fallen die Stange K niederzudücken. Diese Stange bewirkt mittels des doppelten Hebels K das Eingreifen des Kuppelungsmuffes m mit dem aus der Welle N laufenden Getriebe n. Die Welle N dreht sich langsam und mit ihr das Rad R. Das Gewicht J ist an einer Achse j befestigt, welche durch eine Stopfbüchse bis in die Kammer H hineinreicht; wo sie eine Scheibe mit einem Daumen trägt. Diese Scheibe hält eine Feder r an, welche abgezogen wird, wenn der Hebel d auf einen Vor sprung c' drückt, der an einem mit der Feder r verbundenen Stifte sitzt.

Wenn die Feder angehalten wird, so ist das Gewicht J erhoben, wenn aber p sich stark hebt, so fällt I herab und bewirkt das Eingreifen des Muffes in das Getriebe und so die Umbrechung des Nades R. Dieses Rad ist auf der Achse des Vertheilungshahnes S angebracht, welcher zwei Anläge hat; der eine derselben geht nach dem Kochapparat, der andere nach der Leitung. Der Hahnkegel hat einen weiten Durchgang, welcher abwechselnd beide Wege öffnet. Die kleine Öffnung s dient zum Zulaessen oder Entfernen der Luft, und zwar wie folgt:

1) diese Öffnung steht einem seitlichen Rohre gegenüber, so wird die Luft abgelassen; 2) sie steht dem Rohre B gegenüber, so wird die Blase mit Flüssigkeit gefüllt; 3) sie steht dem Anlaß an der anderen Seite gegenüber, so tritt Luft ein; 4) der Hahndurchgang stellt sich auf das Anfalldruck der Blase, dann entleert sich diese.
An der Seite des Rades R befindet sich ein Vorsprung o, welcher, wenn das Rad so gedreht ist, daß das Saftgiefäß ganz abgeschlossen ist, einem Gewichte O begegnet, das mit dem Griff des Hahnes O' verbunden ist. Dieser öffnet sich und neue Flüssigkeit tritt ein; dadurch schießt das Gewicht p, die Feder r wird frei, der Daumen auf der Achse j wieder gesenkt. Vom Griff des Hahnes geht eine Kette nach dem Gewicht I, welches dadurch aufgesogen wird, bis die Feder r den Daumen wieder gesenkt hat.

Unterdessen hebt das Gewicht I die Stange K und damit den Muff aus, das Getriebe wird frei und der Apparat bleibt so lange in Ruhe bis p von neuem steigt; das Gewicht O fällt zurück und schließt den Hahn S.

Der Schlitz im oberen Theile der Stange K gibt dem Gewicht I mehr Gewalt beim Falle, und öffnet zugleich den Hahn gänzlich ehe die Räder ausgerückt sind.

Miscellen.

Dampfheizungseinrichtungen für Personenwagen.

Größere Versuche mit Dampfheizung haben angestellt: die braunschweigische Staatsbahn, die preußische Ostbahn, die hannoversche Staatsbahn und die Niederländisch-Märkische Eisenbahn.

sakt eine gleichmäßige, mit Sicherheit zu hübschen, daß die Heizung ohne Anstand auf eine größere Anzahl Wagen ausgedehnt werden kann. Wenigstens ließ sich bisher nicht auf langen Strecken von mehr als 100 Meilen nicht herangezogen, auch sind die Kosten für Heizmaterial (durchschnittlich 6 bis 7 FpS. Kohlen pro Meile) nicht erheblich.

Die Dampfheizung, welche gegenwärtig auf der K inferredisch-Märkischen Bahn eingerichtet wird, ist im Prinzip der auf der hannoverschen Bahn gleich. Nächste Details sind nicht bekannt. (Zeitung des Vereins deutscher Eisenbahnverwaltungen, 1869, Nr. 7.)

Die neue Telegraphenlinie von Europa nach Indien.

Die Siemens'sche dynamo-elektrische Maschine.

In der Sitzung des Vereines für Eisenbahnmunde zu Berlin vom 13. April d.J. gab Pr. Siemens einige Noitgen über eine von ihm erfundene dynamo-elektrische
Maschine, bei welcher die abweichende Wirkung der entgegengerichtet gerichteten Induktionsströme beobachtet wird. Hat man früher mit galvanischen Batterien durch Kohlenspitzengalvanometer eine Reichweite von 500–600 Metern mittels des elektrischen Stromes erreicht, so liefert die dynamo-elektrische Maschine, deren Motor eine 6 Pferdefracht starke Dampfmaschine ist, einen Strom, der durch Kohlenspitzen ein Licht von 2800 Metern erreicht.

Eine starke Induktionsbatterie.

Der Apparat ist so zusammengesetzt, daß er sich leicht und leicht auseinander nehmen und wieder montieren läßt; ein Schaden an der inneren primären Windung wurde in 48 Stunden vollständig bereitet. Anfänglich war das Summengewebe 2 1/2 Zoll bei der Anwendung von 48 Passionen 30 Paaren von je 1 Punt (= nahe 1/2 Punt prufl.) Salpeteräreffnung; doch hat Pr. Apps spätere bessere Resultate erhalten.

Mit 5 Zellen oder Paaren beginnend, zeigte sich der Funke 10 Zoll lang.

Sodann mit

<table>
<thead>
<tr>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>17</td>
<td>21</td>
<td>21</td>
<td>23</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>27</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

50 Paare ergaben schließlich Funken von 28 bis 29 Zoll Länge. Zusammenhängend mit dem Apparat hatte Pr. Apps einen aus amalgamierten Blättern konstruierten Contactbrecher geliefert, der hauptsächlich deshalb begehrter war, als vergleichbare Apparate johe hindurch, weil das Gefäß zur Aufnahme des Ablössers tief genug war, um dessen Herabstürzen beim Polwechsel zu verhindern. Eine Batterie von 12 Zehnerflaschen war mittels drei Funken augenfällig geladen. (Berggeist, 1869, Nr. 32.)

Der Boden des atlantischen Ozeans.

Seit einiger Zeit wird in den gelehrten Gesellschaften Englands eine gallertartige Substanz besprochen, die sich am Grunde des atlantischen Ozeans gebildet hat und von welcher durch Leitungen mittels des Sensiblen mehrfach Proben zu Tage geborgen wurden. Professor Huxley hat dieser Substanz den Namen Bathymbis (in der Tiefen lebend) gegeben. Andere Forscher betrachten sie als ein riesiges Protospong, welches sich über eine Fläche von 1000 Kilometern verbreitet und auf die zehn Millionen lebendige Masse bildet; es wäre dies eine Zusammenhäufung von mikroorganischen Eiterchen, welche wahrscheinlich gleich den Pflanzen die Fähigkeit besitzen, sich auf Kosten der unorganischen Welt zu ernähren. (Annales de Genie civil, Februar 1869, S. 144.)

Über weisse und blau Glimmerdichtheiben füre Feuerarbeiter.

Dingler's polyt. Journal Kr. CXCII. 3. 17
CLXXXVIII (3, 71) die enorme Häufigkeit von Augenverletzungen nach, und empfahl zur Abdichte eine von ihm erfundene Schutzbrille aus Glumer. Um diese Brillen möglichst billig liefern zu können, ließ er die Brillen ohne Schirmarbeiten sicherstellen; dieses hatte natürlich die Untragbarkeit, daß man die Brille nicht gut bei sich tragen und tragen könnte. Er suchte daher neuerdings ein sehr primitives Skelett darzu erstellen, daß er einen Draht umziehen und durch die Messungslinie des Glumer- glasses durchziehen ließ; später ließ er noch einfacher statt jenes mehrgängigen Skeletts bloß ein Band zur Verbindung nehmen, wie man es früher stets bei den Schutzbrillen von Dr. Grillen für die Steintreiber anwendete; ein einfach brettemches oder seiliges Band eignet sich hierzu besser als ein Gummiühm, weil letzteres zu sehr drückt. Diese „Glimmerbrillen mit Band“ können sehr bequem in der Westentasche getragen werden. Um die vorderen Augenbogen vor dem Zutritte von Gassen zu ganz vollständig zu schützen, ließ Dr. Cohn auch Brillen anfertigen, die vorn eine plane Glimmerplakette und hinten einen unschärfer gegebenen Messingfaden hatten, „Nachtbrillen aus Glimmer“, und haben sich dieselben bei Feuersbrunten in Überschießen für die Feuerwehr gut bewährt, ebenso auch in einer Fabrikat in Nachesburg, in der es sich darum handelte, das Augen vor der Einwirkung nachtlicher Dämpfe zu bewahren. Es ist darauf zu achten, daß die Messinggranulation der Messing- schalenform hoch genannt sind, damit nicht die Augenwimpern der Glimmerplakette berühren, aber müssen in dem oberen und unteren Theile der mehrgängigen Stäbe einige leichte Anwürgung an die Brille angebracht werden, damit die Verbindung der Feuchtigkeit des Auges nicht vollständig verhindert wird. Diese Form der Brillen ist auch von einigen Fabrikaten für ihre Metallarbeiter ausdrücklich gewünscht worden, weil sie die Sehentheile des Auges ebenfalls völlig vor dem Anprall von Splittern schützen. Nach Erfahrungen in Berlin in Ober-Ingmar konnte die Glimmerbrille selbst bei der stärksten Einwirkung des kühnychste als Schutzbrille gebraucht werden, wenn sie während der Arbeit stets gewechselt wird, da, wenn fortwährend eine und dieselbe Brille der Einwirkung der Pisse ausgeht wird, der Glimmer trock sein Eigenschaft als feuchtester Wärmeleiter sich härter und dauernd in kurzer Zeit unbrauchbar wird. In Berlin bekamen daher jeder Arbeiter zwei Stück Brillen, welche er während seiner 8—9 Stunden Arbeit 3—5 Mal wechseln muß; die Halsbänder sind also, die Leute an diesem Wechsel zu gewöhnen.

Schwierigkeiten machte die Erzleistung eines Ausschusses der Verwaltung der künstlichen bodenfreien Eisenbahn, Blauer Glimmerbrillen für ihre Schmiede und Feuerarbeiter zu erhalten. Da der Glimmer sehr glatt ist, so nimmt er ohne Lad gar keine Farbe an und eine mit Lad aufgetragene Farbe gelingt beim Anbringen der Brille ab und war ja auch sonst recht Unmöglich zu ausführen; wurde dagegen eine dicke Glimmer- oder Eismüllung mit blauer Linie verfertigt, auf eine Glimmerplakette aufgetragen und auf diese Schicht wieder ein zweites Glimmergläser gelegt, so daß die Farbe zwischen den Glimmergläsern eingeschlossen wurde, so konnte man die Brille also pügen, ohne die Farbe Schaden nehmen; es liegen sich aber die garten Luftblasen aus der Glimmerung zwischen den Glimmerplatten nicht ganz entfernen. Hier hat nun Cohn's Brillenfabrik, Mar 19 ha a el, Bahnhofstrasse 10 in Preßburg, eine wesentliche Verbesserung gefunden, indem er statt der Glimmerung die sättigende braune Galatine verwendete. Diese wird einfach zwischen zwei Glimmerplatten eingeschlossen. Die Galatine schmilzt erst bei 70° R., d. h. bei einer Temperatur, der das Auge niemals ausgesetzt wird. Bisher konnte nur eine einzige Mischung der braunen Farbe in der Galatine in Deutschland erhalten werden; diese entspricht etwa der Galatine 4 der todladiblauen Glas, ist also schon sehr dünnste, sie ist daher für Feuerarbeiten von weniger delikater Natur recht empfehlens- wert. Hoffentlich wird auch bald blasses blauer Galatine in den Handel kommen.

Ganz besonders schenkt aber die weißen Brillen sich Eingang verschafft an den
Über das zu den optischen Apparaten der Leuchtthürme verwendete Glas; von David M. Henderson, Civilingenieur.

Das zur Construction der Beleuchtungsapparate für Leuchtthürme benutzte Glas wurde bisher fast nur in Saint-Gobain oder in Birmingham fabricirt und gehört zum Crown- oder Kronglas. Zu seiner Darstellung sind verschiedene Säfte empfohlen worden; Regnard, der Direktor des französischen Leuchtthürmendienstes, gab fürstlich folgende Zusammenfassung dieses Glases an:

<table>
<thead>
<tr>
<th>Säfte</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kieselsäure</td>
<td>72,1</td>
</tr>
<tr>
<td>Natron</td>
<td>12,2</td>
</tr>
<tr>
<td>Kalk</td>
<td>15,7</td>
</tr>
<tr>
<td>Thonerde</td>
<td>Eispulver</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Birmingham sind verschiedene Säfte versucht worden; die durchschnittliche Zusammenfassung dersehens ist ungefähr die nachstehende:

- Transfigurierter Sand: 5 Cr. - Orb. - Pfdr.
- Koblenzaures Natron: 1 " 3 " 7 "
- Kalk: 0 " 2 " 7 "
- Natronalbeiter: 0 " 1 " 0 "
- Arsenifüre: 0 " 0 " 3 "

Der Brechungsgraden des englischen Glases wird zu 1,51 angegeben; derjenige des zu Saint-Gobain fabricirten Glases war früher 1,50, ist aber jetzt 1,54 und es werden häufig Versuche angestellt, um sich zu überzeugen, daß dieser Normalwerth derselbe bleibt.

Zu neuerer Zeit beginnt man zur Fabrication des für Leuchtthürme bestimmten Glases mit befremden Siemens'schen Regenerativovien. Sobald der Saug eingeschmolzen und zum Hüsse fertig ist, wird die Wanne emporgehoben, aus dem Ofen herausgeraucht und zu einem Krahn transportirt, dessen Ebene am Ende mit einer Vorrichtung versehen ist, welche den Ofen umfaßt. Das Hüsse wird auf den Hagen ein; schmelzfreudiges Mundstück angelegt, um das Ausgießen des flüssigen Glases zu erleichtern und dann sippet der Arbeiter die Wanne mit Hilfe langer Hängebauten un.

Der Gießhöch ist freifürmig und ruht auf einem Rahmen oder Gerüste so, daß er horizontal um seine Achse gedreht und dann nach und nach der Theil seiner Peripherie unter dem Auge ubracht wird. Die Formen, in welche das Glas eingegossen wird, sind an der Peripherie des Gießhöhes angebracht, und brennt sich in Folge der Wirkung des aus dem Ofen ständig ausfließenden Glasflames so, daß sich eine Form, die anderen zuläßt; die letzte Wanne wird sofort in den
Den zurückgebracht. Die Formen bestehen aus Gusseisen, haben eine gleichmäßige Stärke von $\frac{3}{8}$ Zoll engl., ruhen auf angegossenen Pfosten und besitzen solche Dimensionen, daß von dem geossenen Glas durch das Eisenring und der $\frac{3}{8}$ Zoll weggemacht werden kann. Die kleineren ringförmigen Linien und Priemen werden aus einem Stück, die größeren hingegen in einzelnen Segmenten geossen. Die großen Centrallinien für hintere Licht werden gewöhnlich nach geossen und dann in einem besonderen Ofen über einen Zettel zur erforderlichen Krümmung gebracht. (Vorgetragen in der Institution of Civil Engineers am 17. November 1868. — Aus Engineering, November 1868, S. 456.)

Neben Gewinnung des Zinkes aus nassem Wege.

Das Hauptzweck der ortsfesten Zinnlager ist besonders alsbaldiges Zinkoxyd, welches in Salzmet mit Hüttenoxyd, Sand und Thon gemischt ist; in den nächsten Jahren kommen auch Bemühungen von Kalt und Magnesia bis zu 7 Proz. vor. Die durch die Natur des Erzes bedingte Aufbereitungswerte bringt es mit sich, daß eine große Menge desgleichen in Gesamtzustand eines durch Schlämmen gewonnenen fettigen Ölschees erhalten wird, welcher für die übliche Methode der Verhüttung unbrauchbar ist, aber gerade für die Extraktion auf nassem Wege sich eignen würden.

Es lag nun nahe, bisher Extraktionerst das Ammoniac in Anwendung zu bringen. Indessen lehnten wenige Versuche, das sich dieses nicht eignen, theils wegen der geringen Löslichkeit des Zinkoxydes in Ammonia, theils wegen des zu hohen Preises des letzteren, namentlich wegen des starken Berührungswegende Ammonia, welches der Thon unanschauhbar fehlt, und durch unvermeidliche Verunreinigung verdorben ging.

Eine abgestufte Verhüttungsweise, welche Aussicht auf praktische Anwendung gewährt, war die Extraktion mit Chlorcalciumlösung. Sie gründet sich auf die Umsetzung:

\[\text{ZnO, CO}_2 + \text{CaCl}_2 = \text{ZnCl}_2 + \text{CaO, CO}_2 \]

\[\text{ZnCl}_2 + \text{CaO, H}_2O = \text{ZnO, H}_2O + \text{CaCl}_2. \]

Eine Schwierigkeit und ein Nachtheil liegt in der Unmöglichkeit, die Reihenflände völlig auszumachen, das Chlorcalciummangel. Dies ist aber eine neue, bisher noch nicht entdeckte, welche von der Energie des Chlorcalciummangel abhängt. Schon bei der Anwendung des letzteren bei den bestrittenen Chlorcalcium ist unter gewissen Voraussetzungen die Extraktion vorteilhaft; wenn man aber annimmt, daß der in so großen Mengen in Stapfert gewonnene Tafelbrett eben so gut wie Chlorcalcium wirkt, so steht das Extraktionsmaterial billig zur Verfügung.

Der Verf. gibt eine genaue Disposition über eine solche Extraktionsanlage und eine Kostenberechnung, aus welcher hervorgeht, daß die ärmeren Erze bis zu 10 Proz. Zinsehalt vortheilhafte durch Extraktion und nachmalige Reduction im Ofen zu Gute zu machen seien, als durch direkte Verhüttung.

Neben Wertsbestimmung des Indigo.

Der Indigo kommt in sehr verschiedenen Qualitäten im Handel vor bei sehr großen Preisschieden. Sie blos nach dem äußeren Ansehen zu unterscheiden, verlangt ein sehr geübtes Auge und kann schließlich große Sicherheit gewähren. Eine

Georg Leuchs (Journal für praxische Chemie, Bd. CV 2. 2) ist zur Reduktion des Indigos mit Kali und Eisenbutter zurückgekehrt. Anstatt aber des Indigeweiß durch Säure auszufällen und zu wägen, setzt er zu der allschlässlichen Lösung schwefelsaures Eisenbutter und Schwefelsäure. Das Indigeweiß wird dann durch das Eisenbutter oxydiert.

C₁₆H₁₄N₂O₂ + Fe₂O₃ = 2 FeO + C₁₆H₁₄N₂O₂ + HO.

Man filtrirt das ausgeschiedene Indigblau ab und bestimmt durch 1/100 Normallösung von saurem chromsaurem Kali (1/100 Atom im Liter), niemals Eisenbutter möglich geworden.

Kubikzentimeter der Lösung entspricht 2/100000 Atom Eisenbutter oder 1/40000 At. Indigblau = 0,0181.

Man bringt 1,8 l. 2.1 cm. der Indigblues, mit gleich viel Kali und Eisenbutter in gut verschließbare Flaschen, welche 300 K.C. fassen und läßt sie mit Wasser. Nach einiger Zeit setzt man zu einem abgemessenen Theile der Flaschen eine ebenfalls gemessene Menge von schwefelsaurem Eisenbutter, filtrirt das saure Indigblau ab und bestimmt das Eisenbutter in einer bestimmten Menge des Filtrates.

Verfassung der Indigblau an, wie Fällung durch Säure und Wägung, und die ungelöste Indigblau blieb beim Indigblau zurück. Erst Mitteilungen des hannoverischen Gewerbevereines, 1869 2. 48.

Entzündungspunkt der Dämpfe einiger Handelsprodukte, nach W. N. Hutton.

Entzündungstemperatur

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Spec. Gewicht</th>
<th>bei 1 1/2" Kerzen-</th>
<th>bei 1 3/4" Kerzen-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwefelsäure</td>
<td>0,757</td>
<td>11 1/2° C.</td>
<td>11 3/4° C.</td>
</tr>
<tr>
<td>Schwefeldiessäure</td>
<td>1,270</td>
<td>11 1/2° C.</td>
<td>12 1/2° C.</td>
</tr>
<tr>
<td>Betriebsmäster</td>
<td>0,706</td>
<td>11 1/2° C.</td>
<td>12 1/2° C.</td>
</tr>
<tr>
<td>Baraffinsäure</td>
<td>0,751</td>
<td>21 1/2° C.</td>
<td>21 3/4° C.</td>
</tr>
<tr>
<td>Benzol, 90 Prov.</td>
<td>0,861</td>
<td>23 1/2° C.</td>
<td>21 3/4° C.</td>
</tr>
</tbody>
</table>

Der einfache Apparat, der zur Bestimmung des Entzündungspunktes der Dämpfe diente, bestand einfach in einem Wasserbad mit einer Schale, einem Thermometer und einer Spirituslampe. Bei jedem Versuch wurde in das Bad die gleiche Menge faltes Wasser gebracht, damit die Erwärmung des Wassers stets in möglichst gleicher Zeit vor sich ging. In die kleine Schale wurde stets ein und dasbe gleiche Volumen von der zu untersuchenden Flüssigkeit gebracht und die Kugel des Thermometers in dieselbe eingetaucht. Wird dann die Spirituslampe unter dem Wasserbad angezündet, so ist es leicht, während die zu untersuchende Flüssigkeit durch das Wasserbad allmählich erwärmt wird, mittels einer brennenden Kerze den Beginn der Entwicklung von brennbaren Dämpfen zu bestimmen. Wie die Tabelle zeigt, ist es von größter Wichtigkeit, daß die Kerze von der Oberfläche der Flüssigkeit stets in einer bestimmten, gleichmäßigen Entfernung gehalten werde; hat der Dampf z. B. einen Abstand von 1½" bis zur Kerze zu durchbringen, so mußte er sich mit einer größeren Menge Luft, also wenn er nur ½" zu durchströmen hat, es ist also eine höhere Temperatur nötig, um die er-
Über eine neue Politur-Composition; von C. Buscher.

Vorschrift zum Gummiiren von Etiquetten.

In diesem Zweck bewährt sich nach Verubungen von Facitides folgende Vor- schrift als vorzüglich. Guter Cölner Leim, 5 Theile, mit 18 bis 20 Theilen Wasser einen Tag macerirt, aufgesucht und in demselben 5 Theile weizen Kandis und 9 Theile arabisches Gumi (keinesfalls aber Kiegschmink, noch die im Handel vorvorkommenden Surrogates) gelöst, wird lanwarm auf das Papier aufgetragen. Diese Masse hält sich nicht sehr kalt, wird aber bräusiche noch ungynig, sie, wenn die fertigen Etiquetten auf einander gedrückt sind, nicht zusammen und haften an den Gegenständen leicht, sowie mit Dauerhaftigkeit. In den Etiquetten für Seetext- und Sobabaffischen. ist ein Stifter von Rügens und Leim empfehlenswerth, wobei aber noch der fertig gedruckte Wasser auf das Papier 1/2 Loch guter Leinsirup und 1/2 Loch Terebinthin zugefügt ist. Auf diese Weise behandelte Schilde haben den Vorteil, selbst in seuchen Klimen sich nicht loslösen. Will man zur Spanneheit diese Papiere vornützig gummiiren, so ist eine praktisch erworbene Waffe, die oben für Kneiftischs angegeben, auf das Papier 1/2 Loch guten Leinsirup und 1/2 Loch Magnesia in wenig Wasser angewürzt zu zugeben. (Archiv der Pharmacie, 1869 S. 35.)
Kohle aus Meeresalgen.

Seit einiger Zeit verwendet man die Meeresalgen durch Talcinirnen in eine vorzügliche Kohle, welche zum Hüttieren des Wassers, zum Desinfizieren von verdumpfem Wasser, zum Böden des weissen Glases, zum Entfärben und Entfärben des Weines, sowie zum Färben und Entfärben der Pflanzenfarblöde der gewöhnlichen Holzöle vorzüglich ist. Früher hatten jene Pflanzen gar keinen oder nur geringen Werth; jetzt füllen sie aber auf mehreren Jüdien einen wichtigen Handelsartikel. (Annales du Génie civil, Februar 1869, S. 144.)

Versuche zur raschen Beteigung von Schneemassen; von Treherne.

Das Verfahren, um Schmelzen des Schnees zu beschleunigen, besteht in der Einführung mehrerer Dampfsammelproben aus, an deren Enden Brausen, wie an den Schüßlappen, angebracht sind. Diese Brausen werden in die Schneelöcher gepedt und injizieren in dieselben Dampf mit einer Kraft von 100 Pferden. Das Schmelzen des Schnees erfolgt auf diese Weise sehr rasch, und die englischen Zeitungen sprechen sich über die mit diesen Verfahren erhaltenen Resultaten sehr begeistert aus. (Annales du Génie civil, Februar 1869, S. 142.)
LXIV.

Americanischer Centrifugalregulator.

Mit Abbildungen auf Tab. V.

Im Wesentlichen gleicht der in Fig. 1 dargestellte Regulator dem gewöhnlichen Centrifugalregulator, nur ist die Anhängung der Pendelarme eine andere, und in Fig. 2 in einfachen Strichen zu ersehen.

In Fig. 3 ist im Durchschnitt eine Anordnung des Drosselventiles (nach dem Scientific American, Januar 1869, S. 8) zu ersehen, welches mit dem beschriebenen Regulator in Verbindung stehen könnte. B ist das Dampfeinlaßrohr, an welchem weiter links das Dampfzulaßventil stellbar mit der Hand liegt.

Der Dampf tritt in der gezeichneten Stellung in der Richtung der Pfeile ein und geht durch C zum Spießkasten.

Dieses Drösselventil ist vollkommen entlastet und hat einen kleineren Durchmesser wie die gewöhnlichen einfachen.

Beim Inbetriebsetzen der Maschine wird der Gegengewichtshebel D durch die Käfe E gestützt, das Drösselventil geöffnet. Hat der Regulator die genügende Geschwindigkeit erreicht, so wird E in die punktierte angegebene Lage gebracht.

3. J.

VII.

LXV.

amerikanisches Metall-Manometer; Vorrichtung zu dessen Eintheilung und Prüfung auf seine Richtigkeit.

Mit Abbildungen auf Tab. V.

Die Anordnung dieses Metallmanometers erkennt man aus Fig. 4, in welcher der im Gehäuse eingeschlossene eigentliche Druckmesser dargestellt ist. Letzterer besteht, wie im Schnitt Fig. 6 zu sehen, aus zwei Wellenplatten A, A, welche mit dem Band B nicht verbunden sind. In der unteren Metallplatte befindet sich ein Rohr, an welches das Manometerrohr angeschraubt und durch welches der Druck in die Dose B fortgepumpt wird. Der Druckmesser der letzteren beträgt 1/4 Zoll und die mögliche absolute Ausdehnung 1/2 Zoll.

Die Vorrichtung, mit welcher diese Manometer eingetheilt oder geprüft werden, ist in Fig. 5 angegeben.

Die Höhre A hat in Wirklichkeit eine Höhre von mehr als 50 Zoll und taucht mit dem unteren offenen Ende in das mit Quecksilber gefüllte Reservoir B. C bezeichnet eine gewöhnliche galvanische Batterie; der eine Poldraht taucht in das Quecksilber, der andere ist in Verbindung mit dem isolirt gelagerten Zeiger an der Indegehefe D. Der diesen Zeiger mit der Batterie verbindende Draht windet sich um einen Eisenstab (temporären Magnet); in Folge der erzeugten magnetischen Kraft beim Schließen des Stromes fällt der Schläger E auf die Glode F, wodurch der Prüfende jedesmal das Signal erhält, daß ein bestimmter Druck erreicht ist.

Es ist nämlich die Höhre A in bestimmten Abständen mit isolirten Spitzen G verrieben, welche durch die Rohrwand durchgehen und der Reihe nach mit der steigenden Quecksilberflüssigkeit in leitende Verbindung treten.

Von jedem Drahtstift G geht ein Leitungsdräht zu einem isolirten
Drahtzählscheibe an der Industriellehe D, die der Reihe nach mit jeüen Zahlen numerirt sind, welche dem Druck entsprechen, wenn die Quecksilbersäule die Höhe des betreffenden Stiftes G erreicht hat. Die Höhe der Zählscheibe ist so gehalten, dass der Zeiger in eine leitende Verbindung mit demselben gebracht, also der Strom geschlossen werden kann.

Die Einteilung eines Manometers H (Fig. 5) erfolgt nun einfach in der Weise, dass man — einen dichten Verschluss der Druckrohren I 2c. vorschiebt — der Zeiger auf das mit 5 bezeichnete Zählscheibe stellt. Setzt man nun die Druckpumpe J in Bewegung, durch welche Wasser nach dem Reservoir B sowohl als in die Metalldose des Manometers H getrieben wird, so wird das Quecksilber in der Nöhre steigen.

Kömmert es endlich mit dem ersten Stift G in Berührung, welcher mit dem Zählscheibe 5 verbunden ist, so wird der Strom geschlossen und ein Glockensiflag gibt dem Arbeiter an, dass der am Manometer H befindliche Zeigerschein in der Höhe 5 Pfund pro Quadratzoll entsprechen.

Die weiteren Teile der Zeichnung findet derfelse in ähnlicher Weise; der Prüfende schiebt den Zeiger an das Zählscheibe 10, welches mit dem zweiten Stift G an der Nöhre A verbunden ist. Nachdem die Pumpe P in Bewegung gesetzt ist, wird ein neuer Glockensiflag den Zeitpunkt angeben, wann das Quecksilber die entsprechende Höhe, b. h. wenn der Druck im Manometer H 10 Pfund erreicht hat.

In dieser Art führt man fort, bis die Einteilung oder Prüfung des Manometers vollendet ist.

LXVI.

Wilcox's Zählsapparat.

Nach Engineering, Januar 1869, S. 38.

Mit Abbildungen auf Fig. V.

In Fig. 29 bis 34 ist in zwei verschiedenen Formen ein sehr einfacher Zählsapparat, von C. B. Wilcox in Glasgow erfunden, dargestellt. Derselbe besteht aus einem ringsförmigen, stellenweise durchbrochenen

80 Solche Manometer haben in den letzten fünf Jahren in den Vereinigten Staaten eine große Verbreitung erlangt; sie werden von der Utica Steam Gage Comp., Utica, N. Y., angefertigt.
Mantel A, durch den quer die Achse d geht, auf welcher eine Reihe von außen und innen verzahnten Rädern sitzt. Wie aus dem Schritt Fig. 32 und 33 zu ersehen, ist jedes äußere Rad a an der einen Seite ausgehöhlt und im Eingriff mit je einem inneren Rade b. Dieses sitzt jedoch nicht auf der Achse, sondern fest auf der exzentrischen Nabe des zur Rechten liegenden äußeren Rades, welches selbst lose auf der Welle d aufge- schoben ist. Die inneren Räder werden vor einem Verbrennen gegen den Mantel A durch je ein Verbindungsstück e verhindert, welches von jedem Rade nach dem Wäschchen e geht.

Das erste an dem rechten Ende befindliche innere Rad b_0 sitzt auf einem mit den übrigen gleich großen Gecenter auf der Welle d, welche in Verbindung gebracht wird mit jener, deren Umdrehungen zu zählen sind; es wird somit b_0 zunächst gedreht und überträgt die Drehungen auf das mit demselben eingreifende äußere, das Einer-Rad a_0. Die inneren Räder b haben je 9 und die äußeren a je 10 Zähne. Es wird somit jedes äußere Rad durch eine volle Umdrehung des inneren Rades um einen Zahn, resp. um eine Zahl weiter gedreht.

Dementsprechend rücks das Einer-Rad a_0 nach einer ganzen Umdrehung des Rades b_0, d. i. der Welle d um ein Zehntel des Umfanges weiter. Das zweite äußere, das Zehner-Rad a_1, wird durch das zweite innere Rad b_1 getrieben, welches auf der mit dem Einer-Rade a_0 in einem gegossenen Rabe festgeht. Es rückt somit jedes um einen Theilstrich weiter für eine ganze Umdrehung von b_1, d. i. für je 10 Umdrehungen von a_0 oder der Welle d. In ähnlicher Weise gilt dies von den übrigen, so daß das dritte äußere, das Hundertern-Rad a_2 um eine Zahl weiter gedreht wird für eine Umdrehung von b_2 auf der Nabe von a_1, also für je 10 Umdrehungen von a_0, somit für je 100 Umdrehungen von d u. s. w.

Die äußeren Räder sind an dem Umfang mit den gleich weit abstehenden Zähnen 0 bis 9 versehen, und in dem Maße als diese Räder sich umbrechen, kommen diese Zahlen an den Öffnungen im Mantel A zum Vorziehen, wie dies in Fig. 31 und 34 ersichtlich ist.

Fig. 29, 30 und 31 zeigen entsprechend die Endansicht, die Seitenansicht und den Grundriss des Mr. Coz’chen Zylindersapparates, wie er für allgemeine Zwecke angeordnet ist. Der Mantel ist leicht zu öffnen und die eingreifenden Räder sind leicht außer Eingriff zu bringen, um die Inndräader auf Null zu stellen.

Fig. 34 zeigt einen tragbaren Zylindersapparat, speziell zur Bestimmung der Geschwindigkeit von Maschinen bestimmt. An eine der beiden zuge- spitzen Spindelenden o wird die Glimmer h mittelst der Druckschraube i
festgestellt, und die dreieckig zugeführte Spitze x an die geförnte Endfläche der zu prüfenden Welle angebracht.

LXVII.

Frictionskuppeling von Kitson und Chalas in Leeds.

Mit Abbildungen auf Tab. V.

Diese eigenthümliche Frictionskuppeling ist in Fig. 39 und 40 angedeutet.

Auf der Hauptwelle A liegt los das Zahnrad b mit der rechts vor- springenden Frictionsfläche, dagegen für den Theil c, welcher ringförmig ausgebrochen ist. Diese Höhlung communizirt durch den Canal e und f in der Hauptwelle mit einem Accumulator oder einer hydraulischen Pumpe; es kann somit zeitweilig Wasser unter bedeutschem Drucke treten und in Folge dessen werden die vier kleinen Kolben e nach links und dadurch die Frictionscheibe d gegen die Fläche des Nades b gepreßt. In diesem Falle wird die Drehung der Hauptwelle von dem getüpfelten Nade b weiter übertragen.

Zur Verstellung möglichst leichtheit ist der die Kehlschürting g zwischen dem Kolben e und der Anlagefläche eingelegt, so daß bei aus- gehobenem Wasserdruck die Elastizität den Ring an jeden Kolben e zurückdrückt.

LXVIII.

Hydraulischer Bagger von J. Robertson, Ingenieur in Glasgow.

Mit Abbildungen auf Tab. V.

In Fig. 7 und 8 ist die allgemeine Anordnung des Robertson'schen Baggers in einfachen Linien skizziert.

Das am Flusstoden F sich langsam vorwärts bewegende Mundstück B, B ist in Fig. 9 im größeren Maßstab im Durchschnitt gezeichnet. Es ist an der linken Seite zwischen d, d offen und gestattet den Eintritt des Schlammes oder Sandes am Boden.

Durch die Rohrleitung A, A wird Wasser unter einem gewissen Druck von der auf dem Baggerboote H aufgestellten Centrifugalpumpe h eingetroben. Bei der eigenthümlichen Form des Mundstückes B, B wird der Injectionsstrahl an dem Anwürgen gehindert; er steigt vielmehr auf der anderen Seite durch die Höhe C, C wieder hinauf und reißt den bei d, d eingesaugten Sand mit in die Höhe, wo sich der Strahl in das kleine Boot N ergießt.

Das Baggerboot H ist von verhältnismäßiger Grösse, um die Anordnung der Betriebsmaschine zu ermöglichen.

Die ganze Anlagenlage A, B, C ist um die starke Mauerwelle g drehbar gelagert, um das Mundstück B in einer bestimmten Tiefe zu erhalten. Hierzu dient noch die Kette L, ein Ende ist am hinteren Theile des Bootes bei v befestigt, das andere geht über Leitrollen zu der Trommel K, auf welche die Kette aufgewunden wird, wenn das Mundstück B gehoben werden soll.

Eine zweite Kette L, vor dem Boote H verankert ist mit dem anderen Ende um die während der Arbeit sich continuirlich drehende Trommel R gewunden, so daß der ganze Baggerapparat langsam im Sinne der Pfeile vorwärts gezogen wird.
Eine im Prinzip gleiche Anordnung ist in Fig. 10 skizziert, wie sie bei einer Höhenfundierung angewendet wurde. Neben beide Anordnungen sprechen sich die zitierten Quellen günstig aus.

Die Form Fig. 11 und 12 entspricht für das Ausheben eines lockeren Gerölles, in welches das teilsförmige Stück A, A durch das Gewicht der Rohrleitung, welche längs dem Halten E, F befestigt ist, leicht eindringt.

Für Arbeiten in dichtem Boden dient das Mundstück A, A, wie es in Fig. 13 und 14 gezeichnet ist.

Um das allmäßliche Tieferfüllen der Vorrichtung zu gewährleisten, sind die ober Wasser liegenden Theile der Rohrleitung D und F entsprechend eingerichtet.

Nach dem Artisan wurde durch eine 4½ engl. Zoll weite Rohre bei einem Druck von 40 Pfund pro Quadratzoll per Minute eine Tonne Sand in einem 2½ Zoll starken Strahl aus der Fundamentsgrube gehoben.

J. Z.

LXIX.

Hodgson’s Drahtseilbahn.

Mit Abbildungen.

Schon öfters sind Flüsse oder Schluchten mittels Drahtseilbahnen über- spannt worden, um an denselben Gegenstände von einem Ufer zum anderen zu ziehen. Fortlaufende Drahtseilbahnen zum Transport von Lasten auf weitere Entfernungen sind jedoch unseres Wissens bisher noch nicht ausgeführt worden.

Die nachstehenden Skizzen zeigen das System der Leitung im Ansicht und Querschnitt; es bleibt nur wenig hinzuzufügen.

Wo schwerere Lasten von 5 bis 10 Ctr. zu befördern sind, wird Mr. Hodgson seidene Drahtseile anwenden, welche nur als Schienen dienen. Die Kästen hängen dann an Rollen, welche sich auf diesen Seilen bewegen. Ein unter dem Boden der Kästen befestigtes leichteres Seil ohne Ende soll die Bewegung hervorrufen.

Das beschriebene System soll in der Herstellung billiger sein als mittelmäßig gute Straßen oder sekundäre Eisenbahnen mit enger Spurweite, und soll sich auch hinsichtlich der Unterhaltung billiger stellen als diese. W. S. (Deutsche Bauzeitung, 1869, Nr. 15.)
LXX.
Die sogenannten Zores-Eisen (schmiedeeiserne Tragbalken).

Mit Abbildungen.

Während die von den Eisenerwerken an der Saar und am Rhein gelieferten sogenannten Doppel-T-Eisen als schmiedeeiserne Tragbalken für die verschiedensten Constructionen in Süddeutschland schon vielfache Anwendung gefunden haben, sind die in Frankreich sehr verbreiteten nach dem Erfinder sogenannten Zores-Eisen wenig bekannt. Es wurden deshalb Proben derselben, deren Querschnitte im Wesentlichen durch die untenstehenden Zeichnungen repräsentiert sind, von S. Ménons et Comp. in Frasians (Jura) für das Musterlager der fgl. württembergischen Centralstelle für Handel und Gewerbe erworben.

Diese Profilisen besitzen bei gleichem Querschnitt eine etwas gerin gere Festigkeit gegen das Biegen als Doppel-T-Eisen. Dagegen haben sie den Vortheil größerer Steifigkeit gegen Kräfte, welche von der Seite auf sie einwirken; ferner haben sie breitere Grund- oder Auflagelächen, auch sind sie durch ihre schrägen Seitenflächen besonders geeignet, als Widerlager und Träger von Gewölben zu dienen.

Fig. 1 ser conique wird in 12 verschiedenen Dimensionen fabricirt, von 60 Millimeter Höhe bis zu 200 Millimeter. Die Breiten der Profile sind stets gleich der Höhe; sie wiegen von 4 bis 38 Kilogr. pro laufenden Meter.

Fig. 2 ser tronqué wird in etwa 7 Abstufungen erzeugt von 80 bis 200 Millimeter Höhe und von 7 bis 39,5 Kil. Gewicht pro laufenden Meter.
Fig. 3 fer arrondi eignet sich zu Brückenbelag, sowie, wenn zwei zusammentegeschraubt oder genietet werden, zu Tragpfeiler; es wird in etwa 10 Abstufungen geliefert mit einer Basis von 110 bis 310 Millimeter, bei einem Gewichte von 4 Kilogr. bis 44 Kilogr. pro laufenden Meter.

Hieran schließen sich noch andere diesen Querschnitten verwandte Profile an, welche sich besonders als eiserne Querschwellen zur Verwendung für den Eisenbahnbau eignen. (Württembergisches Gewerbeblatt, 1869, Nr. 14.)

LXXI.
Das gezogene Martini-Henry'sche Hinterladungsgewehr.

Mit Abbildungen auf Tab. V.

Von dem seiten des Ordnance Select Committee nach lange fortgesetzter strenger Prüfung der englischen Regierung zur Annahme empfohlenen neuen Hinterladungsgewehr enthält die Zeitschrift Engineering vom 19. März 1869 eine Reihe von Versuchsfabrikations- Zeichnungen, welche wir in Fig. 16—28 reproduzieren und zu deren Erklärung folgenden mittheilen.

Fig. 16 und 17 liefern Längendurchschnittszeichnungen des zum Laden geöffneten und respective eben abgeschlossenen Gewehres. Fig. 18 bis 28 aber Seitenansichten des Gewehres in geschlossenen Zustande und beziehungsweise der einzelnen Verschlusstheile.

Zur Verbindung zwischen dem Börderschaffe M und dem Hinterschaffe V (Fig. 16 und 17) des Gewehres dient der Verschlusshnahme B, in welchen der Lauf A eingeschraubt ist und dessen feste Verbindung mit
dem Hinterschaft V durch die Schafflerschraube W, sowie mit dem Vorder-
schaft M durch die Ladestockhülse J, resp. deren Befestigungsschraube K
bewirkt wird. — In diesem Verschlusshärtchen B läßt sich um die Achse D
berum das zum bequemeren Einführen der Patrone in den Lauf A des
Gewehres oben muldenförmig ausgeschnittene eigentliche Verschlussstück C
auf und nieder bewegen; letzteres trägt in seinem Inneren die zum
Abfeuern der Patrone dienenden Schloßteile, nämlich das Schlagstück E
mit seinem Einschnitt e (Fig. 22) für den Ruharm N, die Sprungfeder F
und die Schafflerschraube G. Vermittelt wird diese Bewegung durch die den
hinteren abzusättigend ausgeschweißten Theil des Verschlussstückes umfangen-
den Backenstücke X, X (Fig. 23) des Doppelshebels O, welcher nebem der
Ruharm N um die Welle P dreibar ist und welchen bei geschlossenem Ge-
weherverschluß die Feder Z im Schaftefolben festhält.

Das Laden des Gewehres ist hiernach in folgenden drei Tempoi's
auszuführen:

1) Niederdrücken des unteren Schenkels vom Hebel O, wodurch das
Verschlussstück C sich hinter dem hinteren Laufende niederseift, etwaige
Patronenreste vermittelt das auf der Welle I aufsetzenden Extractors H
beigelegt werden und zugleich die Feder F des Schlagstückes E sich ver-
mittelt das in seinen hinteren Einschnitt eingreifenden Armes des Ruharm N
spannt, während dabei der von seiner Feder U unterstützt Stangen-
chnabel S in die zugehörige Nutbrast einfällt.

2) Einführen der Patrone in das hintere Laufende durch Vorschieben
erdeiben auf dem oben muldenförmigen Theile des niedergelegten Ver-
schlussstückes.

3) Zurückführen des unteren Armes vom Hebel O bis zum Ein-
fließen seines äußersten Endes in die Schafflerschraube Z, wodurch das Ver-
schlussstück C mit gespannter Schlagzüge F vor die hintere Lauf-
öffnung des Gewehres tritt, und dieses also dann geschlossen und ge-
spannt ist, so daß es nun vermittelt des Abzuges R abgefeuert werden
cann.

Der Patronenauszieher H besteht aus einem Winkelehebel, dessen
unterer Arm sich an die untere Fläche des Verschlussstückes C anlehnt,
während der obere gabelförmig geschlitzte Hebelarm Fig. 23 bei geschlossenem
Verschlusapparate bis zur Laufsmitte des Gewehres hinausreicht und so
den hinteren Rand der eingefügten Patronen mit seinen inneren Vor-
ständen umfaßt, was beim Niederdrücken des Verschlussstückes das Heraus-
treiben der Patronenhülse aus dem Rohre zur Folge hat.

Ein mit der Welle P des Hebels O in Verbindung stehender Inver
Die vom Committee empfohlene Patrone ist bei einem Totalgewicht von 718 Grains 3,75 Zoll lang. — Die aus 12 Theilen Blei und 1 Theil Zinn bestehende Kugel derselben ist 480 Grains schwer, 1,27 Zoll lang, hinten etwas ausgehöhlt und verjüngt sich, mit nach einwärts ge-}

schweiften Seitenwänden, von unteren Rande bis zur Basis des conoidi-

Statte, im März 1869.

Darapšý

LXXII.

Drehbank zum Drücken von Metallblechen; von Grünenberger, Mechaniker in Rouzon.

Nach Armgardt's Génie industriel, März 1869, S. 133.

Mit Abbildungen auf Taf. V.

Diese Drückerbank gestattet die Erzeugung größerer Gegenstände aus Eisen- oder andern Blech mit größerer Leichtigkeit und erheblicher Kosteneinsparung gegenüber der Herstellung mittels freier Handarbeit. An dem Kopf einer horizontal gelagerten Spindel wird das Modell befestigt, dessen Gestalt der zu erzielenden Form des Gefäßes entspricht; die Fläche des eingespannten Bleches liegt vertical.

Auf dem Gestell der Drückerbank bewegt sich ein Support hin und her mit drei oder mehr zweiermäßigen Hebeln, welche in einem gelagert sind. Das eine Ende jedes Hebels trägt die auf das Blech wirkende Druckrolle; das andere Ende ist gegabelt zur Aufnahme einer kleinen Leitrolle, welche über eine Patronne gleitet, deren Form die entgegengesetzte der Form des eingespannten Modelles ist. Die Bewegung
des Supports erfolgt einfach von einem Hebel aus, welchen der Arbeiter hin und her dreht, wodurch die Drückerollen das Blech über das Modell oder Futter, während dessen Drehung mit der Spindel, herumlegen.

Es wird somit der Zweck der in Fig. 35 bis 38 dargestellten Anordnungen leicht erkennlich.

Fig. 35 und 36 zeigen in 1/20 wirklicher Größe, und zwar Fig. 35 im Längsschnitt und Fig. 36 im Querschnitt eine Anordnung einer solchen Drückdrehbank, deren Untergestell weggelassen ist.

B bezeichnet das gewöhnliche Drehbankgestell, aus welchem links der Spindelstock A, rechts der Reitstock E ruht. Die Spindel erhält ihre drehende Bewegung durch einen auf die Stufenscheibe C auflauenden Knieen. D ist der Support.

Auf der Spindel sitzt ein kleines Scheibenfutter, mit welchem das Modell in verschraubt ist. Hat letzteres eine solche Gestalt, dass es aus dem darüber aufgesogenen Blechgefaß nicht herausgezogen werden konnte, so wird das Modell selbstverständlich aus einem Herdstück und mehreren radial aneinander passenden Theilen zusammengesetzt, welche der Ring b (Fig. 35) zusammenhält. Die Blechscheibe x wird durch die mit einem Knopf F versehene Stange t von dem Reitragel an das Modell m angedrückt und dreht sich mit diesem und der Drehbankspindel.

Wie aus Fig. 36 ersichtlich ist, stehen von der Scheibe H des Supports D drei Lappen l ab, bestimmt, die Drehzapfen der Hebel L anzunehmen. An den der Spindel zugeführten Enden sitzen die stählernen Drückrollen l; an den entgegengesetzten Enden die Leitrollen g, welche auf der Oberfläche der Patronen G gleiten. Diese wird auf eine am Reitstock befindliche Hülse aufgesoben und hat durch die mit der Form des Modelles in zusammenhängende Gestalt den Zweck, die Druckrollen auf die nötige Tiefe, d. i. über das Blech am Modell zu führen.

Durch eine während der Drehung der Spindel, des Modelles m und der Blechtafel x in der Richtung des Pfeiles bewirkte Drehung des Hebels N wird der Support mit den Druckrollen nach links geführt und das Blech allmählich über das Modell gebrütft.

In Fig. 37 und 38 ist eine etwas einfachere Anordnung, jedoch nur der gerade wesentlichen Theile dargestellt, indem das Fehlende nach Fig. 35 und 36 ergänzt werden kann.

Hierbei findet man vier Druckrollen l', bestimmt, clyndrische Formen zu drücken, z. B. Nebenringe für Wagenräder etc. Der Abstand dieser Rollen von der Achse ist veränderlich, doch wird jede Rolle in einer gewöhnlichen Lage durch eine Stellschraube und durch einen aufgesetzten Ring oder ein Eisenband P gehalten.
Wie früher wird der Support von einem Hebel aus bewegt und die Druckrollen zur Wirkung auf die Metallplatte x zugeführt. Nur entfallen bei der einfacheren Form des Modells (ein Cylinderr) die oben notigen Hebel L und die Patrone G.

LXXVIII.

Schmierörl-Rührapparat von J. Rigg, Ingenieur in Chester.

Mit einer Abbildung auf Taf. V.

Das Bedürfnis eines guten Deles zum Schmieren von Maschinen und deren Bestandtheilen, führte zur Anwendung der Mineralöle für diesen Zweck. Indes beschränkte die Dünngflüssigkeit und die Flüssigkeit dieser Dele ihre Verwendung, welchem Mifstande man dadurch abzuhelfen trachtet, daß man die Mineralöle mit animalischen oder vegetabilischen Deles so vermischte, daß das Product die guten Eigenschaften des mineralischen Deles noch besitzt, aber etwas dickerflüssiger geworden ist.

Zu dieser Vermischung der Dele konstruirte der Ingenieur Rigg den in Fig. 15 dargestellten horizontalen Rührapparat. Er besteht der Wesentlich nach aus einem horizontalen schmiedeeisernen Kessel A, der fest steht. Eine Welle W, W geht quer durch denelben und trägt an Armmen Längsrührer — im Querschnitt winkelsformig —, wie dieselben Theil aus dem durchschnittenen Theil der Figur ersichtlich ist.

Die zu mischenden Dele werden durch eine, während dem Rühren verschlossenen gehaltene Öffnung eingelassen. Nach einem kräftigen Berührren, so daß sich die verschiedenen Dele bauernd vermischten, leitet man das Schmiermaterial mit Hilfe der Pumpe P in verschiedene Gefäße ab, wenn der Apparat nicht so hoch gelegen ist, daß der Ablauf frei erfolgt.

J. J.
LXXIX.

Aus Armengaud's Génie industriel, Februar 1869, S. 87.

Mit einer Abbildung auf Taf. V.

Die Erzeugung eines gepreßten Luftstromes ohne Hülfe einer motorischen Kraft ist eine Aufgabe, deren Lösung auf den ersten Blick leicht zu sein scheint, welche jedoch in Folge der mit der praktischen Ausführung verbundenen Schwierigkeiten bisher ungelöst geblieben war.

Die Lösung dieser Aufgabe ist besonders für die Herstellung zweckmäßiger Apparate zum Löthen mit Gas (für Klemmer, Lampenfabrikanten, Brillenfabrikanten, Bienenarbeiter, &c.) sehr wünschenswerth; ferner zum Erhitzen der Platteisen für Wäscherinnen, Meiermacher, &c.

Das Bedürfnis eines regelmäßigen wirrenden Gebläses ohne Motor machte sich auch in der Beleuchtungsfunst fühlbar. Donny kam zuerst auf den Gedanken, einen Strom gepreßter Luft zur Verbrennung der schweren Theeröle zu benutzen, welche so kohlentoffhaltig sind, daß man ohne Hülfe eines solchen Luftstromes mit denselben keine rauchfreie Flamme erzeugen kann.

Das hierauf angewendete Mittel, welches als das einfachste erscheint, war ein mit Wasser gefüllter Bottich, in welchen eine Glocke eintauchte, die beim Heraussinken die Luft, welche sie enthielt, durch ein Rohr austrieb, das über das Niveau des Wassers innerhalb emporragte und durch das Wasser hindurch nach außen geleitet war, also eine dem Gasometer analoge Anordnung.

Dieser Glödenapparat, dessen man sich besonders bei Lötherbeiten bediente, müßte in großen Dimensionen ausgeführt werden und war trotzdem noch mit dem großen Nebelstände behaftet, daß die Glocke jeden Augenblick von neuem emporgehoben werden müßte.

Von Marius wurden verschiedene Systeme derartiger Glödenapparate ausgeführt. Die kleinsten, von 60 Centimeter Durchmesser, wurden als Regulatoren eines gewöhnlichen mit der Hand bewegten Gebläses (Blasbalg) benutzt, indem die Luft durch die Bewegung des Gebläses rückwärts unter die Glocke trat und von derselben aus durch ein enges Rohr mit großer Regelmäßigkeit ausgetrieben wurde.

Um die Handarbeit des Gebläses zu erleichtern, constuirte er Anfangs mehrere Systeme von Glocken, sowohl mit einfacher wie mit doppelter Wirkung, wobei letztere so eingerichtet waren, daß, während man das äußere Luftreservoir emporhielt, eine Glocke im Inneren sich senkte und so fortwährend ein gleichmäßiger Druck ausgeübt wurde.

Für zwölf Löther wurde ein Zinkbehälter von 1,25 Meter Durchmesser constuirirt, der in eine in den Boden gemachte Grube von 1,7 Meter Tiefe gesetzt wurde und worüber eine Glocke von entsprechender Größe festgesetzt wurde, die mit dem Gefäß zusammen ungefähr 5 Meter Höhe erreichte. Diese Glocke wurde mittels einer besonders für diesen Zweck constuirten Winde emporgehoben. Das Gefäß konnte nicht ganz mit Wasser angesüßt werden, um das Nebertreten zu vermeiden, welches durch das schnelle Niederfallen der Glocke eintrat, welche, sobald sie ihrem Eigengewicht überlassen wurde, so weit herabstieg, bis die Spannung der darin

Die Herstellung dieses Apparates, dessen Gesamtmengewicht circa 370 Kilogramme betrug, forderte im Ganzen etwa 600 Francs, worüber man, wie aus den vorhergehenden Bemerkungen hervorgeht, nur eine ungenügende Wirkung erhielt. Diese Nebenstände führten endlich auf die Anwendung des im Folgenden beschriebenen Apparates, der in der Hauptfass aus einem durch ein Gegengewicht umgebauten Gefäß in Schraubensform und einem kleinen Regulatorglocke besteht.

Figur 41 zeigt diesen Apparat im vertikalen Durchschnitt nach einem Maßtabe dar, der im Verhältnis von 1 : 0,095 verjüngt ist.

Das durch die Bewegung der Schraube mit in das Leitungsrohr D eingeführte Wasser wird durch ein heberformig getrümmtes Rohr T abgeleitet; dieses Rohr ist mit einer Scala versehen und dient dadurch gleichzeitig auch als Druckmesser.
Der Reibungswiderstand ist bei diesem Apparate wenig beträchtlich und die Geschwindigkeit, mit welcher er betrieben wird, beträgt nicht über fünf Umdrehungen der Schnecke in der Minute. Der wesentliche Widerstand, der beim Betriebe des Apparates zu überwinden ist, wird durch die Verdrängung des Wassers und die Reibung der Luft in den Leitungsrohren herbeigeführt; dieser Widerstand wird erfahrungsgemäß durch ein Gewicht von 4 Kilogramm überwunden, welches am Ende einer Schnur hängt, die um eine mittels Nänderüberlegung mit der Schraubenvorrichtung in Verbindung geseitete Trommel von 0,095 Meter ausgewickelt ist. Hieraus kann man die für diese Bewegung nötige Arbeit leicht ermitteln.

Bei fünf Umdrehungen sinkt das Gewicht um 0,095 \(\times \pi \times 5 \) = 1,5 Meter pro Minute, also beträgt das Sinken des Gewichtes pro Sekunde 0,025 Meter, wobei eine Arbeit von 0,025 \(\times 4 = 0,1 \) Kilogramm meter.

Um von einer Höhe von 6 Meter herabsinken, braucht das Gewicht 6 : 1,5 = 4 Minuten, und wenn man den Betrieb des Apparates im Minimum drei Stunden oder 180 Minuten lang erhalten will, was bei gleicher Fallhöhe des Gewichtes eine 45 Mal geringere Geschwindigkeit erfordert, so wird man ein 45 Mal so schweres Gewicht anzuwenden haben, d. h. das Gewicht wird für diesen Fall wenigstens 180 Kilogramme betragen müssen.

Die Gleichung der Arbeit wird dann ausgedrückt durch:

6 Meter
3 St. \(\times \) 60 Min. \(\times \) 60 Sec. \(\times \) 180 Kilogr. = 0,1 Kilogramm meter.

Auf diese Weise wird man mittels eines Gewichtes von 180 bis 200 Kilogr. (weil man die Reibung der erforderlichen Nänderüberlegung mit zu berücksichtigen hat) eine Kraftwirkung auf eine Reihe von Zahnradern und Betrieben übertragen können, durch welche die Schnecken trommel des Apparates mit einer Geschwindigkeit von fünf Umgängen pro Minute drei Stunden lang gleichmäßig betrieben wird, und nachdem das Gewicht ganz herabsinken ist, wird es ein Mensch mittels einer Winde wieder leicht emporheben können, worauf es von neuem zur Wirkung kommen kann.

Die von der Schnecken trommel gelieferte Luft beträgt bei dem vorliegenden Apparate 13,75 Kubikmeter pro Stunde, bei einer Pressung von 5 Centimeter Wasserhöhe, gemessen am Manometer des Apparates.

Wenn man in Betracht zieht, daß für dieselbe Dehnung und bei gleichem Drucke das Quantum der ausströmenden Luft 30 bis 35 Mal so groß ist als das des ausströmenden Wassers, so wird man deren Quantität nach der für den Ausfluß des Wassers gültigen Formel

\[
V = \sqrt{\frac{g H}{2}}
\]
wobei V die Ausströmungsgeschwindigkeit, H die Druckhöhe und g die Beschleunigung der Schwerer ausdrückt, leicht berechnen können.

Bei einer Aussenöffnung von 14 Millimeter Durchmesser und \(r = 0,05 \) Meter und \(V = 0,99 \) Meter, so erhält man die theoretische Ausflusmenge gleich

\[
0,99 \times \pi \cdot r^2 = 0,99 \times \pi \cdot 0,05^2 = 0,0001524 \text{ Kubikmeter.}
\]

Für eine conisch geformte Ausflusöffnung beträgt die wirkliche Ausflusmenge circa 82 Proc. des theoretischen Quantums, so daß man also erhält

\[
0,0001524 \times 0,82 = 0,000125 \text{ Kubikmeter per Sekunde, oder per Stunde 0,450 Kubikmeter Wasser. Für Luft ist aber die Ausflusmenge unter sonst gleichen Umständen 30,55 Mal größer als für Wasser, so daß man also haben wird:}
\]

\[
0,450 \times 30,55 = 13,75 \text{ Kubikmeter Luft per Stunde.}
\]

Die Lüftselben für Weichblech brauchen ungefähr 500 bis 600 Liter Luft stündlich, so daß das Gebläse die für 20 bis 25 Lüster notwendige Luft zu liefern vermöge.

Mittels einer besonderen Vorrichtung kann man eine dem Conjum entsprechende Luftmenge erhalten, so daß, wenn man z. B. nicht mehr als einen Kubikmeter per Stunde wünscht, der Apparat auch nur diese Quantität und nicht mehr liefern wird, daher für geringeren Conjum der Apparat während der täglichen Arbeitszeit, also etwa zwölf Stunden lang, ausreichen kann.

Es wird dieses Resultat mittels kleiner über der Glocke angehängter Gewichte erhalten. Sobald der Conjum schwächer als die von der Trommel gelieferte Luftmenge ist, steigt die Glocke und hebt das erste Gewicht ab, wodurch die Belaufung und folglich auch die gelieferte Luftmenge geringer wird.

Dieselbe Wirkung wird hervorgerufen, wenn man die Zahl der Ausströmungsoffnungen vermindert. Wenn auch die letzte dieser Öffnungen verschlossen wird, so wirkt der wachsende Luftdruck ein Anhalten der Bewegung und genügt, um das bewegende Gewicht auszugleichen.

Wenn man wiederum die geringste Öffnung zum Austräumen der Luft gibt, so beginnt die Schnecke gleich wieder ihre Umdrehung, um die entwichene Luft zu erzeugen und ihre Geschwindigkeit wächst proportional mit dem Lufconium.

Beim Weichblechen (mit Zinnloch) durch Gas für Klemperer und andere Inbhfrieswege werden man einen Lüftselben S an, wie selber in der Abbildung dargestellt ist; derselbe hat einen höchsten eisernen Stiel \(w \), der unterhalb mit zwei Köppnäthen versehen ist, um zwei Ruckschluftrohre \(t \) und \(t \) damit zu verbinden, wovon das eine gewöhnliches Leuchtgas-
das andere aber atmosphärische Luft zuführt, die vom Gebäcke kommt. Der Sauersstoff der Luft verbindet sich mit dem Gas und es entsteht eine so färber heizende Flamme, daß der Lößkolben sehr bald glühend wird. Die Stube kann durch die Kamine am Gas- und am Luftrohr von außen reguliert werden. Das Zinnlochstück N, sowie der Salmiak, sind an dem gußeisernen Träger M befestigt, welcher die herabfallenden Zinnnadeln auffangt.

Diese Art der Heizung sichert eine bedeutende Ersparrnis gegenüber der alten Art mit Anwendung von Holzbohle. Es folgen die Angaben über die Resultate einiger genauer Versuche.

Ein Lößkolben wird in drei Minuten bis zum Rotglühen erhitzt und es werden dazu 15 Liter Gas verbraucht, welches in Paris per Kubikmeter 0,3 Francs kostet, was einen Kostenaufwand von 0,0045 Francs ausmachet. Mit Holzbohle braucht man zum Erhitzen des Lößkolbens 15 Minuten und verbrennt dabei 0,1 Kilogramm zum Preise von 0,165 Francs per Kilogramm, was einen Kostenaufwand von 0,0165 Francs, oder vier Mal so viel, ausmachet.

Zu dieser Zahl muß noch der Wert der zum Anzünden und Anfachen des Feuers nötigen Zeit hinzugerechnet werden, die zu einem guten nützlichen Zweck zu verwenden ist, während man bei der Gasheizung die zum Erhitzen des Kolbens nötigen drei Minuten zur Vorbe reitung der Lößarbeit benutzen kann.

Ein langerer Versuch, bei einer fünfstündigen Arbeit gemacht wurde, ergab einen Gasverbrauch von 330 Liter, was per Stunde 66 Liter oder einen Kostenaufwand von weniger als 0,02 Francs ausmachet.

Die selbe Arbeit, mit Holzbohle von demselben Arbeiter ausgeführt, erforderte einen Zeitaufwand von 5 Stunden 40 Minuten und einen Consum von 2,8 Kilogramm Holzbohle, also einen Kostenaufwand von 0,46 Francs im Ganzen oder jährlich 0,092 Francs.

Bei zehnstündiger Arbeitszeit wird man also einen Kostenaufwand haben:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mit Gas</td>
<td>0,20 F.</td>
</tr>
<tr>
<td>mit Holzbohle, für dieselbe Arbeit</td>
<td>0,92 "</td>
</tr>
<tr>
<td>wogegen hinzuzufügen noch 40 Minuten, welche bei einem Stundenlohn von 0,5 F. kosten, 0,33 "</td>
<td></td>
</tr>
</tbody>
</table>

also zusammen 1,25 F.

was für Holzbohle die sechsachen Kosten, wie für Gasheizung, ergeben bieten.

Mit Gasheizung wird daher für jeden Arbeiter eine Ersparrnis von 1,05 Francs bei zehnstündiger Arbeitszeit erzielt, wobei aber allerdings die Anwendung eines Gebäckes, wie das beschriebene, vorausgesetzt ist.
LXXX.

Über die unter hohem Druck stattfindende Verbrennung des Wasserkohlenstoffgas- und Kohlenoxydga"ses in Sauerstoffgas; von C. Frankland.

Aus den Annales de Chimie et de Physique, 4. serie, t. XVI p. 103;
Januar 1869.

Im Jahre 1861 beschrieb ich die Wirkung einer Druckverminderung auf einige Verbrennungsercheinungen und leitete aus den Ergebnissen meiner Versuche folgendes Geist ab:

Die Verminderung der Leuchtkraft einer Gas- oder Kerzenflamme ist direct proportional der Verminderung des Luftdruckes.

Neuer Versuche über die Ursache des Leuchters der Steinkohlengasflamme ergaben mir Zweifel an der Richtigkeit der zuerst von Davy aufgestellten, allgemein angenommenen Theorie, nach welcher das Licht einer Gasflamme, überhaupt der leuchtenden Flammen, durch das Vorhandenseyn fester Theilchen bedingt ist.

Man nimmt jetzt allgemein an, daß der Anschlag, welcher entsteht, wenn man auf die Gas- oder Kerzenflamme ein Drähtgebewe bricht, oder welcher sich auf einem ebenfalls in der Ursaechtheit in die Flamme gehaltenen Porzellanstück ablegt, nicht aus reinem Kohlenstoff besteht, sondern auch Wasserstoff enthält, von welchem man ihn nur durch langes Wechselhählen in einer Chlorwasserstoffkohlenwasserstoff vollständig befreien kann. — Bei weiterer Berührung des Gegenstandes fand ich, daß gewisse Flammen mit großen Flächen leuchten können, ohne festen Theilchen zu enthalten. So gibt die Flamme des in Sauerstoff verbrennenden metallischen Arsen ein weisses Licht von sehr bedeutender Intensität; da nun aber das metallische Arsen bei 180° C., und das Verbrennungsproduc derselben, das Arsentمعايre, bei 215° C. färbet, die Temperatur aber, bei welcher fest Körper glühen, mindestens 500° C. beträgt, so ist es offenbar unmöglich, die Gegenwart glühender fester Theilchen in dieser Flamme anzunehmen. Wenn man ferner Schwefelschmierstoffkohlensäure dampf in Sauerstoff oder Sauerstoff in Schwefelschmierstoff dampf verbrennt, so erhält man ein Licht, dessen Fläze ebenso unerträg-
lich ist. Nun ist aber in keinem Theile dieser Flamme ein fester Körper vorhanden, da der Siedepunkt des Schwefels (440° C.) unterhalb der Glühstemperatur liegt; die Hypothese des Vorhandenseins fester Theilchen in der Flamme ist also auch in diesem Falle nicht zulässig.

Ersteht man bei dem letzteren Versuche den Sauerstoff durch Eisstoffoxydul, so ist das Resultat daselbe, und das durch die Verbindung dieses Gemisches erzeugte blendende Licht ist an den brechbaren Strahlen so reich, daß man es zur Aufnahme von Augenblicks-Photographien und zur Hervorrufung von Fluoreszenz-Erscheinungen angewendet hat.

Es liefern sich viele andere Beispiele anführen, daß in Folge des Glühens gas- oder dampfsförmiger Substanzen stark glänzendes Licht erzeugt wird; ich beweise mich aber aus einziges. Bei der rauchigen Verbrennung des Phosphors in Sauerstoff entsteht bekanntlich ein höchst blendendes Licht; die durch diese Verbrennung erzeugte Phosphoriaure ist aber bei Nachtglühe sehr stüchtig und somit ist es offenbar unmöglich, daß dieser Körper in der Phosphorflamme, deren Temperatur viel höher als der Schmelzpunkt des Plattins ist, in feinem Zustande vorhanden sein kann.

Ich habe diese Versuche neuerlich weiter ausgedehnt, indem ich Wasserstoff- und Kohlenoxydgas unter einem bis zu 20 Atmosphären steigenden Drucke verbrennte. Ich benützte dazu ein starres eisernes Gefäß, welches mit einer dicken Glasplatte von solcher Größe versehen

Wenn speziell schwere Gase beim Verbrennen ein stärkeres Licht geben, als speziell leichtere, so muß auch die bei dem Hindurchschlagen elektrischer Funken durch verschiedenartige Gase erzeugte Lichtmenge nach der Dichtigkeit dieser Gase verhältnisse sein. Davon kann man sich überzeugen, wenn man so viel als möglich unter gleichen Verhältnissen elektrische Funken durch Wasserstoff, Sauerstoff, Chlor und Schwefligsaure schlagen läßt.

Beim Wasserstoff ist die Lichtintensität sehr gering, beim Sauerstoff bedeutender, beim Chlor und bei der Schwefligsäure sehr bedeutend. Erwärmt man stäubige Schwefligsäure in starken, beiderseits geschlossenen und mit eingeschmolzenen Blattdrähten verbundenen Glasröhrchen so hart, daß der innere Druck 3 bis 4 Atmosphären erreicht, so ist der Strom der Inductionsfunken durch das Gas von einem glänzenden Lichtphänomen begleitet. Wenn man nerner mit Hilfe eines Ruhmkorf'schen Apparates einen Strom von Inductionsfunken durch eine mit atmosphärischer Luft gefüllte, mit einer Druckpumpe verbundene Glashöre geschlagen läßt, und den Druck in derselben allmählich auf 2 bis 3 Atmosphären steigert, so begleitet eine sehr bedeutende Zunahme des Glänzens den durchgehenden Funken; läßt man dagegen die verdichtete Luft nach und nach entwickeln, so tritt die entgegengesetzte Erscheinung ein.

Der elektrische Bogen einer Batterie von 50 Große'schen Elementen ist viel stärker leuchtend, wenn man zwischen die Kohlenpflöhe anstatt atmosphärischer Luft Quecksilberdämpfe treten läßt.
Die im Vorstehenden erwähnten Gase und Dämpfe besitzen folgende relative Dichtigkeit:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Dichte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserstoff</td>
<td>1,0</td>
</tr>
<tr>
<td>Atmosphärische Luft</td>
<td>14,5</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>16,0</td>
</tr>
<tr>
<td>Schwefeldioxid</td>
<td>32,0</td>
</tr>
<tr>
<td>Chlor</td>
<td>35,5</td>
</tr>
<tr>
<td>Darmstifters</td>
<td>100,0</td>
</tr>
<tr>
<td>Phosphorsäure</td>
<td>71 oder 142,0</td>
</tr>
</tbody>
</table>

Das schöne Licht, welches der Phosphor beim Verbrennen in Chlor gibt, scheint eine Ausnahme von dem oben aufgestellten Geschehen zu machen; denn da die Dichtigkeit des Verbrennungsproduktes, des Phosphorschürers (PCI₃) sehr groß (≈ 68,7) ist, so sollte eine beträchtliche Lichtmenge entwickelt werden; der Glanz einer Flamme hängt aber auch von der Temperatur derbeseit ab, und es läßt sich nachweisen, daß in dem vorliegenden Falle deren Temperatur weit geringer ist, als die durch Verbrennung des Phosphors im Sauerstoff erzeugte.

Offensichtlich also im letzteten Falle die erzeugte Temperatur weit niedriger sein, als im ersten, beim Verbrennen des Phosphors im Sauerstoff. Ich habe nun gefunden, daß auch die Phosphorflamme in Chlorgas ein glänzendes weißes Licht ausstrahlt, wenn man durch vorheriges Erhitzen der beiden Elemente die Temperatur der Flamme um ungefähre 500° erhöht.

LXXXI.

Über die Temperatur der Flammen und ihre Beziehungen zum Druhe; von H. Sainte-Claire Deville.

Aus den Comptes rendus, t. LXXVII p. 1089; November 1868.

Frankland hat durch seine neusten Untersuchungen naegewiesen, daß die in einer komprimirten Atmosphäre brennende Flamme eines.
und ihre Beziehungen zum Drude.

Hydroorgengas-Löthrohres (Knallgasgebläses), welche unter gewöhnlichen Druckverhältnissen kaum sichtbar ist, um so glänzender und um so leuchtender wird, je mehr man den Druck verstärkt, so daß man bei genügend hohem Druck eine Flamme erhält, welche berijenigen einer Kerze zu vergleichen ist.

Frankland sucht die beste Erklärung dieser beunruhigenden Erscheinung in der Compressio des Gase, nach welcher, wie man sieht, die Cäse durch die Verbindung der Theorie der Flamme die bisherigen Grundlage entziehen. Ich gebe, daß ich in letzterer Beziehung Franklands Anschauung nicht teile; ich stütze meine Meinung auf gewisse Thatachen, welche ich nach gründlicher Untersuchung bald veröffentlichen werde.

Zu diesem Zwecke ist nun die Temperatur dieser Flamme, z. B. durch Zuführung von Sauerstoff, so viel erforderlich, daß alle die im Glanz der Flamme so lebhafter, die Zahl der glänzenden Linien vermindert sich und somit kommt man einem vollen spectrum nahe. In dieser Hinsicht verweisen wir auf die Versuche von Jigea und die von Wolfs und Diazon. Wenden wir aber den Apparat von De Bray an, welcher für spektroskopische Versuche die

83 Soll eine Flamme glänzend sein, so ist dazu nur erforderlich, daß die von ihr ausgehenden Strahlen zur Sonne einstrahlen, eine große Intensität besitzen. Soll aber eine Flamme hell oder leuchtend (im gewöhnlichen Wortsinne) sein, so müssen ihre fast sämtlichen Strahlen des Sonnenspectrums gehörten; sie muß vollkommen oder doch möglichst weit sein, und dem Sonnenlichte nahe kommen.
außerordentlich hohe Temperatur von 2500° C. zu entwickeln gestattet, so entfaltet sich in einer solchen Flamme das Spektrum des Natrum's vollständig; man kann dann annehmen, daß die in diesem Spectrum enthaltenen zahlreichen glänzenden Linien sich vermischen und ein kontinuierlich scheinendes Ganze bilden. Eine analoge Beobachtung macht man, wenn man große Maffen Natrum in atmosphärischer Luft oder in Sauersstoff verbrennen läßt, oder wenn man Lithium verbrennt; die gewöhnlich monochromatische gelbe Natrumflamme und die gewöhnlich rothe Lithiumflamme werden beide weiss; sie enthalten dann alle Strahlen oder, wenn man will, alle glänzenden Linien von jeder Brechbarkeit. Sie werden also leuchtend, wenn das Metall bei hoher Temperatur verbrennt.

Diese Beobachtung gilt selbst für die unsichtbaren Strahlen, für die chemisch wirkenden Strahlen der Flammen, deren Linien sich im Spectrum um so mehr zusammenträngen und verbreitern, je höher die Temperatur der sie erzeugenden Lichtquellen ist. Diese Beobachtung, welche wir Ma'scart verdanken, ist von größter Wichtigkeit. So wächst die Anzahl der Linien im Verhältniß mit der Temperatur, um welche der sie erzeugenden Flamme, und wenn diese Temperatur eine gewisse Intensität erreicht hat, so vermischen sich diese Linien und geben ein kontinuierliches Spectrum. Dann wird die Flamme nothwendiger Weise weiss, glänzend und leuchtend.

Die Ansicht von Franklin, dass in den gewöhnlichen Flammen sehr dichter Kohlenwasserstoff erzeugt wird, dürfte sich übrigens auf experimentellem Wege nur schwierig nachweisen lassen; denn bekanntlich zerfallen sich alle diese Kohlenwasserstoffe schon bei niedrigen Temperaturen in Wasserstoff und Kohlenstoff, welcher letztere zwar wasserstoffhaltig, aber unverbrennlich ist. Ich glaube demnach, dass die Davy'sche Theorie ganz aufrecht erhalten bleibt.

Ich sagte, dass, wenn die Wasserstoffflamme bei hohem Druck leuchtet, die daher rührt, dass die Temperatur der Flamme in dem Masse höher wird, als der Druck, wobei die Verbrennung stattfindet. Selbstverständlich wird in der Flamme höher als der Druck, wobei die Verbrennung stattfindet.

Debray und ich haben nachgewiesen, dass die Verbindungstemperatur des Wasserstoffes und Sauerstoffes, bei dem gewöhnlichen Druck, 2500° C. ist. Wir haben diesen Punkt bestimmt, indem wir 1 Kilogramm gasförmiger und auf die Höhe in einem 1 Tonnen ausfallen Temperaturverhältnis erhöhtes Wasser in Wasser getrieben, und mittels der Temperaturbestimmung dieses Wassers, der spezifischen Wärme des Wassers, die Berechnung auf die Temperatur der Flammen des Kohlenoxyds und des Wasserstoffes veröffentlichte. Die von dem deutschen Physiker erfundene vorzüglichste Methode überprüft und unsere Versuche nach unserer Meinung vollständig und (wegen möglicher nicht erkannter Explosionen) gefährlichen Verfahrenen, um so mehr als die von Bunsen erhaltenen Zahlen mit den unerwarteten vollkommen übereinstimmten. Bunsen gibt 2800° C. als Verbindungstemperatur der beiden Gase an, welche gereinigt und im Zustande

85. Poggendorff's Annalen, 1867, Bd. CXXXI S. 161.
86. So wie wir den Sinn des Originals auffassen, erklärte Deville hiermit, W. Bunsen habe bewiesen, dass die Formel w - richtig sei (d. h. dass die Temperatur, wofür der Quotient aus der produzierten Wärme durch die spezifische Wärme der Produkte w), und ihn daher dieses Beweises überhob. Nun hat aber Bunsen bieses keinwegs bewiesen, sondern alle seine Instruktionen beruhen bloß auf der Annahme, dass jede Formel richtig sein.
absoluter Trockenheit in sein Explosionsgefäß einführte. Bei Berücksichti-
gung des Fruchtigkeitsgehaltes der bei unseren Versuchen angewendeten
Gase, und des Stickstoffes welcher durch das zum Verdrängen der Gase
dienenben Wasser in unsere Gasometer eingeschleppe wurde, gelangt man zu
einer Zahl, die 2800° C. sehr nahe kommt, ich adoptire dieselbe von
nun an als die dieser Erscheinung entsprechende wahre Temperatur.

Bei Annahme der Zahl 2500° C. erhielt ich den Bruch 0,44 als
Ausdruck für den Antheil der Gase, welche sich wirklich verbinden in dem
Zeitpunkte, wo bei der Maximalhize des Gemisches das dieser Temperatur
entsprechende Zersetzen des Wassers die vollständige Vereinigung seiner
Elemente verhindert. Bei Annahme der neuen Zahl 2800° C. beträgt
der verbundene oder nicht zersetzte Theil der Wassersstoff-Sauerstoff-
flamme wirklich 0,50 oder die Hälfte der Gesammtmasse.

Um aber hinsichtlich der Verbindungstemperatur (und des Ver-
ganges) bei einem höheren als atmosphärischen Drucke eine
absolute Sicherheit zu erlangen, musste man entweder Platin in einer
künstlich verdichteten Atmosphäre schmelzen, oder in einer solchen Brun-
en’s Versuche mit dem Explosionsgefäss wiederholen. Diese Versuche
bin ich im Begriffe zu beginnen, und zwar in einem Laboratorium mit
eisernen Wänden, welche einem Drucke von mindestens drei Atmosphären
zu widerstehen vermögen, der für den menschlichen Organismus ganz
unschädlich ist, wovon man sich beim Bau der Rheinbrücke bei Reul
überzeugte.

Eine Reihe von Versuchen, welche unter Druck mit den gewöhnlich
angewandten Brennmaterialien ausgeführt werden, wird voraussichtlich
Resultate ergeben, welche die Praktiker veranlassen dürften, Proben mit
Feuerungen auszustellen, welche mit Luft von einer Pressung gepeist
werden, die dem Dampfdruck im Generator gleichkommt. Diese Feuerungen,
besonders wenn sie mit Mineralölen gepeist werden, welche nach ihrer
Verbrennung keinen Rückstand hinterlassen, diese Kesseln, worin die auf
z.B. fünf Atmosphären comprimirten Verbrennungsprodukte sich mit
einer fünfmal geringeren Geschwindigkeit als in unseren gegenwärtigen
Apparaten durch die Nöbren bewegen würden, müßten ohne Zweifel eine
beträchtliche Verminderung der Heizfläche ermöglichen. Derartige Unter-
suchungen, welche den Marine-Ingenieuren die zur Berechnung der Re-
sultate erforderlichen Daten liefern werden, sollen auf Anordnung des
Kaisers Napoléon im Laboratorium der École normale ausgeführt
werden. Eine große cylindrische Kammer von Eisenblech, welche den

87) Man 4. Leçons de la Société chimique (de la Dissociation), 1866 p. 290.
Experimentierenden mit seinen Apparaten aufnehmen kann und einen beträchtlichen, durch eine Dampfpumpe erzeugten Luftdruck auszuhalten vermög, wird dort ein Laboratorium bilden, worin alle Manipulationen, welche zur Bestimmung der durch die Flammen und die seien Brennstoffe erzeugten Temperaturen erforderlich sind, ohne Gefahr ausgeführt werden können.

Wenn, wie dies schon jetzt fast zweifellos erwiesen ist, die Verbrennungstemperatur mit der Zunahme des Druckes eine höhere wird, so werden dadurch die zahlreichen Analogien zwischen den Verbindungs- und Zerstreuungsercheinungen einerseits, und den Erscheinungen der Condensation und Verdampfung der Dämpfe andererseits, um eine weitere vermehrt.

Man kann nämlich Maximal-Condensationstemperatur des Dampfes nennen, was man uneigentlich mit dem Namen Siedepunkt einer Flüssigkeit bezeichnet. Diese Temperatur ist lebiglich diejenige, von welcher an ein Dampf sich nicht mehr an der Oberfläche eines (kalten) Thermometers kondensirt, welches sich einzig mittels der latenten Wärme erhitzt, die ihm der Dampf abgibt, in welchen es getauft ist. Der Siedepunkt (oder die Condensationstemperatur) steigt beträchtlich, wenn man den Druck über den Dampf erzeugenden Flüssigkeit erhöht.

Die Erscheinung ist dem Anfänger nach complicirter, aber dem Vorgang bei der Condensation der Dämpfe ganz analog, wenn man die Verbindung der Körper, insbesondere die des Sauerstoffes und Wasserstoffes, im Knallgas-Löthrohr betrachtet.

Angenommen die Verbindungstemperatur des Wasserstoffes und Sauerstoffes sei 2800° C., so wird die bei dem Druck von 760 Millimeter in der Flamme, an heissen Punkte, gebildete Wassermenge sein: 88

\[
\frac{637 + (2800 - 100) \times 0.475}{3833} = 0.5
\]

d. h. nur die Hälfte des Sauerstoffes und Wasserstoffes werden bei dem Druck von 760 Millimeter verbunden sein.

Da aber, wenn wir den Druck vermehren, die Temperatur der Flamme ebenfalls erhöht wird, so muß, wie nach der vorhergehenden Formel ersichtlich, die Menge verbundener Gase oder gebildeten Wasser dampfes nach Maßgabe der Druckzunahme sich steigern; genau wie die Spannung eines gesättigten Dampfes in dem Maße zunimmt, als man

die Temperatur erhöht. Endlich nimmt die Verbindungstemperatur eines Gasgemisches wie die Marginal-Condensationsstemperatur (der Siedepunkt) eines Dampfes mit dem Drucke zu.

Die verbundene Substanz (das gebildete Wasser) in der Flamme spielt dieselbe Rolle wie die kondensierte Substanz in einem dampferfüllten Raume, dessen Temperatur und Druck man so abändert, daß der Dampf siedet gefärbt ist.

Es ist hiernach klar, daß die Menge nicht verbundener oder zerfallener Substanz in der Flamme sich in dem Maße vermindert als der Druck zunimmt. Es läßt sich daher ein Druck berechnen, wobei ein Gemisch von Wasserdampf und Sauerstoff, indem es sich verbündet, die imaginäre Temperatur von 6800° C. erzeugen würde, welche einer gänzlichen Verbindung entspricht.

LXXXII.

Ueber das amalgamirte Zink und sein Verhalten gegen Säuren;
von J. d'Almeida.

Aus dem Comptes rendus, t. LXVIII p. 442; Februar 1869.

Der Widerstand, welchen das amalgamirte Zink dem Angriffe der verdünnten Schwefelsäure entgegenträgt, ist nach der jetz herrschenden Ansicht durch den gleitförmigen Zugang zu erklären, den das Quecksilber der Oberfläche des Metalles erhebt; man nimmt an, daß durch die Amalgamation die Unregelmäßigkeiten der Oberfläche beseitigt werden, in Folge deren das eingetauchte Zinkblech zahlreiche verbundene galvanische Elemente bilde, welche für den Angriff des Zinkes durch verdünnte Schwefelsäure unerläßlich seyen.

Daniell bemerkt jedoch in seiner berühmten Abhandlung über die galvanische Säule, daß sich unter den angegebenen Umständen das amalgamirte Zinkblech mit Wasserdampfblasen überzieht und ist der Annahme zugeneigt, daß die Verleugnung des Wassers durch diesen der Metalls-oberfläche adhärrenden Wasserdampf aufgehalten werde. Nebrigens geht der ausgezeichnete Physiker über diesen Gegenstand stürmig hinweg und führt zur Begründung seiner Ansicht nur einen wenig hemmungslosen Versuch an; er verleugt nämlich die verdünnte Schwefelsäure mit einer geringen Menge Salpetersäure und findet, daß das Zinkblech sich in wenigen Stunden ohne die geringste Gasentwicklung auflöst.
Ich habe diese Frage von Neuen aufgenommen und die im Nach-
folgenden mitgeteilten Beobachtungen beweisen meiner Ansicht nach, daß es
wirklich der der amalgamierten Zinkoberfläche anhaftende Wasserdampf ist,
welcher den Angriff des Zinnamalgams so schwierig macht.

1) Die von Daniel angegebene Blasenbildung ist leicht zu beob-
achten; die Bläschchen bedecken die ganze Oberfläche ohne andere Unter-
brechungen als die dünner, sie trennenden Bänder. Sie haften der
Metallschicht nicht fortwährend an, sondern von Zeit zu Zeit löst sich
eine derartige los und steigt in die Höhe; diese wird sofort durch zahl-
reiche andere ersetzt, welche die freigelaßte Stelle bedecken und sich nach
und nach vereinigen, so daß die betreffenden Stellen ihr voriges Ansehen
wieder annehmen. Das Volum des entwickelten Gases ist nach Verlauf
mehrerer Stunden ziemlich bedeutend, selbst wenn die vollkommen amal-
gamierte Zinkplatte nur einige Quadracentimeter Oberfläche hat.

2) Die dem Metalle adhärrenden Blasen lassen sich durch mechanische
Mittel entfernen, wie durch Bewegen, so es der Flüssigkeit oder des
Bleches, oder durch Heben des letzteren mit einem sehr weichen Pinsel.
Da sofort andere Blasen an allen den Punkten erscheinen, wo die
ersteren verschwunden sind, so wird der Angriff durch diese Mittel (welche
sicherlich keine secundären Volta'schen Elemente zu erzeugen vermögen)
verstärkt.

3) Stellt man über der Flüssigkeit eine Luftleere her, so nehmen
die Blasen an Volum zu und ihre Steigkraft wächst; wenn man die
Luftverdünnung weit genug treibt, so wird die Adhärenz, welche dem
Ausscheiden dieser Bläschchen entgegenwirke, überwunden, sie lösen sich vom
Metalle los und steigen an die Oberfläche der Flüssigkeit, während sie
neue bilden, und so fort.

4) Ebenso wie dem amalgamierten Zink, adhärirt der Wasserdampf
jeder anderen amalgamierten Metallschicht, wie folgender Versuch beweist.
Ich amalgamierte für eine einfache galvanische Säule das Kupferblech,
so bald die Pole verbunden wurden, überzog sich das Kupfer mit Wasser-
dampfblaschen, welche an ihm haften blieben und sich ganz auf die be-
dschriebene Weise verhielten. Der Strom dieses Elementes nahm mit
auffallender Schnelligkeit ab.

5) Alle von der Schwefelsäure nicht angreifbaren Metalle, welche in
einer Säule statt des Kupfers angewendet werden können, geben dieselben Resultate, wenn sie amalgamiert sind. Das Verhalten von ge-
reinigtem Quecksilber ist jedoch am interessantesten; verbindet man die
Pole eines Quecksilber-Zinselementes, so verfehlt sich die anfänglich
sehr glänzende Oberfläche des Quecksilbers wie durch einen Tausend die Bläschen verbleiben fast unbeweglich.

8) Mittelst dieser Quecksilberkäufe läßt sich ein von Com. Béquier's angegebener Versuch in eleganter Form wiederholen. Dieser Physiker hat beobachtet, daß der Strom eines einfachen Elementes durch Umührungen beträchtlich verstärkt wird; nach zahlreichen Versuchen kam er zu dem Schluß, daß das Kupferblech durch dieses Umührungen depolarisiert wird, indem dadurch der an der Oberfläche des Metalles abgelagerte Wasserstoff entfernt wird. Die Nichtigkeit dieser Erklärung läßt sich leicht nachweisen; man braucht dazu nur unser Element (5) mit einem Galvanometer in Verbindung zu setzen. Wenn man, nachdem die Radel beinahe zum Stillstande gekommen ist, entweder das Quecksilber oder die Flüssigkeit umrührt, oder bloß die aus dem ersten abgelagerten Blächen durch leises Reiben mit einem Pinsel entfernt, so bemerkt man gleichzeitig die Entwickelung des vom Quecksilber sich trennenden Wasserstoffes und eine größere Ablenfung der Radel; man hat gleichzeitig die Ursache und die Wirkung vor Augen.

8) Nach dem vorhergehenden Versuche ließ sich folgern, daß, wenn das amalgamirte Zink selbst mit Chlorwasserstoffsaure umgeben wird, die Wasserstoffblächen an ihm nicht abhärren können und das Metall stark angegriffen werden muß. Diese Erwartung bestätigte sich in auffallender Weise; das Zink wird gleichsam verschlungen, wenn man es in eine geätzten Lösung von Chlorwasserstoffsaure taucht und ein heftiges Ausbrennen zeugt von der Lebhaftigkeit dieser Einwirkung.

9) Die dem amalgamirten Kupfer abhärrenden Wasserstoffblächen

89 Annales de Chimie et de Physique, 1855, 3. série, t. XLIV p. 491.
verschwinden durch die Einwirkung eines oxydiierenden Körpers und das Element behält seine Tätigkeit, anstatt schwächer zu werden. Wenn eine Schwefligeisenslösung nur die amalgamierte Kupferplatte umgibt, so behält der Strom seine Stärke und das amalgamierte Zink dieser Säure wird rasch auflöst.

10) Auch ein amalgamiertes Zinkblech wird in dem Gemisch von Schwefelsäure und Schwefligeisensäure rasch auflöst. Hierbei ist aber der Vorgang ein complicirter; denn bekanntlich löst die Schwefligeisensäure allein das Zink vollkommen auf.

12) Taucht man eine gut polirte Zinkplatte in verdünnte Schwefelsäure, so zeigen sich in den ersten Momenten, aber auch nur in diesen, genau dieselben Ersecheinungen. Die sich bildenden Blasen werden ziemlich groß, bevor sie sich von Metalle ablösen; dann ist die Oberfläche des von der Säure angegriffenen Metalles von rauen Punkten wie überzüet und es steigen ununterbrochen zahlreiche kleine Blasen auf.

Diese und viele ähnliche Versuche beweisen, daß das Anhaften der Gäste von der Politur der Oberfläche des Metalles abhängt.

LXXXIII.
Mittheilungen aus dem Laboratorium für technische Chemie in Braunschweig.

I. Bedingungen der Bildung des Chlortalles; von Tschigianjanz, Frick und Reimer.

über diesen Punkt gehen jedoch im Einzelnen in sehr auffallender Weise auseinander.

Es handelte sich zunächst um ein reines Material für die Versuche. Man bereitete reines Kalk durch Brennen und Löschen vor. Bekanntlich ist es keine geringe Sache, den Kalk durch Glühen völlig von Kohlen säure zu befreien, ohne ihn tobt zu brennen. Der Kalk, wie er im gewöhnlichen Leben gebraucht wird, ist schließlich jemals völlig caustisch. Auch bei sorgfältigstem Ausglühen im Kleinen wollte es nicht gelingen die Kohlensäure vollständig auszutreiben, der gebrannte Kalk brauste

Zunächst ging die Absehung damit, die Beobachtung von Graham zu wiederholen. Man trocknete einen Antheil des als feuchte Masse gewonnenen gelöschten Ralfes im luftverbünten Raum über Schwefel- säure, einen anderen im Wasserbad, in der Liebig'schen Trockenröhre, bis kein Gewichtsverlust mehr stattfindet. Neber jede dieser Proben wurde
dann etwa $1\frac{1}{2}$ Stunden lang ein Strom von Chlor geleitet; die im Wasserbad getrocknete, blieb zu dem Ende in der Liebig'schen Trockenröhre, die über Schwefelsäure getrocknete sättigte man in einer solche, vorher tarirte Röhre um. Um das nicht gebundene Chlor auszutreiben, leitete man zuletzt eine Zeit lang fehlenfärrefre Luft durch die mit dem Kalk beschichteten Röhren.

Zur Entwickelung des Chlors diente ein bis zum Hals mit Haselnuss grossen Braunsteinstücken gefüllter Kolben; durch ein ständig geöffnetes Rohr goss man von Zeit zu Zeit in mässigen Antheilen soviel Säuredampf zu, als nöthig war, den Braunstein damit gehörig, so dass es sich erhitzte. Ein Ofen mit Gasbrenner in niedrigerer Stellung der Flammen gab die erforderliche Wärme. Der Chlorstrom ging zunächst durch zwei Boullée'sche Flaschen mit Wasser, dann durch eine dritte Boullée'sche Flasche mit concentrirter Schwefelsäure, ferner durch eine längere Röhre mit Chlormonokale und von da, wo er als rein betrachtet worden, durch die Liebig'schen Trockenröhren mit dem Kalkhydrat. Die Trockenröhren konnten durch ein darunter befindliches Gefäss mit Wasser nach Belieben abgefüllt werden. Das Ergebnis war wie folgt:

1) Im Wasserbad getrocknetes Kalkhydrat:

Gewicht der Röhre mit Kalkhydrat nachdem sein Gewichte verlust mehr stattgefunden	10,7925 Grm.
Gewicht der Röhre an sich	9,4060
getrocknetes Kalkhydrat	1,3865 Grm.

Dann fand die Angabe von Graham (beziehungsweise die von Böll en) ihre volle Bestätigung: über Schwefelsäure getrocknetes Kalkhydrat verhält sich wesentlich anders, als im Wasserbad getrocknetes Kalkhydrat. Es lag nahe, als Ursache dieser so auffallenden Verschiedenheit eine unvollständige Entfernung des nicht gebundenen Wassers aus dem Kalkhydrat im luftverbundenen Raum über Schwefelsäure zu vermuten. Zu der That war dem so:

3) Das Gewicht einer Trockenröhre mit Kalkhydrat betrug, als keine Abnahme über Schwefelsäure mehr stattfand 12,6355 Grm.
Gewicht der Röhre an sich . . 9,4055

des über Schwefelsäure getrockneten Kalkes 3,2300 Grm.

Im Wasserbad mit einem von Kohlensäure befreiten Luftstrom behandelt bis das Gewicht sich gleichbleibend, wog die Röhre mit dem Kalkhydrat noch 12,6225 Grm., hatte also bei 100° C. um 12,6355 — 12,6225 = 0,0130 Grm. oder 0,402 Proc. des Kalkhydrates abgenommen. Es scheint dann die Gegenwart eines Rückhaltes von ungebundenem Wasser die Bedingung zur Aufnahme des Chlors durch Kalkhydrat. Daß eine so kleine Menge Wasser schon den entscheidenden Einfluß übt, kann nicht gerade bestritten, insofern es sich lediglich um die Einleitung des Prozesses handelt, der nachher unter Abscheidung von gebundenem Wasser von Molecul zu Molecul fortgeschreitet.

Es blieb noch übrig, nach den Regeln wissenschaftlicher Beobachtung die That geschehen durch Wiederholung des Versuches vollkommen festzustellen. Der Erfolg hat bewiesen, daß man eine solche Vorsichtsmaßregel nie unterlassen soll. Wir lassen zuerst das Ergebnis folgen.

4) Über Schwefelsäure im luftverbundenen Raum getrocknetes Kalkhydrat:

5) Im Wasserbad bei 100° C. getrocknetes Kalkhydrat: Als solches diente die Probe von Versuch (3). Diese hatte nach dem Trocknen
über Schwefelsäure im luftverdünnnten Raum gewogen. 3,2300 Grm., sie hatte bei 100° verloren, noch 0,0130. Weg mithin bei 100° getrocknet 3,2170 Grm.

Gewicht des Chlorcalciumrohres nach dem Versuch 15,8327 Grm. vorher 15,7367

Wasser 0,0960 Grm.

6) Zu einem ähnlichen Ergebniss führte auch der folgende Versuch mit unmittelbar bei 100° C. getrocknetem Kalkhydrat. Das bis zum Aufhören des Gewichtsverlustes getrocknete Kalkhydrat wog 2,0635 Grm. und ergab nach der Behandlung mit Chlor eine Gewichtszunahme von 1,5040 Grm., entsprechend 72,88 Proc. des Kalkhydrates, so daß 100 Gewichtsteile des letzteren 172,88 Bleichalk dienten, bessere Stärke bei der Titration sich zu 37,8 Proc. Chlor ergab.

Das (wie im Vers. 5) angehängte Chlorcalciumrohr wog nach der Behandlung mit Chlor 23,9239 Grm. vorher 23,822

weggegangenes Wasser 0,0117 Grm.

Die Versuche 5) und 6) führten mithin bei ganz gleicher Behandlung und gleicher Vorrichtung aus ein dem Versuch 1) völlig widersprechenden Ergebniss. In diesem letzteren Fall so gut wie keine Reaction des Chlors, in jenen beiden Fällen Bildung von Chloralkali in aller Form. Jnsofern auch bei den Versuchen 5) und 6) das Kalkhydrat getrocknet war bis es nichts mehr an Gewicht verlor, ganz wie bei Versuch 1), konnte ein etwaiger Rückhalt an Zähigkeit nicht wohl als Urache des abweichenden Verhaltens angenommen werden. Denn eine Steigerung der Temperatur beim Trocknen des Kalkhydrates über 100° hinaus bewirkte kaum noch Gewichtsveränderung: 3,455 Grm. im Wasserbad getrocknetes Kalkhydrat, bei im Wasserbad 0,014 Grm. an Gewicht verloren hatten, minderten sich im Paraffinbad bei 120° nach längerer Zeit nur noch um 0,003 Grm. Dagegen war das Kalkhydrat der Vorwürfe 5) und 6) von anderer Darstellung als das des Versuch 1); es lag daher

7) 2,530 Grm. getrocknetes Kalkhydrat nahmen bei dreiviertel Stunden langer Behandlung durch Chlor um 1,3195 Grm. zu, entsprechend 52,15 Proc. des Kalkhydrates.

Als Gegenversuch trocknete man das Kalkhydrat obiger Darstellung statt im Wasserbad vielmehr im Paraffinbad bei 120° C. (also noch weit unter der Temperatur, bei welcher das Hydratwasser weggeht) bis kein Gewichtsverlust mehr stattfand und leitete dann das Chlor im langsamem Strome darüber. Da nur sehr schwache Wärmeentwicklung stattgefunden, so brach man den Versuch nach einer halben Stunde ab.

8) Gewicht des getrockneten Kalkhydrates 4,2845 Grm., Gewichtszunahme durch Chlor 0,8720 Grm., entsprechend 20,35 Proc. des Kalkhydrates.

Aus den Beobachtungen bis dahin geht hervor, daß die Trocknung des Kalkhydrates bei 100° C. und darüber die Reaction des Chlors zwar in einigen, aber keineswegs in allen Fällen aufhört. In diesen letzteren Fällen konnte weder ein Rückhalt an hygroskopischem Wasser, noch Gegenwart von organischer Substanz im Spiel seyn und mußte daher eine weitere Ursache vorhanden seyn, welche die Einwirkung des Chlors auf den Kalk beeinflußt. Die Vermuthung lag nahe, daß diese dritte Ursache nicht in dem Kalkhydrat, in seiner Bereitung und Beschaffenheit,

Um die dem Chlor beigemischte Chlornasserstoffsäure von vorn herein möglichst wegzuschaffen, fügte man an den Kolben zur Entwicklung des Chlors ein drit Füll langes Glashrohr mit gründlich zerschlagenem Brauneinstein, ließ den Chlorstrom von da durch drei Waschflaschen mit destilliertem Wasser und durch die Trockenapparate wie anfangs geben. Die Veruche nach dieser Vorbereitung, mit chemisch reinem Kalkhydrat, getrocknet bei 120° C., führten zu folgenden Zahlen:

9) 4,5575 Grm. Kalkhydrat erlitten eine Gewichtszunahme durch Chlor um 0,048 Grm.; ebenso

10) 4,3140 Grm. Kalkhydrat um 0,0240 Grm., entsprechend 1,05 Proc. und 0,55 Proc. Gewichtszunahme. Die Reaction des Chlors auf das Kalkhydrat war demnach zwar auf einen kleinen Betrag zurückgedrängt, aber nicht verschwunden, und insofern die Wirkung des mit Brauneinstäuben gefüllten Rohres vielleicht nicht erschöpfend. Dies führte auf ein Verhältnis, zwischen diese Brauneinsteinäule, und die übrigen Glieder des Apparates ein zollweites zwei Füll langes Rohr mit fertigem Blechstahl einzubauen. Man erhielt so:

11) von 4,020 Grm. Kalkhydrat, bei 120° C. getrocknet, eine Gewichtszunahme von 0,008 Grm.; ferner

12) von 2,421 Grm. eine Zunahme von 0,005 Grm., entsprechend 0,20 Proc. für beide Veruche, wobei das Chlor 9/10, bei 1 Stunde lang ununterbrochen übergeleitet wurde. Die Reaction des Chlors auf das Kalkhydrat war nun kaum mehr als den unvermeidlichen Beobachtungsfehlern zugeschrieben werden kann. Für die schwierende Frage war es nun von Interesse, nach vollständiger Fernhaltung der Chlorno-asserstoffsäure, das Verhalten des im Wasserbad und des nur über Schwefelsäure unter der Luftpumpe, statt bei 120° C., im Paraninbad, getrockneten Kalkhydrates zu untersuchen. Es mußte sich dann der Einfluß eines Rückhaltes von Feuchtigkeit an sich herausstellen, während bei
den früheren Versuchen ein Rückhalt von Chlorwasserstoff mit im Spiel war. Man erhielt:

13) von 2,976 Grm. im Wasserbad getrocknetem Kalkhydrat eine Zunahme von 0,031 Grm.;
14) von 2,571 Grm. über Schwefelsäure getrocknetem Kalkhydrat eine Zunahme von 0,895 Grm.

15) 3,415 Grm. Kalkhydrat nahmen zu 0,027 Grm.;
16) 3,575 Grm. Kalkhydrat ebenso um 0,035 Grm., entsprechend 0,79 Proc. und 0,98 Proc.

Somit schien festzustehen, daß der Angriff des Chlors auf Kalkhydrat durch kleine Mengen von Feuchtigkeit oder von Chlorwasserstoff oder von beiden zugleich bedingt werde, ohne daß jedoch bei möglichster Ausschließung dieser Bedingungen die Reaction völlig aufhält. Es trat vielmehr auch in diesem Falle eine Gewichtszunahme des Kalkhydrates ein, die sich in engen Grenzen um etwa 1 Proc. bewegte. Um zu sehen, ob diese beschränkte Einwirkung des Chlors sich nicht beteiligen lass, wurden die Versuche mit reinem bei 120° C. getrocknetem Kalkhydrat wieder aufgenommen und das Chlor aus dem zur Entwickelung dienenden Kolben nacheinander durch eine Röhre mit Braunsteinstäben, eine Röhre mit sertigem Bleichalk, durch Hamäleolösung, durch vier Flaschen mit destillirtem Wasser, eine Flasche mit Schwefelsäure, zwei Röhren voll Glastrübe mit Schwefelsäure befruchtet und zwei Chlorcalciumröhrchen geleitet. Man ließ den Chlorstrom je 1 Stunde lang auf das Kalkhydrat einwirken. Um den Zeitpunkt zu erkennen, wo die Luft aus diesen weitausen Apparat verdrängt ist und das Chlor aus dem

Zur großen Befremdung des Beobachters blieb jene geringe Ein- wirkung des Chlors trotz der sorgfältigen Reinigung desselben nicht nur nicht aus, sondern schlug mit einem Mal sehr hart in's äußerste Gegen-theil, im Widerspruch mit den vorhergehenden Ergebnissen um, wie aus den folgenden Zahlen der Versuche ersichtlich:

Offenbar war neben dem Einfluß von Spuren von Feuchtigkeit und Chlorwasserstoff im Chlor noch eine weitere sehr mächtige Ursache, welche die Reaction des Chlors auf Kalkhydrat bedingt, eine Ursache die mit unter fast ganz zurück, mitunter völlig in den Vordergrund tritt, eine Ursache endlich, die sowohl außerhalb des Chlors, als auch außerhalb des Kalkhydrates gelegen sein muß. Bei dem Ausschluß aller übrigen Momente war es nicht mehr schwer, als diese Ursache die Temperatur zu erkennen, unter welcher das Chlor mit dem Kalk in Berührung ist.

Die Einwirkung des Chlors beginnt, wo sie überhaupt Platz greift, jedesmal an dem vordersten, d. h. dem kommenden Chlorsstrom zugekehrten Ende der Kalkschichte und schreitet von da auf sehr scharfes Er- hängung sehr allmählich nach hinten vor, auch wenn das ganze Rohr mit Chlor erfüllt ist und dieses im Nebenschuß abgespielt. In den anfänglichen Versuchen hatte man die Rohre mit Kalk einigmal durch Eintauchen in Waßer, einigmal durch Anlegen von betuchtes Papierstreifen, man hatte sie zum Theil von vorn herein, zum Theil erst abgekühlt, nachdem einige Erwärmung eingetreten, man hatte diese endlich ganz unterlassen, wenn es überflüssig schien. Bei den Versuchen 17) und 18) insbesondere war das Rohr mit Kalkhydrat ohne andere Abkühlung als die durch die Luft des Laboratoriums geblieben. In keinem Fall hatte man Sorge gebracht, die Erwärmung von Beginn aus unmöglich zu machen. Dies geschah bei den folgenden Versuchen durch Einrichten der Liebig'schen Rohre in Eis; alles übrige blieb wie bei 17) und 18); nur daß man das Chlor möglichst langsam, unter öfterem Wöchen der den Kalken erwärmenden Gasflamme, entwickelte:
19) 1,375 Grm. Kalkhydrat nahmen zu um 0,021 Grm.;

Ein Gegenversuch mit über Schwefelsäure getrocknetem Kalkhydrat gab dagegen bei 1/2 stündigem Neberleiten von Chlor:

Demnach wird absolut trockenes Kalkhydrat bei 0° C. nicht wesentlich verändert, Kalkhydrat mit Spuren von Feuchtigkeit aber bei dieser Temperatur in Chloralkali umgewandelt.

Um den Einfluß der Temperatur noch entschiedener darzustellen, unterwarf man dieselbe Probe Kalkhydrat, bei 120—130° im Paraffinbad getrocknet, der Wirkung des Chlors erst im Eisbad, dann ohne dieses in der abgetrockneten Nöhrre, ohne den Apparat aufeinander zu nehmen, je 1 Stunde lang:
22) 1,3185 Grm. Kalkhydrat, von Eis umgeben, nahmen zu um 0,0275 Grm.; ohne Eis, nur von Luft umgeben, noch um 0,903 Grm., entsprechend 2,08 Proc. und 68,48 Proc.
23) 1,129 Grm. Kalkhydrat, mit Eis umgeben, nahmen zu um 0,020 Grm.; mit Luft ohne Eis noch um 0,716 Grm., entsprechend 1,77 und 63,42 Proc.

Alles zusammengesäßt steht fest, daß ein Rückhalt von Wasser von 0,4 Proc. (wie Kalkhydrat über Schwefelsäure getrocknet) und darüber, bei jeder Temperatur die Bildung von Chlorkalk bedingt; daß bei 100 bis 130° C. getrocknetes Kalkhydrat bei 0° C., wenn es sich erwärmen kann, in Chlorkalk verwandelt wird, aber bei Abkühlung auf die gewöhnliche Temperatur oder 0° C. feine oder doch nur sehr unerhebliche Veränderungen zeigt.

Diejenigen Gewichtszunahmen zeigen, wo sie auftreten, eine auffallende Übereinstimmung des Betrages. In der That betrug die Gewichtszunahme in den Versuchen mit Eisabkühlung:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>19</th>
<th>20</th>
<th>22</th>
<th>23</th>
<th>im Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,12</td>
<td>2,24</td>
<td>2,08</td>
<td>1,77</td>
<td>2,05</td>
<td>Proc.</td>
</tr>
</tbody>
</table>

Bei der niederer Temperatur dieser Versuche ging kein Wasser aus der Liebig'schen Röhre weg, das angefügte Rohr mit Chlorcalcium zeigte keine Gewichtsveränderung. In den vorhergehenden Versuchen, wo dies allerdings der Fall war, erscheint die Gewichtszunahme geringer, nämlich in Versuch:

<table>
<thead>
<tr>
<th>1</th>
<th>9</th>
<th>13</th>
<th>15</th>
<th>16</th>
<th>im Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,98</td>
<td>1,05</td>
<td>1,25</td>
<td>0,79</td>
<td>0,98</td>
<td>1,01 Proc.</td>
</tr>
</tbody>
</table>
Es muß dahin gestellt bleiben, woher diese Erscheinung rührt, ob auch der bei höherer Temperatur getrocknete Kaff noch Spuren von Wasser enthält, oder ob sie zufällig ist.

LXXXIV.
Wiedergewinnung des Schwefels aus Sodarückständen; von
Max Schäffer. 90

Mit Abbildungen auf Tab. V.

Die Wiedergewinnung des Schwefels aus den Sodarückständen wurde zuerst mit praktischem Erfolg auf der Sodafabrik zu Außig a. d. Elbe durchgeführt. — Das Verfahren, das hier in Anwendung ist, zerfällt in folgende Arbeiten:

a. die Darstellung der schwefelhaltigen Lagen;
b. die Zerlegung der erhaltenen Lagen;
c. die Darstellung des chemisch reinen Schwefels.

90 Aus den Verhandlungen der physikalisch-medicinischen Gesellschaft in Würzburg.
Die durch den Zerlegungsproceß frei werdende Wärme mehr zusammengehalten wird als in freien Hauzen, geht rascher vor sich als die erste Drydation. Durch den früheren Auslaugproceß ist die Masse nun vorerst als bei der ersten Drydation und somit hat auch die Luft mehr Zutritt und es bilden sich darum neben Polysulfurat auch mehr unter{-schwebigsaures Salz.

Die Langen, die man von der ersten Drydation erhält, bestehen hauptsächlich aus Polysulfurat neben unter{-schwebigsaurem Salzen; bei den Langen von der zweiten Drydation ist das unter{-schwebigsaure Salz vorher sich und die Langen der dritten Drydation enthalten noch mehr unter{-schwebigsaures Salz. Sämmtliche Langen vereinigen sich in einem gemeinsamen Reservoir. Das Produkt dieser ganzen Manipulation ist also eine Sauge von einem bestimmten Gehalt an Polysulfurat des Calciums neben einem gewissen Gehalt an unter{-schwebigsauren Salzen. Um sich die Drydation der Soderäüchsténde zu erklären, muß man bedenken, daß diese Drydation nicht nach einer einzigen Reaction stattfindet, es kommen mannichfache Reactionen zur Geltung, je nach der mechanischen Beschaffenheit derfelben, ob derselben dicht oder locker, ob die Luft mehr oder weniger Zutritt hat, ob die Rückstände mehr feucht oder trocken, ob der zu oxydiren Haufen groß oder klein, ob die äußere Atmosphäre falt oder mehr warm oder endlich ob die künstliche Drydation durch Einblasen von Gajen rascher oder langsamer ausgeführt wird. — Wirkt die Luft allein und geschieht die Drydation in großen Hauzen und ganz allmählich, so kann man sich folgende Proceße vorstellen:
2 CaS + O gibt CaO + CaS²; wirkt die Luft noch weiter ein, so erhält man aus CaS² + 3 O = CaO, S²O², bei noch längerer Einwirkung wird aus CaO, S²O² = CaO, SO² + S und bei fortgesetztem Dünbdiren aus CaO, SO² + O = CaO, SO². Wird also zu lange oxydiert, so erhält man schließlich Gips, aber auch die Bildung von CaO, SO² ist schon Verlust, da der schwefligsaure Kalk so gut wie unlöslich ist. Der ausgechiedene Schwefel, der bei der Zerlegung des unterschwefligsauren Kalkes entsteht, wird grösstenteils beim Auslaugen wieder gelöst, wenn die Lauge hinlänglich concentrirt sind und genügende Mengen von Mehrfach-Schwefelcalcium enthalten.

Geschickt die Dünbdation mit Ramingafen, so finden noch andere Reactionen statt; es nimmt die Kohlensäure an der Zerlegung Anteil und es sind dann nachziehende Reactionen denkbar: CaS + CO² + O gibt CaO, CO² + S; diese Reaction findet namentlich dann statt, wenn es an Feuchtigkeit fehlt. — Die normale Reaction ist:

\[\text{CaS} + \text{CO}_2 + \text{HO} \rightarrow \text{CaO} + \text{CO}_2 + \text{HS} \]

das Schwefelwasserstoffgas wirkt dann weiter, nämlich CaS + HS gibt CaS, HS, oder, lässt man diese Reactionen zusammen:

\[2 \text{(CaS + CaO)} + \text{HO} + 3 \text{CO}_2 \rightarrow 3 \text{CaO} + \text{CO}_2 + \text{CaS} + \text{HS} \]

Wirken die Ramingafen weiter ein, so verursacht der darin enthaltene Sauertoff folgende Reaction: CaS, HS + 4 O gibt CaO, S²O² + HO, bei noch längerer Einwirkung entsteht, wie schon oben angeführt, schwefligsaurer Kalk und schließlich Gips. — Es können aber auch noch andere Reactionen auftreten; so kann z. B. unterschwefligsaurer Kalk direct entstehen:

\[2 \text{CaS} + 4 \text{O} + \text{CO}_2 \rightarrow \text{CaO} + \text{S²O²} + \text{CaO} + \text{CO}_2 \]

Es kann jener unterschwefligsaurer Kalk entstehen: CaS² + 3 O gibt CaO, S²O² + 3 S; es wird also Schwefel ausgechieden, wie dies schon bei einigen oben angeführten Processen der Fall war; auch dieser Schwefel kann beim nachherigen Auslaugen zur weiteren Bildung von CaO, S²O² beitragen, nämlich CaO, SO² + S gibt CaO, S²O², obwohl diese Reaction hier nur träge von statt gehe. Auch der Schwefelwasserstoff, der bei oben angeführten Processen auftritt, kann Urfrage sein, dass Schwefel in freiem Zustand vorkommt, indem sich Schwefelwasserstoff in der porösen Kalkmasse mit Luft zerstört. HS + O gibt S + HO. Aller dieser freie Schwefel, der in den verschiedensten Fällen auftritt, dient zur Bildung von Polyhulturen und wird beim Auslaugen gelöst, kann aber auch, jedenfalls aber in geringerem Grab, zur Bildung von unterschwefligsauren Salzen dienen.
Ist es durch die säure-entstehende Säure der vorhergehenden Zersetzung schon zerstört sind. Die schweflige Säure wird also auf diese Weise immer aus einem Gefäß in das andere getrieben und ist die Länge richtigzusammengelegt, so wird beim regelmäßigen Betrieb gar kein Gas freit, resp. gelangt kein Gas in das freite. Durch Titration wird die Schwefellauge auf ihren Gehalt an Polyjulitrlsquarz und der Schwefligsaurem Salz prüft und daraus der Sauerstoffgehalt der Wasserstoffpräpari.

in ein Baffin mit doppelter Boden; die Lauge schießt hier ab und der Schwefel bleibt zurück; er wird mit Wasser abgewaschen und gelangt dann zum Schmelz- oder Reinigungsprozeß. Der ausgefallte Schwefel filtrirt sich sehr gut, da er einen festen, feinkörnigen Aggregatzustand angenommen hat. Aus unterweseligsaurem Salz scheidet sich der Schwefel mit Salzäure in flüssiger Form, aus Polyvalenten, beim Einleiten von SO₂, in feinherzigem Zustand ab. Beide Schwefelmodifikationen vereinigen sich zu einem dichten feinkörnigen Schwefel, der sich leicht filtriren läßt und sich mit grober Geschwindigkeit zu Boden setzt.

Zur Herstellung des Schmelzkessels, wie derelbe in Praxis ausgeführt ist, dienen Fig. 44 und 45, woran wenigstens die wesentlichen Theile ersichtlich sind. Ein gußeiserner Cylinder B liegt in einem schmiede..
handenen freien Salze nun eben so gut zerstörend auf die schwefelsauren Salze, als reine Salzsäure. Schwefelsäure und Schwefeleisen kann sich nicht bilden, da gewöhnlich kein Schwefelcalcium mehr vorhanden ist. Sollte aber doch etwas Schwefelcalcium gegenwärtig sein, so feht man etwas Salzsäure zu, bevor man die Chlorrückstände anwendet. Man kann auf diese Weise ½ der ganzen Salzsäure erlassen, die notig wäre und erhält doch reinen Schwefel. Hatte man die Chlorkalkrückstände vor der eigentlichen Anwendung nicht auf obige Weise vorbereitet, so würde das Eisenchlorid schädlich wirken, es wirkt zerstörend auf die schweflige Säure ein und würde diese aus der Circulation bringen, es würde sich Schweißsäure und aus dieser Gyps bilden, der den Schwefel verunreinigt und Verlust an Schwefel entsteht; denn Fe² Cl³ + SO² + HO gibt 2 Fe Cl + SO³ + HCl. Nach dem beschriebenen Verfahren wirkt aber das Eisenchlorid nicht schädlich, ein Theil seiner Salzsäure wird sogar nützlich gemacht und man kann auf diese Weise auch chemisch reinen Schwefel darstellen ohne Anwendung von Salzsäure oder doch nur mit sehr geringem Verbrauch von Salzsäure.

Dieses Verfahren der Schwefelwiedergewinnung aus Sodarückständen ist nun in fast allen bedeutenden Sodafrinichten des Zollvereines eingeführt, ebenso hat man in England, Frankreich und Belgien mit der Einführung dieselben begonnen. Auf der Pariser Ausstellung hatten folgende Fabriken Schwefel ausgestellt, der nach diesem Verfahren dargestellt war:

Die chemische Fabrik Rhemania zu Stolberg (Preußen),

" " Silessa zu Saara (Preußen).
Die chemische Fabrik zu Schönebeck (Brandenburg),
" " zu Außig (Österreich),
" " zu Pruhon (Österreich),
der Verein chemischer Fabriken zu Mannheim (Baden).

Für die Soda-Fabriken ist dieser neue Prozeß von größter Wichtigkeit; die Außiger Fabrik allein stellt jährlich 9000 Ttt. chemisch reinen Schwefel aus Soda-Rückständen dar und hat seit der Einführung des Prozesses schon für 250,000 fl. Österr. W. Schwefel in Handel gebracht.
Zieht man nun die Produktion der übrigen Fabriken in Betracht, so wird man gewiß den bedeutenden Werth des Verfahrens nicht unterschätzen. Aber auch andere Worte bietet das Verfahren den Soda-Fabriken, es wird nämlich die Überproduktion an Salzsäure der meisten Fabriken hierdurch beseitigt, indem die Salzsäure hier zu einer sehr gewinnbringenden Fabrication verwendet wird. Dadurch wird es ferner möglich, sowohl beim Verkauf der Salzsäure als auch beim Chloralkali höhere Preise zu erzielen, da man früher fah war, die überflüssige Salzsäure nur für wenig Groschen in Form von Chloralkali zu verwerthen.
daß der Landwirtschaft nun so große Massen Gips und kohlensauren Kalk zugeführt werden, so kann das Verfahren auch in national-ökono-
mischer Beziehung gewiß wichtig genannt werden.

LXXXV.

Über die Bestimmung der Phosphorsäure durch Umwandlung der Phosphate in Phosphoreisen; von Th. Schlösing.

Aus den Comptes rendus, t. LXVI p. 1043; Mai 1868.

In einer der (französischen) Akademie im August 1864 gemachten Mittheilung beschrieb ich ein Verfahren zur quantitativen Bestimmung der Phosphorsäure, welches darin besteht, die Phosphate in Gegenwart von Kieselsäure bei hoher Temperatur durch Kohlensäure zu reduzieren und die entbundenen Phosphor über Kupfer oder in einer Lösung von salpetersaurem Silberoxyd auszufangen. Dieses Verfahren gibt keine genauen Resultate mehr, wenn die Phosphate Eisen oxyd enthalten, weil dieses sich in Phosphoreisen umwandelt und einen gewicht proportionalen Verlust an Phosphor verräumt. In der Hoffnung, mein Verfahren allgemeiner anwendbar zu machen und insbesondere zur Ana-
lyse von Düngestoffen, Pflanzenaschen, Bodenarten etc., suchte ich lange Zeit, jedoch erfolglos, ein einfaches Mittel zur Ausscheidung des Eisens auszufinden. Endlich kam ich auf den Gedanken, daselbe als Hilfs-
mittel zu benutzen und ihm die Rolle eines Trennungsmittels zu über-
tragen. Durch frühere Versuche hatte ich mich überzeugt, daß die Phos-
phate der Malkien und Erden, wenn sie mit geeigneten Verhältnissen von Kieselsäure und Eisen in einem Kohlentiegel zum Weißglühen erhitzt werden, ihren ganzen Phosphorgehalt an das Metall abgeben. Nachdem mittels dieser einleitenden Operation die Umwandlung der Phosphate bewerkstelligt war, blieb mir noch übrig, den Phosphor aus seiner Ver-
bindung mit dem Eisen abzuscheiden.

Diese Aufgabe ist keineswegs so einfach, als es beim ersten Blicke erscheint; in den meisten Fällen bleibt das Phosphoreisen, wenigstens teilweise, in den Silicaten vertheilt und kann auf mechanischem Wege nicht ohne Verlust aus denselben entfernt werden. Auch kann man das Gemenge nicht mit Königswasser behandeln; denn da die Säure die
Silicate angreift, so würde die Phosphorsäure sich wieder mit denselben Basen verbinden, welche durch die erste Operation von derselben getrennt wurden. Ich musste demnach ein Mittel zur Trennung des Phosphors vom Eisen aussuchen, welches auf die Silicate nicht einwirkt. Dieser Bedingung entspricht das Chlorgas.

Wenn man trockenes Chlorgas bei einer nicht zu hohen Temperatur über Eisen leitet, belches Phosphor und andere Metalle wie, Arsen, Schwefel, Silicium enthält, so verändert es beträchtlich alle diese Körper in Chloride. Das Eisenchlorid ist weniger flüchtig als die anderen Chloride, aber der Unterschied ist nicht bedeutend genug, um eine genaue Trennung zu gestatten; bezüglich des Phosphors wird die Schwierigkeit noch durch eine sich bildende Verbindung seines Chlorides mit Eisenchlorid vermehrt. Es ist mir indes gelungen, diese Verbindung zu zerlegen und gleichzeitig den Unterschied in der Flüchtigkeit beider chloride bedeutend zu erhöhen und zwar durch einen sehr einfachen Kunstgriff, nämlich durch Anwendung von Chloralkalium, welches sich mit dem Eisenchlorid verbindet und es bei der Temperatur des Verbruches so gut fixirt, daß sich sämtliches Phosphorchlorid, absolut frei von Eisenchlorid, entbindet. Was ich hier vom Phosphor sagte, gilt auch für den Schwefel, das Silicium und das Arsen. Ich verfahre in nachstehender Weise:

Porzellanstückchen enthaltenden Rohre, in welchem die in B nicht kondensirten phosphorhaltigen Dämpfe zurückgehalten werden. Mit diesem Rohre steht eine kleine Wachslasche in Verbindung, um den Chlorgasstrom überwachen zu können.

Das Chlor muss beständig in geringem Uberschusse vorhanden sein, man muss daher seine Entbindung vollkommen in der Gewalt haben. Um dies zu erreichen, wende ich anstatt des gewöhnlichen Chlorentbindungsapparates ein Paar jener tubulirten, zur Darstellung von Wassersstoffgas, Kohlensole 2c. gebräuchlichen Flaschen an, bei denen die Gasentwicklung sich durch einen Hahn reguliren lässt.

Zur quantitativen Bestimmung der Phosphorsäure, welche sich mit Chlorwasserstoffsaure in der Regel des Rohres kondensirt hat, schneidet man das Glasrohr im ausgezogenen Theile ab, läst die Flüssigkeit in eine Porzellanische laufen, wägt das die Porzellanstückchen enthaltende Rohr und die Regel aus, fügt das Wassrohr zu der Flüssigkeit in der Porzellanische, verzieht die vereinigten Flüssigkeiten mit Salpetersäure und dampft ab. Gegen Ende der Operation zeiget sich die Chlorwasserstoffsaure und entweicht ohne Spuren; man hat dann nur noch freie Phosphorsäure in Gegenwart von Salpetersäure zu bestimmen, wozu ich salpeteraures Silberoxyd benuse.

Im Nachstehenden theile ich einige Analysen als Beweise für die Genauigkeit des beschriebenen Verfabrens mit.

Zunächst untersuchte ich Phosphoreisen nach den bekannten Methoden und erhielt nachstehende Resultate:
Schlosing, über die Bestimmung der Phosphorsäure in Pflanzenaschen etc.

<table>
<thead>
<tr>
<th>I.</th>
<th>II.</th>
<th>III.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewendetes Phosphoreisen</td>
<td>401,25 Milligramm</td>
<td>330,25 Milligramm</td>
</tr>
<tr>
<td>phosphorsaurer Silberoxyd</td>
<td>128,40</td>
<td>106,00</td>
</tr>
<tr>
<td>demnach Phosphor</td>
<td>95,03</td>
<td>23,68</td>
</tr>
<tr>
<td>Eisen</td>
<td>304,50</td>
<td>78,88</td>
</tr>
<tr>
<td>Kohle</td>
<td>0,30</td>
<td>0,30</td>
</tr>
<tr>
<td>Durchschnittlicher Prozentsgehalt an Phosphor</td>
<td>99,96</td>
<td>99,93</td>
</tr>
</tbody>
</table>

Dann analysirte ich verschiedene Gewichtsmengen dieses Phosphoreisons nach meinem Verfahren und erhielt:

<table>
<thead>
<tr>
<th>I.</th>
<th>II.</th>
<th>III.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewendetes Phosphoreisen</td>
<td>365,5 Mgr.</td>
<td>317,60 Mgr.</td>
</tr>
<tr>
<td>Phosphorgehalt deselben</td>
<td>86,5</td>
<td>75,24</td>
</tr>
<tr>
<td>Erhaltenes phosphorsaures Silberoxyd</td>
<td>1160,5</td>
<td>1007,00</td>
</tr>
<tr>
<td>Phosphorgehalt deselben</td>
<td>85,9</td>
<td>74,50</td>
</tr>
</tbody>
</table>

Ich untersuchte auch phosphorärmeres Metall von bekannter Zusammenziehung, welches ich durch Zusammenmischen von reinem Eisen mit bestimmten Gewichtsmengen des vorhergehenden Phosphoreisens erhalten hatte:

| Phosphoreisen | 197,5 Mgr. | 202,0 Mgr. | 14,0 Mgr. |
| reines Eisen | 1000,0 | 2000,0 | 2000,0 |

| Phosphorgehalt | 0,0392 | 0,0217 | 0,0016 |

Zur Analyse verwendet: 1173,00 Mgr. die ganze Menge. Berechneter Phosphorgehalt 45,74 Mgr. 47,9 Mgr. 3,82 Mgr. gefundener Phosphorgehalt 45,70 Mgr. 47,5 Mgr. 3,50 Mgr.

In meiner nächsten Mittheilung werde ich die Umwandlung eisenhaltiger phosphorsaurer Alkalien und Erden in Phosphoreisen besprechen.
LXXXVI.

Über die Bestimmung der Phosphorsäure in Pflanzenaschen, Düngern und Bodenarten; von Th. Schröding.

Aus dem Comptes rendus, t. LXVII p. 1247; December 1868.

Das Eisenoxydulphosphat läßt sich ohne Schwierigkeit herstellen, indem 28 Gew. Th. seine Eisenfeilspäne, 80 Th. Eisenoxyd und 48 Th. Sand

in einem Kohlentiegel zusammenschmilzt, die geschmolzene Schlacke von dem überschüssigen metallischen Eisen absondert, zu Pulver reibt und durch ein Sieb schlägt. Die Zusammenlegung dieses Silicates schwankt zwischen $\frac{1}{3}$ und $\frac{2}{3}$ FeO auf 1 SiO².

Ich menge die zu analysirende Substanz mit Silicat und pulverisirter Retorten Kohle; das Verhältniss des Flüsses wird so berechnet, daß die zu erzeugende Schlacke Eisenoxydul zurückhält; die Menge der Kohle muß etwa die Hälfte des zur Reduction sämtlichen Eisenoxyduls erforderlichen Kohlenstoffes betragen. Ich wende Thontiegel mit einem Kohlenfutter an, welches ich mit einem fast trockenen Teig von seingepulverter Retortenkohle und Zuckerwasser herstelle; ein drei Millimeter starkes Futter genügt, um einen sehr feinen Kohlentiegel zu erzeugen, welcher unversehrt bleibt, wenn der Thontiegel zer springt oder erweicht. Jüngst bis sechs Minuten lang erhielt ich nur allmählich, dann aber gebe ich zwanzig bis fünfundzwanzig Minuten hindurch die härteste durch das Lösrohr her vorzubringende Hitze. Die Schlacke wird in einem eisernen, mit einer Kautschukplatte bedeckten Mörser zerstoßen, vom Eisen regulius und den eingekreuten Eisenförmchen getrennt und schließlich feingerieben; dann mit Chlorkalium gemengt und nach dem Heben in das Glasrohr eingetragen, in welchem der Phosphor vom Eisen abgeschieden werden soll.

Analytische Belege

(Wenn ein Phosphat keine überschüssige Wassers enthält, sofiglich schon bei lebhafter Rotglühhe Phosphor verlieren kann, bevor aus dem Silicat Eisen reducirt wird, so bedachte ich die Verhältnisse des, wo zu analyserende Substanz mit pulverförmigem Eisen zu bemerken.)

| Phosphorsäure gefunden... | 160,8 Miligramm | Phosphorsäure gefunden... | 112,7 Miligramm |
| berechnet... | 160,5 Miligramm | berechnet... | 113,4 Miligramm |

Ich nahm darauf Thon, einen kohlensauren Kall und Gemenge dieser beiden Mineralsubstanzen mit Zusatz von Phosphorsäure in Form von gelöster phosphorsaurer Thonerde. Der Thon wurde zunächst in Salpetersäure aufgeschlammmt, dann in einem großen Volum Wasser zus- 92 Die Hitze muß so stark sein, daß schmelzende Rote, womit ein gleicher nicht gesüßter Tiegel angefüllt wurde, vollständig zum Schmelzen kommen.
in Pflanzenäsuren, Düngern und Bodenarten. 323

penbirt, durch Decantiren von den fändigen Theilen getrennt, gewaschen und getrocknet:

<table>
<thead>
<tr>
<th>Theor.</th>
<th>Kalk.</th>
<th>Silicat</th>
<th>Kohle</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>5</td>
<td>0</td>
<td>5,0</td>
</tr>
<tr>
<td>II.</td>
<td>5</td>
<td>0</td>
<td>25,1</td>
</tr>
<tr>
<td>III.</td>
<td>5</td>
<td>1,0</td>
<td>25,1</td>
</tr>
<tr>
<td>IV.</td>
<td>5</td>
<td>3,0</td>
<td>25,1</td>
</tr>
<tr>
<td>V.</td>
<td>2,5</td>
<td>2,5</td>
<td>25,1</td>
</tr>
<tr>
<td>VI.</td>
<td>0</td>
<td>2,5</td>
<td>25,1</td>
</tr>
</tbody>
</table>

Phosphorsäure

<table>
<thead>
<tr>
<th>gefunden:</th>
<th>berechnet:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milligrm.</td>
<td>Grm.</td>
</tr>
<tr>
<td>I.</td>
<td>6,1</td>
</tr>
<tr>
<td>II.</td>
<td>31,3</td>
</tr>
<tr>
<td>III.</td>
<td>30,7</td>
</tr>
<tr>
<td>IV.</td>
<td>30,5</td>
</tr>
<tr>
<td>V.</td>
<td>28,5</td>
</tr>
<tr>
<td>VI.</td>
<td>25,7</td>
</tr>
</tbody>
</table>

Tabakasche. — Man behandelt die Asche unmittelbar mit Eisenoxydulsilicat:

<table>
<thead>
<tr>
<th>Asche</th>
<th>0,982 Grm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicat</td>
<td>3,50 "</td>
</tr>
<tr>
<td>Kohle</td>
<td>0,40 "</td>
</tr>
</tbody>
</table>

Oder die Phosphate werden durch Behandlung der Asche mit Salpetersäure, Filtriren und Abdampfen der Lösung, Glühen des Rückstandes bei 300° C. und Ausziehen mit Wasser isoliert; der Rückstand enthält die Phosphate.

<table>
<thead>
<tr>
<th>Asche</th>
<th>1,067 Grm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rückstand von der angegebenen Behandlung der Asche</td>
<td>0,1495</td>
</tr>
<tr>
<td>Geschmolzen mit</td>
<td>1,200</td>
</tr>
</tbody>
</table>

Man kann demnach ohne Nachteil die Näsche direct schmelzen, anstatt vorher die Phosphate abzuscheiden.

P erf e k t i o n. — 800 Grm. desselben, an der Luft getrocknet, gaben 358 Grm. Näsche; in der Näsche wurden 2,38 Proc. Phosphorsäure gefunden, entsprechend einem Phosphorsäuregehalt des Näsches von 1,6 Procent.

In nachstehender Uebersicht sind einige der erhaltenen Resultate angegeben:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>77,2</td>
<td>11,0</td>
<td>0</td>
<td>Nicht bef.</td>
<td>12,0</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22,4</td>
<td>34,3</td>
<td>34,3</td>
<td>befgl.</td>
<td>10,0</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boden von Baures, Boulogne (Seine-Dep.)</td>
<td>45,5</td>
<td>9,2</td>
<td>38,5</td>
<td>befgl.</td>
<td>7,0</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>40,3</td>
<td>36,4</td>
<td>19,4</td>
<td>befgl.</td>
<td>4,8</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69,2</td>
<td>5,6</td>
<td>43</td>
<td>16,00</td>
<td>4,5</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boden für den Zunderribben-Bau</td>
<td>62,0</td>
<td>1,4</td>
<td>32,0</td>
<td>Nicht bef.</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erde aus einem Teiche</td>
<td>60,0</td>
<td>7,1</td>
<td>7,1</td>
<td>befgl.</td>
<td>2,4</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Demnach habe ich in 10 Grm. Erde im Durchschnitt 17 Milligrm. Phosphorsäure gefunden, entsprechend 6 bis 7 Tonnen per Hektar, wenn man für die Ackerfrüchte eine Dicke von 25 Centimeter und für 1 Liter Erde das Gewicht von 1,5 Kilogr. annimmt.

LXXXVII.

Das Aehammoniak als Reagens zur sicheren Nachweisung der giftigen Arsenik-Kupferfarben; von C. Puscher in Nürnberg.

Damit sich nun das mit diesen Farben nur sehr wenig vertraute Publicum gegen die Gefahren der selben schützen kann, ist es wünschenswert, ein einfaches, von Jedermann leicht ausführbares Verfahren zu beiffer, welches das Erkennen derselben auf Tapeten, Kleidern, Spielwaren etc. ermöglicht. Das Verfahren, welches zu diesem Zweck hauptsächlich empfohlen wurde, nämlich das Verbrennen solcher giftigen Tapeten, Papiere, Gewebe etc., wodurch dann bei Gegenwart von Arsenigäure der dem Arsen eigentümliche Knoblauchgeruch sich entwickelt, ist wegen des zugleich auch mit verbreiteten Geruches des Papiers, Gewebes und Bindemittels in der Hand des Publicums unsicher und nicht für alle Fälle anwendbar. Ebenso unsicher ist das umständliche Verfahren, die zu prüfenden Gegenstände mit Ätherkälte zu lüften, um durch die Verwandschaft der grünen in eine rothe Farbe (Kupferoxydul) auf die Anwesenheit

Da der Salmiasgeist lösend auf Sandarakharz wirkt, so läßt sich mittels des beschriebenen Verfahrens auch aus den mit Sandarakharz lackirten Spielwaren die Unwesenheit der Kupfer-Arsenisfarben mit Sicherheit ermitteln.

LXXXVIII.

Analysen einiger Farbinsekten; von C. Mène.

Aus den Comptes rendus, t. LXVIII p. 666; März 1869.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser und Verlust</td>
<td>4,700</td>
<td>6,060</td>
<td>4,185</td>
</tr>
<tr>
<td>Stearin</td>
<td>8,155</td>
<td>10,131</td>
<td>3,090</td>
</tr>
<tr>
<td>Margarin (Palmitin)</td>
<td>8,451</td>
<td>8,293</td>
<td>3,007</td>
</tr>
<tr>
<td>in Wasser unlösliche Substanzen</td>
<td>6,172</td>
<td>6,094</td>
<td>12,712</td>
</tr>
<tr>
<td>nichtflüssige Substanzen</td>
<td>7,115</td>
<td>7,152</td>
<td>15,145</td>
</tr>
<tr>
<td>in Wasser lösliche Substanzen</td>
<td>13,208</td>
<td>10,031</td>
<td>30,674</td>
</tr>
<tr>
<td>färbende Substanzen</td>
<td>48,823</td>
<td>49,007</td>
<td>26,172</td>
</tr>
<tr>
<td>Asche (Phosphorsäure, Kali, Kalk)</td>
<td>3,376</td>
<td>3,322</td>
<td>5,065</td>
</tr>
<tr>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
<td>99,359</td>
</tr>
</tbody>
</table>

Kermes

<table>
<thead>
<tr>
<th>von der Steinteere.</th>
<th>aus der Provence.</th>
<th>aus den Spanien.</th>
<th>aus Polen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser und Verlust</td>
<td>7,214</td>
<td>6,435</td>
<td>6,855</td>
</tr>
<tr>
<td>Stearin</td>
<td>3,108</td>
<td>2,925</td>
<td>2,935</td>
</tr>
<tr>
<td>Margarin (Palmitin)</td>
<td>1,485</td>
<td>1,409</td>
<td>1,517</td>
</tr>
<tr>
<td>in Wasser unlösliche Substanzen</td>
<td>12,735</td>
<td>11,728</td>
<td>11,832</td>
</tr>
<tr>
<td>nichtflüssige Substanzen</td>
<td>15,355</td>
<td>14,915</td>
<td>14,925</td>
</tr>
<tr>
<td>färbende Substanzen</td>
<td>26,955</td>
<td>24,190</td>
<td>20,975</td>
</tr>
<tr>
<td>Asche</td>
<td>6,233</td>
<td>8,150</td>
<td>7,060</td>
</tr>
<tr>
<td>in Wasser lösliche Substanzen</td>
<td>25,965</td>
<td>30,248</td>
<td>33,841</td>
</tr>
<tr>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
</tr>
</tbody>
</table>
Reimann, über Scharlachfärberei mit Fuchsins.

Der in der Cohnille gesundene große Fettgehalt hat in Guatemala Versuche zur technischen Gewinnung deselben veranlasst. Ich habe zwar einige Proben von diesen Fettsubstanzen erhalten, aber von den Ergebnissen der Versuche nichts weiter gehört.

LXXXIX.

Über die Anwendung des Fuchsins in der Scharlachfärberei;

von Dr. M. Reimann.

Man kann sich indessen leicht überzeugen, daß dies nicht der Grund, wenigstens nicht der einzige dieser Ercheinung sein kann, wenn man Rosanilin, und Pikrinäsäure einzeln auffärbt; dann kann sich kein krysalessiertes Rosanilinphosphat bilden, und doch ist das erzeugte Scharlach immer mott. Dagegen erzeugt man mit gewissen rotgelben Farbstoffen, wie Curcuma, Flavin, Kreuzbeeren etc., leicht gute Scharlachfarben mittelft Fuchsin.

Dieser Grund ist folgender:

Der Regenbogen zeigt uns Milchfarben aus Roth, Gelb und Blau, welche, wenn auch scheinbar aus diesen drei einfachen Farben zusammengesetzt, doch farben für sich sind, d. h. sie können nicht weiter zerlegt werden. So kennen wir ein einfaches Orange, ein einfaches Violett,
Neben den kristallisierten Zucker hinsichtlich seiner Beziehungen zur Wissenschaft und Saccharimetrie; von Dubrunfaut.

Aus den Comptes rendus, t. LXVIII p. 818; April 1869.

Das Vorhandenseyn der von mir nachgewiesenen Unreinigkeiten in den Zucker des Handels und namentlich in den raffiniirten Zucker 94 gleicht mir von großer Wichtigkeit für die Industrie und Volkswirthchaft zu sein. Es ist gewiß nicht gleichgültig für die Conjeumten, den Reinheitsgrad des Zuckers und zugleich die Natur der Verunreinigungen desselben zu kennen. Andererseits, wenn diese Mängel der raffiniirten Zucker von Fehlern in der Fabrication abhängen, welche die Wissenschaft aufsuchen und denen sie abholen kann, so ist es ihre Pflicht, die Industriellen auf eine Thatsache aufmerksam zu machen, welche um so schwerer in's Gewicht fällt, als sie alle ähnlichen Produkte der europäischen Industrie betrifft.

Die Verunreinigungen des Zuckers und ihre Auffindung haben kein

Dingler's polyt. Journal Bd. CXIII. 4. 22
geringeres Interesse für die Wissenschaft selbst, und unter diesem Gesichtspunkt wollen wir den Gegenstand hier betrachten.

Die Chemiker, welche sich mit Untersuchungen über die Eigenschaften des Rohrzuckers beschäftigt haben, begünstigten sich meistens die schönsten Produkte des Handels, welche sie ebendeshalb als die reinsten betrachteten, zu ihren Versuchen zu wählen. Sie gaben daher demjenigen Zucker den Vorzug, welcher als Candis bekannt ist; dieser ist das Produkt einer langsamen Kristallisation, also desjenigen Vorganges, welchen die Wissenschaft als den die vollkommenste Reinigung bewirkenden bezeichnet.

Untersucht man mit Sorgfalt, wie ich es getan habe, die raffinierten Zucker des Handels, eindeutig der weißen Candis welche die Zuckerbäder darstellen, so zeigt es sich, dass die hinreichende Berührung mit Glucose (verägypttem Zucker) den ersten Rang einnehmen; man findet nämlich darin nicht selten 1 Procent Glucose, was auch mit der von mir gemachten Beobachtung übereinstimmt, dass alle raffinierten Zucker sauer sind.

Bemerkenswerth ist der verschiedene Reinheitsgrad des Zuckers an verschiedenen Stellen desselben Brodes. Der reinste Zucker findet sich an der Spitze, der unreinste am Füße des Regels; in den auf die Achse deselben senkrechten Querschnitten nimmt also der Glucosgehalt von der Spitze ab, und das Mittel deselben findet sich in dem Querschnitt durch den Schwerpunkt. Entsprechendes beobachtet man bei der Untersuchung der der Achse des Regels parallelen Schnitte; das Maximum von Glucose findet sich in dem durch die Achse gehenden Schnitte und die Berührung nimmt bis zur äußersten Flache ab. Am reinsten ist also der Zucker an der Spitze und in der Mitte, am unreinsten im Inneren und am Füße des Brodes. Was von der Glucose gilt, gilt auch für die mineralischen Beimischungen. Aus diesen Tatsachen folgt, dass der größere Theil der chemischen Arbeiten, welche über die Eigenschaften des Zucker ausgeführt wurden, ungenau seyn muss, weil dabei ein feineswegs chemisch reiniger Körper als Grundlage gebient hat. Ich begnügen mich hier, einen Beweis dafür aus der Geschichte der optischen Saccharimetrie zu liefern.

Für das Soleil'sche Polarisationsinstrument musste das Drehungsequivalent des Zuckers bestimmt werden. Man nahm an, dass 16,471 Grm.
und deren Einfluss auf die Saccharometrie.

reinen und trockenen Zucker, in Wasser zum Volum von 0,1 Liter gelöst, in einem Rohr von 0,2 Met. Länge die Polarisationsebene so stark drehen wie eine Quarzplatte von 1 Millimeter Dicke, und diese Zahl wurde beibehalten, bis meine Arbeiten über die Zuckersfabrikation mittelst Baryt einen reinen Zucker kennen lehrten als zur Grundlage für das Saccharimeter gebient hatte. Es drehte nämlich der Barytzucker mehr als 100 Proc. und ich schlug daher als Normalmenge 16,390 Grm. vor, entsprechend dem aus der Barytarbeit hervorgegangenen Zucker (Comptes rendus, t. XXXII p. 349); in Folge hiervon wurde im Jahre 1851 die Zahl 16,350 Grm. angenommen und seither beibehalten.

Bei Gelegenheit meiner jüngsten Untersuchungen über das Vorkommen der Glucose habe ich meine Versuche über die Reindarstellung des Zuckers wieder aufgenommen und dabei einen Zucker erlangt, welcher bei dem Normalgewicht von 16,350 Grm. 102 Proc. polarisiert. Dieser Zucker ist jedoch nicht absolut rein, denn er enthält noch:

a) 0,00039 Wasser;

b) 0,00030 Wässer;

c) 0,00018 Glucose;

d) Spuren von Milchsäure.

Die bei den Polarisationinstrumenten zu Grunde gelegte Zahl 16,350 Grm. wird daher abgeändert und sicher unter 16,0 Grm. herabgesetzt werden müssen, wenn es gelungen ist chemisch reinen kristallinischen Zucker darzustellen.

Man erhebt hierauf leicht, welche Irrtümer bei den saccharimetrischen Untersuchungen durch Anwendung von weissem Canbis veranlasst werden müßen, da dieser stets freie Säure, Eise und Glucose enthält. 95

95 Aktive, sehr sorgfältig ausgeführte Arbeiten haben mir die Zahl 15,976 Grm. ergeben. Ich glaube, daß diese Zahl der Wahrheit sehr nahe kommt, obgleich sie von der jetzt angenommenen um mehr als 0,025 abweicht. Eine entsprechende Correction muß natürlich für die Titration der Trommerschen Flüssigkeit vorgenommen werden.

Ann. des Verf.
XCI.
Untersuchung des ungarischen Weizens und Weizenmehles; von O. Dempwolff.

Aus den Annalen der Chemie und Pharmacie, 1869, Bd. CXLIX S. 343.

So viel nun auch der Weizen und die daraus gewonnenen Produkte untersucht sind, so habe ich doch keine Analyse gefunden über sämtliche Mahlprodukte desselben Korns.

Auf Anregung des Herren Baron v. Liebig, welcher mir gütigst die dazu nötigen Materialien zur Verfügung stellte, unternahm ich die Untersuchung der Mehl und sonstiger Produkte der Pesther Walzmühle.

Ob auf allen Walzmühlen quantitativ ausgemahlen wird, kann ich nicht sagen, da keine Nachrichten darüber vorhanden sind.

Auf der Pesther Walzmühle werden nach der Angabe der Direction 14 verschiedene Produkte aus dem Weizen dargestellt, und war der, welcher das Material zur Untersuchung lieferte, aus 1/2 Theiß- und 1/2 Banaterweizen gemischt. Die Analyse desselben ergab:

Weizenkorn:
Wasser 10,511
Asche 1,505
Stickstoff 2,239 (N bei 1000 C. getrocknet 2,503)
Stärke 65,407
Die Masse des Kornes enthielt in 100 Theilen:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>0.404</td>
</tr>
<tr>
<td>CaO</td>
<td>4.275</td>
</tr>
<tr>
<td>MgO</td>
<td>14.862</td>
</tr>
<tr>
<td>KO</td>
<td>31.825</td>
</tr>
<tr>
<td>NaO</td>
<td>1.016</td>
</tr>
<tr>
<td>PO₅</td>
<td>49.509</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.101</td>
</tr>
<tr>
<td>Cl</td>
<td>0.086</td>
</tr>
</tbody>
</table>

102,471.

Als Zusammensetzung des Kornes ergibt sich:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser</td>
<td>10,511</td>
</tr>
<tr>
<td>Masse</td>
<td>1,505</td>
</tr>
<tr>
<td>Kleber</td>
<td>14,822</td>
</tr>
<tr>
<td>Stärke</td>
<td>65,407</td>
</tr>
<tr>
<td>Fett und Holzfasern</td>
<td>8,225</td>
</tr>
</tbody>
</table>

100,000

Demnach bleibt für Holzfasern 8,225 übrig. Gefunden wurde für Holzfasern 7,144. Zucker konnte direkt nicht nachgewiesen werden.

Bevor das Korn gemahlen wird, werden auf einem Steingange die außen befindlichen Theile, als Haare, Keime, Burgelsaeren und ein Theil der äußersten Hülle, als Spänen oder Hoppsaub entfernt. Aus dem so präparirten Weizen sind A und B die Korngriese, 0, 1, 2, 3 die Auszug-
mehl, 4 und 5 die Semmelmehle, 6 und 7 die Brodmehle, 8 das Schwarzmehl und 9 und 10 die Kleien gewonnen. Die Mehle sind so weit wie möglich mit Walzen gemahlen, und der Rest, welcher den Walzen widerstand, ist auf einem Steingange ausgemahlen.

Nach Procenten ist die Muebeute folgende:

\[
\begin{array}{lcl}
A & & 0.489 \\
B & & 3.144 \\
0 & & 2.635 \\
1 & & 5.291 \\
2 & & 7.165 \\
3 & & 14.767 \\
4 & & 17.915 \\
5 & & 15.419 \\
6 & & 6.805 \\
7 & & 2.576 \\
8 & & 9.516 \\
9 & & 9.000 \\
10 & & 1.290 \\
11 & & 3.988 \\
\hline
& & 100.000
\end{array}
\]

Im Ganzen also:

<table>
<thead>
<tr>
<th>Gewicht</th>
<th>18.724</th>
</tr>
</thead>
<tbody>
<tr>
<td>für Griese und Auszugmehle</td>
<td>32.682</td>
</tr>
<tr>
<td>Semmelmehle</td>
<td>22.224</td>
</tr>
<tr>
<td>Brodmehle</td>
<td>2.576</td>
</tr>
<tr>
<td>Schwarzmehl</td>
<td>18.516</td>
</tr>
<tr>
<td>Kleien</td>
<td>1.290</td>
</tr>
<tr>
<td>Abfall</td>
<td>3.988</td>
</tr>
</tbody>
</table>

In je 100 Theilen Mehl ist enthalten:

<table>
<thead>
<tr>
<th></th>
<th>Wasser</th>
<th>Asche</th>
<th>Stickstoff bei 100°</th>
<th>Stickstoff im gewöhnlichen Mehl</th>
<th>Stärke</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11,050</td>
<td>0,398</td>
<td>2,089</td>
<td>1,858</td>
<td>69,983</td>
</tr>
<tr>
<td>B</td>
<td>11,545</td>
<td>0,386</td>
<td>1,874</td>
<td>1,658</td>
<td>69,590</td>
</tr>
<tr>
<td>0</td>
<td>10,077</td>
<td>0,380</td>
<td>2,011</td>
<td>1,808</td>
<td>72,145</td>
</tr>
<tr>
<td>1</td>
<td>10,618</td>
<td>0,416</td>
<td>2,071</td>
<td>1,851</td>
<td>71,017</td>
</tr>
<tr>
<td>2</td>
<td>10,492</td>
<td>0,462</td>
<td>2,057</td>
<td>1,868</td>
<td>68,867</td>
</tr>
<tr>
<td>3</td>
<td>10,142</td>
<td>0,481</td>
<td>2,122</td>
<td>1,907</td>
<td>68,386</td>
</tr>
<tr>
<td>4</td>
<td>10,421</td>
<td>0,586</td>
<td>2,212</td>
<td>1,981</td>
<td>67,302</td>
</tr>
<tr>
<td>5</td>
<td>10,544</td>
<td>0,611</td>
<td>2,435</td>
<td>2,178</td>
<td>67,176</td>
</tr>
<tr>
<td>6</td>
<td>10,748</td>
<td>0,764</td>
<td>2,611</td>
<td>2,329</td>
<td>65,631</td>
</tr>
<tr>
<td>7</td>
<td>10,674</td>
<td>1,176</td>
<td>2,788</td>
<td>2,491</td>
<td>61,773</td>
</tr>
<tr>
<td>8</td>
<td>9,527</td>
<td>1,549</td>
<td>2,570</td>
<td>2,926</td>
<td>61,081</td>
</tr>
<tr>
<td>9</td>
<td>10,690</td>
<td>5,240</td>
<td>2,518</td>
<td>2,249</td>
<td>45,838</td>
</tr>
<tr>
<td>10</td>
<td>11,150</td>
<td>5,680</td>
<td>2,513</td>
<td>2,233</td>
<td>41,453</td>
</tr>
<tr>
<td>11</td>
<td>9,235</td>
<td>2,648</td>
<td>2,616</td>
<td>2,375</td>
<td>41,453</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>0.295</td>
<td>0.583</td>
<td>0.630</td>
<td>0.683</td>
<td>0.744</td>
<td>0.801</td>
</tr>
<tr>
<td>0.630</td>
<td>0.676</td>
<td>0.706</td>
<td>0.736</td>
<td>0.766</td>
<td>0.797</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.689</td>
<td>34.690</td>
<td>34.691</td>
<td>34.692</td>
<td>34.693</td>
<td>34.694</td>
<td>34.695</td>
</tr>
<tr>
<td>7.938</td>
<td>7.941</td>
<td>7.944</td>
<td>7.947</td>
<td>7.949</td>
<td>7.952</td>
<td>7.954</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.721</td>
<td>49.722</td>
<td>49.723</td>
<td>49.724</td>
<td>49.725</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,092</td>
<td>39,398</td>
<td>100,125</td>
<td>100,428</td>
<td>100,627</td>
<td>100,826</td>
</tr>
<tr>
<td>100,092</td>
<td>39,398</td>
<td>100,125</td>
<td>100,428</td>
<td>100,627</td>
<td>100,826</td>
</tr>
</tbody>
</table>

Der Stickstoffgehalt auf 100 Tölle berechnet in

<table>
<thead>
<tr>
<th>a.</th>
<th>b.</th>
</tr>
</thead>
<tbody>
<tr>
<td>im gewachsenen Weizen</td>
<td>bei 100 Tölle, der sich nicht aus dem Boden hat ergeben.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.910</td>
<td>10.629</td>
<td>11.629</td>
<td>11.630</td>
<td>11.631</td>
<td>11.632</td>
</tr>
</tbody>
</table>

Die Tabelle zeigt folgende Zusammenhänge:

- a. Reduziert man den Stickstoffgehalt auf 100 Tölle der Ernte, so erhält man folgende Ergebnisse:
- b. Bei den gewachsenen Weizen der Ernte.
<table>
<thead>
<tr>
<th>A. u. B.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.499</td>
<td>0.449</td>
<td>0.559</td>
<td>0.509</td>
<td>0.609</td>
<td>0.659</td>
<td>0.709</td>
<td>0.759</td>
<td>0.809</td>
<td>0.859</td>
<td></td>
</tr>
<tr>
<td>B. u. C.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>0.599</td>
<td>0.549</td>
<td>0.659</td>
<td>0.709</td>
<td>0.759</td>
<td>0.809</td>
<td>0.859</td>
<td>0.909</td>
<td>0.959</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Bemerkungen

- Die Tabelle zeigt die prozentuale Verteilung der Globusporituren in verschiedenen Proben.
- Die prozentuale Verteilung variiert von 0.449% bis 1.000%.
- Die prozentuale Verteilung der Globusporituren in den verbleibenden Proben beträgt:

<table>
<thead>
<tr>
<th>Proband</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1112</td>
<td>0.499%</td>
</tr>
<tr>
<td>B1112</td>
<td>0.549%</td>
</tr>
<tr>
<td>C1112</td>
<td>0.599%</td>
</tr>
</tbody>
</table>

Betont werden folgende Punkte

- Die prozentuale Verteilung der Globusporituren in den verbleibenden Proben beträgt:

<table>
<thead>
<tr>
<th>Proband</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1112</td>
<td>0.499%</td>
</tr>
<tr>
<td>B1112</td>
<td>0.549%</td>
</tr>
<tr>
<td>C1112</td>
<td>0.599%</td>
</tr>
</tbody>
</table>

Fazit

- Die prozentuale Verteilung der Globusporituren in den verbleibenden Proben beträgt:

<table>
<thead>
<tr>
<th>Proband</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1112</td>
<td>0.499%</td>
</tr>
<tr>
<td>B1112</td>
<td>0.549%</td>
</tr>
<tr>
<td>C1112</td>
<td>0.599%</td>
</tr>
</tbody>
</table>

Literatur

- Kahl, Magnesia, Calcium, Magnesium.
- Die prozentuale Verteilung der Globusporituren in den verbleibenden Proben beträgt:

<table>
<thead>
<tr>
<th>Proband</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1112</td>
<td>0.499%</td>
</tr>
<tr>
<td>B1112</td>
<td>0.549%</td>
</tr>
<tr>
<td>C1112</td>
<td>0.599%</td>
</tr>
</tbody>
</table>

Zusammenfassung

- Die prozentuale Verteilung der Globusporituren in den verbleibenden Proben beträgt:

<table>
<thead>
<tr>
<th>Proband</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1112</td>
<td>0.499%</td>
</tr>
<tr>
<td>B1112</td>
<td>0.549%</td>
</tr>
<tr>
<td>C1112</td>
<td>0.599%</td>
</tr>
</tbody>
</table>

Abkürzungen

- CaO: Calcium Oxid
- MgO: Magnesium Oxid
- KO: Kalium Oxid
- PO: Phosphat Oxid

Schlussfolgerung

- Die prozentuale Verteilung der Globusporituren in den verbleibenden Proben beträgt:

<table>
<thead>
<tr>
<th>Proband</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1112</td>
<td>0.499%</td>
</tr>
<tr>
<td>B1112</td>
<td>0.549%</td>
</tr>
<tr>
<td>C1112</td>
<td>0.599%</td>
</tr>
</tbody>
</table>

Fazit

- Die prozentuale Verteilung der Globusporituren in den verbleibenden Proben beträgt:

<table>
<thead>
<tr>
<th>Proband</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1112</td>
<td>0.499%</td>
</tr>
<tr>
<td>B1112</td>
<td>0.549%</td>
</tr>
<tr>
<td>C1112</td>
<td>0.599%</td>
</tr>
</tbody>
</table>

Literatur

- Kahl, Magnesia, Calcium, Magnesium.
Ferner wurde eine Mehlprobe untersucht, welche noch alle Klein enthielt und deren Zusammensetzung fast völlig dem des ganzen Kornes gleich. Es wurde gefunden:

Wasser	10,743
Stärke	2,506
Stärke	64,475
Fe₂O₃	9,09
CaO	1,08
MgO	1,34
KO	0,51
Na₂O	0,08
PO₅	0,04
Asche	1,503 mit 0,852 4,246 14,721 31,898 0,704 49,720 = 102,141

Ein anderes Mehl des ganzen Kornes, aus welchem 13 Proc. Klein abgeordert war, entsprach folgender Zusammensetzung:

Wasser	10,548
Stärke	2,518
Stärke	65,660
Fe₂O₃	9,09
CaO	1,08
MgO	1,34
KO	0,51
Na₂O	0,08
PO₅	0,04
Asche	1,032 1,338 5,056 12,425 31,456 1,878 48,761 = 100,943

Bergleich man nun die Analysen, so findet eine bedeutende Zunahme der Asche statt, je größer das Mehl wird und in dieser fast proportional eine Abnahme des Kalk- und Kalianteils und Zunahme des Magnesia-

gehaltes. Der Stickstoffgehalt zeigt bis zu den Brotmehlen und nimmt bei den Klein wieder ab, jedoch beträgt der Unterschied nur 0,8 Proc. Der Wassergehalt ist nur geringen Schwankungen unterworfen und ist überdies das Korn als sehr gut getrocknet anzusehen, da die meisten Analysen sonst mehr Wasser anzeigen.

Hinsichtlich des Stärkegehaltes wage ich nicht etwas Bestimmtes festzystellen, da der Beruf von circa 3 Proc. mir zu hoch ist.⁹⁶

⁹⁶ Ich verdanke das Material zu dieser Untersuchung, die durch Herr. Dempwolff (damals mein Assistent) in meinem Laboratorium ausgeführt wurde, der Hilfe der Direction der Böser Walzmühle, ebenso die sehr interessante Angabe über die durchschnittliche Ausbeute an den verschiedenen Mehloraten, wie sie bei der Berufsmühle im Größen von 100 Korn im Verlaufe eines Jahresbetriebs erhalten wor-

J. v. Liebig.
Miscellen.

Beheizung von Personenzügen.

Der Kohlenverbrauch betrug in den 2,5 Stunden 90 bis 100 Pfund; auf der Fahrt zwischen München und Augsburg ließ wurden jedesmal 28 bis 30 Pfund Kohlen verbraucht, welche beständig 100 Pfund Wasser in Dampf von 2 Atmosphären Spannkraft verwandeltten. Wenn auch die erste Herstellung einer solchen Dampfheizung insofern noch lamen, als von bisherigen Erwärmungen der Wagen mit Heißwasser- oder Heißluftzylindern, so werden diese Mehrkosten mehr als ausgewogen durch die sehr große Absenkung der Wärmeverluste und ihrer Nebenwirkung, durch die Erhebung an Personal, Zeit und Benzinmaterial, welche zur Kühlung, Verteilung, der Wärmerollen nötig sind. Diese Heizungseinrichtung selbst ist der Art, daß in dem den Otz- und Fußgängern bereitgehaltenen Gepäckwagen ein Drittel des Raumes zur Aufstellung eines kleinen aufrechtstehenden Dampfkegels, welcher 10 bis 12 Waggons zu beheizen genügt, verwendet wird. Von diesem Dampfkegel aus geht die Dampfleitung in die verschiedenen Waggons, welche durch die Benzinmachinen gespeist werden. Die Benzinmachinen sind von besonderen, die schnellste Erwärmung ermöglichen, welche bei den Anschlägen bei einer Kälte von 160° durch Dampf erwärmt zu werden, die eigene Dampfheizung ermöglicht es, den Fußfuß des Dampfes für jedes einzelne Nähre unter den Sitzen nach Belieben zu moderieren oder ganz abzufangen und so die Temperatur entsprechend zu halten, ohne daß hierdurch der Dampfzufuß zu einer anderen Siebanhöhe irgendwie alteriert würde. (Zeitung des Vereines deutscher Eisenbahnverwaltungen, 1869, Nr. 8.)

Neues Verfahren zur Herstellung von Eisenbahnwagenachsen.

In der amerikanischen Railway-Times wird folgende Methode zur Herstellung hoher Stahlachsen beschrieben: Vor allen Dingen wird der Stahl für diesen Zweck besondere Pflanzen hergestellt und alsbann nur bezüglich ausgewählter, welcher durchsichtig, ein maßiger Blut von paffender Größe wird dann genommen und verarbeitet, in der Art mit einem toxischen Durchnagel genannt, das ein Metall hergestellt, so daß das Erzeugnis nur zusammengesetzt wird; in diesem Dampf erhebt sich seine große Legerbeiten über alle anderen Weisen, denn durch die umständliche Herstellung wird die Qualität des Stahles hinfällig erzeugt. Denn wenn der Blut eine oder mehrere Blasen hat, wegen der Stahl gemahnt ist, und welche die daraus gemachte Stücke lose in der Reihe vorliegen und von Blasen nicht mehr zu vertrieben werden, wird sie hier und da in Holz defekt, der Blut verworfen werden, außerdem ist eine Auszugsfeuer und eine Blut zu produzieren, deren Zink nicht eher zu entdecken sind, als bis sie einen furchtlichen Umstand verursachen. Die Blut, welche dieses Prüfung bestanden haben, gelangen in das nächste Stadium der Fabrikation. Ein Dorf wird in das ausgefteerte Loch eingebracht und der Blut unter einem Hammer ausgeglichene. Hierbei hat, in Folge des Dorfes,
jeder einzelne Schlag eine doppelte Wirfung, sowohl auf die Innenseite als auf die Außenseite; die Aste wird sodann innen und außen mittels eines Balzengerätes vollendet, und nun folgt ein wichtiger Zug in der Herstellung dieser Asten. Die Zapfen werden eingepreßt, so daß sie eben so fest an der Innenseite der Aste wie an der Außenseite der Aste sind. Dies wird als Hauptvorteil über alle anderen gebräuchlichen Herstellungsarten von Asten angesehen, da deren Zapfen die schwächsten, statt, wie sie sollten, die stärksten Punkte sind. Die Patentnehmer geben auch an, daß sie teilweise von außerordentlicher Stärke fabrizieren, das Gewicht des selben um 20 bis 25 Proc. gegen gewöhnlich hergestellte reduciren. (Mechanics Magazine, December 1863, S. 444; polytechnisches Centralblat, 1869 S. 481.)

Eisagefüll für die mädt geschleiften Scheiben in der Photographie.

Die photographen, besonders diejenigen, welche mit Herstellungsverfahren zu thun haben, fühlten schon lange das Bedürfnis nach einem neueren Material als mädt geschleiftes Glas. Wenn man eine Platte, welche mit dem feinsten Smirgel geschleiften ist, mit einer Nappe unterzucht, so erweicht man auf ihr eine ungeheure Menge feinen, verhältnis gezählter Flüssigkeiten, welche das Licht nach allen Richtungen hin zerstreut, Diesem Nebel abzusäubern, schlagt Dr. Forrester vor, die Platte nicht mehr zu schleifen, sondern zu polijieren zu lassen. Die so hergestellte Platte ist so sauber, daß man den reinen Druck durch dieselbe leiten kann, und zeigt unter einem starken Vergrößerungs-glasse nicht die geringste kristallinische Struktur. In der Camera besitzt sie noch Durchsichtigkeit genug, um ein vollkommenes Bild zu zeigen, welches man mit Hilfe des Augenglases bis zu äußersten Stärken einstellen kann. (Photogr. News.)

Versfahren, die Farbe des Zinnobers für die Stubenmalerei haltbar zu machen, von Prof. Dr. M. Artus in Jena.

Belastet wird der Zinnoben wegen seiner schönen Farbe häufig in der Stubenmalerei angewendet; sein Farbenton verändert sich indes sehr bald, besonders wenn er nicht rein, sondern, um eine größere Dauer zu erlangen, mit etwas Bleioxid verrieben angewendet wird. Die Farbe wird schnell schmutzig braun, indem Schwefelstief entsteht.

Verhalten von Chlor, Brom und Jod gegenüber einer Lösung von übermangansaurem Kali; von W. Lindner.

Die Neuerdings in der Technik mit gutem Erfolge angewandte Eigenschaft des übermangansauren Kalis bei gewöhnlicher Temperatur auf leicht zersetzbare Verbindungen ergiebend zu wirken, macht, verbunden mit seiner stark tönenden Kraft, das selbe zu einem ausgezeichneten Unterscheidungsmittel gegenüber Halogenen, mit dessen Hilfe sich selbst Spuren derselben mit Bestimmtheit charakterisiren lassen. Verlege man
die Lösung irgend einer Jodverbinding mit einem Tropfen einer verdünnten Lösung von übermanganlaurinem Kali, so geht die rothe Farbe desselben sofort in eine braune über, d. h. es tritt unter Ausscheidung von Jod Reduction des Kalisalzes ein. Es ist hierbei vollständig gleichgültig, ob die Lösung des Jodids allsäls oder sauer reagiert nur daß im erstem Fall die Flüssigkeit trübe, im letztern klar erscheint. Die neutrale Lösung einer Bromverbinding verändert dagegen die Farbe des Reagens nicht und natürlich ebenso wenig eine allsäls. Säuer man sie jedoch durch einige Tropfen Salpetersäure schwach an, so erfolgt dieselbe Erseuchung wie bei der Jodidlösung. Die Lösung eines Chlorids endlich wirkt weder allsäls noch angezahrt auf übermanganlaurinem Kali ein.

Englisches Flavin zum Gelbärfen der Wolle; von C. Wolfenstein.

Flavin wird schon seit mehreren Jahren als Erzä des Quercitrons in der Wolllärberei benutzt. Die Anwendung besselben ist bedeutend angenehmer als diejenige des Quercitrons. Man spart das leidige Auswaschen, und die Farben werden klarer und bunterer, da dem Flavin die braunen und schwächlichen Farbhafe, welche in der Quercitronwolle noch enthalten sind, vollständig fehlen.

Vor Kurzem wurde uns ein englisches Flavin vorgelegt, welches sich von dem amerikanischen sehr vorteilhaft unterschiede. Die amerikanischen Sorten, wie Chemical, Brandy und Sandford, enthalten nämlich circa 80 Proz. Mischung, welche das Gewicht bedeutend erhöht und den niedrigen Preis des Materiales zu einem imaginären macht. Das englisches Flavin dagegen ist ein ganz reines Produkt, dessen Reinheit am besten durch die Leichtigkeit beweisen ist. Eine Flasche Sandford-Flavin, welche 56 Pf. netto enthält, kann nicht 10 Pf. von dem englischen Flavin lassen. Das englische Flavin ist daher, trotz eines hohen Preises, wegen seiner Reinheit bedeutend billiger als die gewöhnlichen amerikanischen Sorten. (Müllerzeitung, 1869, Nr. 3.)

Das Marron, ein neues Farbmateriaal.

98 Siehe ebenda selbst das Capitel „Chrysanthin."
Weit größere Wichtigkeit, als jenes so genannte Tese neulich erstlang hat, ver-
strich in einer, ein anderes Farbmaterial zu befassen, welches von briljanten Firmen
unter dem Namen „Marron“ (Kastanienbraun) in den Handel gebracht wird. Wäh-
rend die Farbe des alten Tese eigentlich nur die eines recht schmuckigen gelb-
lichen Färbens war, sind die mit Marron erzeugten Farben verschiedene von zwei-
nen so dem Färber recht bekannt, die verschiedenen Anfechtungen des Braun
zu färben.

Das Marron soll nach der Angabe des Herrn Knosp wissen den Product
der Bädration lischer Hohen Holmen von des Anilins und Toluidins sein. Diese Drap-
ationsprodukte lischer Hohen Holmen zeichnen sich besonders durch die Empfind-
lieht ihrer neutralen Salze aus, und diese Umstand ermöglicht ihre Neubearbeitung.
Sie werden mit Neusalz niedergebracht und geben ein vollkommen reinstenlischen
künstlerischen Kupfersalzpräparat, mit dessen Lösung sich ohne weiteres färben lässt. Der Preis
lischer Hohen Holmen ist, ganz verschieden von dem andern Anilinproduct, so niedrig,
das das Marron vornehmlich in der Farbbügler, mit denen sonst billiges Braun ge-
färbe, eine bedeutende Conkurrenz machen wird. Daneben ist natürlich das Farb-
verfahren für Marron viel einfacher, als das bei Farbbügler gebrauchte.

Das Marron fährt pro Centner zehn Thaler preis.

Wir glauben nicht, dass jenes ein ähnlich billiger Preis für ein Anilinpräparat
gezahlt worden ist.

Für das Färben mit dem Marron gibt Herr Knosp folgende Anleitung.

Man löst in heißen, resp. tosenden Wasser, für, filtrirt und färbe unter Zug
von Alum. 99 jedoch mit Vermeidung weiterer saurer Zulagen, weil sonst der gelbliche
Anteil des Farbstoffes nicht auftritt, nur bei gelblichem Ren.

Kunstwolle muss vorher statt geschmackt oder in anden Weise vorbereitet werden.

Dann nimmt man auch diese den Farbstoff schnell auf.

Im Allgemeinen sorgt man immer dafür, dass die Färbe gut abgeschätzt ist.

Man färbe möglichst auf einem Bad fort, und zwar zuerst die dunklen, später
die helleren Töne.

Für flüssiger Druck empfiehlt es sich, den Farbstoff in Alkohol aufzulösen und die
erreichte Lösung mit Wasser bis zur gewünschten Intensität zu verdünnen.

Kümmerungen lassen sich leicht erreichen. Für dunklere nimmt man Benzol,
mit heller gelbe Rejuven, einen ebenfalls von der Firma Knosp in Stuttgart in
den Handel gebrachten gelben Farbstoff, über den wir nächstens berichten werden.

Wir lassen uns die Gebrauchsanleitung folgen, welche Herr Knosp selbst für
Bemühung seines Marrons gibt.

Ausschlag.

1 Pfund Marron wird mit
2 Wasser gut verrührt und so man mit wenigstens
50 Wasser aufgelebt,

hierauf zum Gebrauch entweder filtrirt oder absehn gelassen, unter Wegnahme des
etwa an der Oberfläche sich bildenden Schaumes,

Für Färben der Wolle. Es geschieht wie mit Farbstoff, jedoch unter Zug
von Alum und vorherigem Aufschäumen und Abstauen des mit Farbstofflösung aus-
gegeben von Bades; man färbe zuerst die dunklen, dann die helleren Töne.

Diese Farben sind halbbäuer als mit Farbstoff hergestellt.

Um gelberes Braun zu erlangen, nimmt man einen Zulag von Rejuven, für
dunklere Benzol.

Für Färben der Baumwolle. Die Methode braucht bloß geschmackt zu werden, nur
dann in einem Marronbade sich sehr leicht und angenehm zu färben; jede andere für
Anilinfärben dienende Beige kann jedoch auch hier angemessen werden.

Druck auf Wolle. Ein prachtvolles Braun, weit billiger als mit Druck-
ertracht, ergibt man, indem

1 Pfund Marron mit etwa 30 Teilen Wässer aufgelebt, filtrirt und hierauf die
Tiefenfarben mit Säure oder Guanmi verdickt wird. Sollten noch dunklere Töne ver-

99 Der Alum des Knosp'schen Veröffentlichung spielt hier nur die Rolle eines tiefsten
schwefelsauren Salzes, da er leicht durch Weinsäurepräparat (saures schwefelsaures
Kali) erzielt werden kann.
Die Kaminpflanze.

Anwendung des Dégras, von Franz Sünn.

Brennende Fette oder Harze zu löschen.

Ein leicht anzuwendendes Mittel, welches bisher wenig beachtet wurde und doch vor anderen manche Vorzüge hat, ist ein eigentiömisches Darhtgitter, und läßt sich die Anwendung auf den bekannten physiologischen Wundhals, daß seine Flamme durch ein ziemlich eigentiömisches Stück breitet. Man föhlt ein solches Drachtgitter, wo man auch einen alten Siebedegen verwenden kann, in einen Rahmen und hebt ihn irgendwo auf, so daß man ihn immer zur Hand hat. Zängt nun z. B. Fett, ob wie in Brauerereien oder Lederfabriken oder beim Schnittseiden u. s. w. Harz zu brennen an, so bringt man das Sieb auf das Gefäß, es erlischt bald die Flamme und die Gefahr ist vorüber. Diese Methode hat vor den übrigen Vorzüge, daß man das noch vorhandene Fett nicht durch Henneinnen von Nähle oder Erde zu verderben braucht, und den sich entstehenden Gasen ein hinreichender Raum zum Ausströmen gesagt, so auch durch den entstehenden Wassertr.-lätter Luft eine schnelle Abkühlung erfolgt, die nötiggenügs durch Heuninbolen beschleunigt werden kann. (Gewerbekauff für das Großherzogthum Hessen, 1869 S. 72.)

Schweifelsäurenstoff als Mittel gegen Kopfschmerzen.

Dr. Kennion rühmt den Schweifelsäurenstoff als ein sich sehr bewährunges Mediend gegen Kopfschmerzen und Migräne. Es wird desselbe in der Weise ansengen, daß man die Dehnung eines Glasens, in dem sich ein mit Schweifelsäurenstoff getränktes Stück Watte befindet, an die Glatzen über hinaus das Ohr oder an die übrigen Stelle hält, es wird danach zunächst ein prickelndes Gefühl, dann rasch Nachschuß des Schmerzes, besonders wo es sich um nervöses Kopfschmerz handelt, ein. (Aus Medical Times and Gazette, durch Reines Jahrbuch für Pharmacie, Bd. XXXI S. 185.)

Anwendung der Meerzwiebel als Mittel zur Vertilgung von Ratten und Mäusen.

Die Meerzwiebel ist in Frankreich als das sicherste und am schnellsten wirkende Vertilgungsmittel für Mäuse, Ratten und andere Nagetiere erkannt worden, besser als Phosphor, Atzseifen und sonstige Gift. Es wird veröndert, daß diese Thiere den Stoff mit Begierde vernehmen, was man bei diesen Kütterstoffen und Schäfte nicht erwartet sollte. Beim Verbrauch im thätigen Zusammenschr. wird die Zwiebel zerteilt, in Zeit geschr. dann die Rückstände vom Stoff abgestoßen, und dieses allein ausgefegt, da es allen Giftstoff aufgenommen hat. Zum Verbreiten und zu mehrläufiger Ausbreitung wird ein pulverformiges Präparat hergesteckt, indem man die Zwiebeln in Brei verwandelt, mit Weiß zu einem steten Teige mischt und diesen in kleine Blätter ausrollt, an der Luft trocknet und pulverisiert. Da die Zwiebel in Agier massenhaft wird wächst und für die Kosten des Auseinanders zu erlangen ist, so hoffen die Kräutgarten darauf ein Handelsgeschäft zu gründen, bei welchem sie alle Welt zu kaufen haben. (Industrie-Blätter, 6. Jahrgang, Nr. 5.)

Buchhandlung der J. G. Gotta'schen Buchhandlung in Augsburg.
Emerson's Hebel-Dynamometer.

Nach dem Scientific American, Januar 1869, S. 1 und daraus in Engineering, 1869 S. 50.

Mit einer Abbildung auf Tab. VI.

Das in Fig. 13 dargestellte Dynamometer, von J. Emerson in Lowell (America) konstruiert, wird in vielen Fällen Anwendung finden zur Bestimmung des Kraftverbrauches einer Maschine, dessen Wecblab durch fleißig gemacht werden kann, daß der Apparat in dauernder Verbindung mit der Niemenscheibe bleibt.

Es wird somit die auf die Niemenscheibe ausgeübte Kraft auf den Hebelmechanismus wirken; das Rad R dient nur als Support den Hebem, welche die lose Niemenscheibe mit der Welle W verbinden.

Je nach der Größe des Zuges auf die Hebel I, I wird der Gleitring B, B verschoben werden, mittels dessen durch die Verbindung mit dem gabelförmig endenden zweizähnigen Hebel e, c die Kette k angezogen oder nachgelassen wird. Hierdurch wird aber die Rolle D gedreht, an deren Achse der Gewichtshebel E befestigt ist, dessen Zeiger auf einen Theilstrich am Quadrant F zeigt, entsprechend der durch die zire Niemenscheibe G abgelieferten und von der Scheibe A zugeführten Kraft.

Dingler's polpt. Journal Bd. CXCII. S. 5
Die Länge der Kette und der Verbinungsgelenke ist verstellbar eingerichtet, und die Rectification des Dynamometers erfolgt einfach in der Weise, das man auf die Niemenscheibe A ein bestimmtes Gewicht wirken läßt, worauf der Zeiger von E auf die entsprechende Zahl hinzuweisen hat. Auf die gleiche Weise dürfte auch die Einteilung des Quadranten erfolgen.

3. 3.

XIII.

Centrifugalventilator von B. F. Sturtevant in Boston.

Mit Abbildungen aus Tab. VI.

Sturtevant's Ventilator ist im Durchschnitt in Fig. 1 skizziert; die bemerkenswerthe Lagerung ist im größeren Maßstabe in Fig. 2 gezeichnet.

An der Schaufelachse A stehen zu beiden Seiten schwach conische Zapfen z, welche in den entsprechend ausgebohrten Hülse b laufen. Diese Lagerhülse ruht in dem fuggelförmig ausgebauchten Futter b, welches durch die Schraube s mit dem Lagerträger T verbunden ist.

Mit der Schraube s, welche auf die Stirnfläche des Zapfens z wirkt, wird die Ventilatorachse A entsprechend centrirt. Läuft sich die Lagerhülse b aus, so kann sie nach Entfernung dieser Schraube durch eine neue ersetzt werden.

Die Lagerbüchse b ist mit einigen Längsrinnen versehen, in welche vom Delbehälter O durch einen Docht Del eintreten kann; das überflüssige tropft bei a in die kleine ringförmige Kammer und wird von dieser durch ein Röhrenchen nach dem tiefer gelegenen Behälter O, geführt, aus dem das angesammelte Del zeitweilig abgelassen wird.

Die ringförmige Aushöhlung in B ist mit Hanf gefüllt, der sich mit Del tränt, da die Lagerhülse b an dieser Stelle einen Schlit hat hierdurch wird eine Schmierung für eine kurze Zeit erzielt, wenn der Wärter vergisst den Delbehälter O zu füllen.

Die Niemenscheibe R wird statt mit Armen mit einer massiven Wand W gepaßt, um ein Verichmieren des Schaufelraumes vollständig zu verhindern.
XCV.

Mit Abbildungen auf Tab. VI.

Es ist nicht lange her, daß zum Einrammen von Pfählen Kunstrammen mit Dampfbetrieb, sogenannte Dampframmen verwendet werden, namentlich dort, wo starke Piloten 10, 12 und zuweilen selbst 15 Meter tief eingetrieben sind.

Die Rammarbeit besteht bekanntlich darin, den Rammsloß bis auf eine gewisse Hohe zu heben und dann frei fallen zu lassen, damit die lebendige Kraft der fallenden Masse im Moment des Stößes auf den einzutreibenden Pfahl sich übertrage.

Hierbei müssen gewisse Bedingungen erfüllt werden, wenn ein befriedigendes Resultat, ein möglichst schnelles und ökonomisches Eintreiben der Pfähle erzielt werden soll. Diese Bedingungen beziehen sich 1) auf die Anzahl der in der Zeitseinheit ausgeführten Schläge, 2) auf das Gewicht des Rammsloßes und 3) auf die Fallhöhe desselben.

Was den ersten Punkt betrifft, so könnte man der Ansicht sein, daß das durch eine gewisse Zahl von Schlägen hervergebrachte Resultat das selbe sein, wenn nur das Gewicht und die Fallhöhe des Rammsloßes unverändert bleiben, und soeben ob die Schläge in kürzeren oder in längeren Intervallen erfolgen.

Die Erfahrung lehrt jedoch das Gegenentw. So muß, um nur ein Beispiol anzuführen, unter gewissen Umständen 100 Schläge auf einen Pfahl ausgeübt werden, um denselben bis zu einer gewissen Tiefe einzutreiben, wenn 4 bis 5 Schläge auf die Minute kamen; dagegen war das Eindringen des Pfahles unter sonst gleichen Umständen bei 15 bis 20 Schlägen pro Minute viel bedeutender, d. h. im letzten Falle waren weniger Schläge erforderlich, um ihn auf die gleiche Tiefe zu treiben. Es gehen in dieser Hinsicht bei gewissen Bodenarten die Unterschiede sehr weit und die Resultate weichen zuweilen vom Einfachen zum Doppelten ab.

Man begreift auch in der That, daß, wenn ein Pfahl, der bereits nach einer Reihe von Schlägen bis auf eine gewisse Tiefe eingegraben ist, eine Zeit lang vielleicht nur einige Minuten in Ruhe verbleibt, der
durch den eindringenden Pfahl zusammengedrückte Boden sich wiederum ausdehnt, gegen den Pfahl drückt und durch die so vermehrte Neigung das weitere Eindringen erschwert.

Erstreckt aber die Schläge schnell nach einander, so bleibt dem durch jeden Schlag weiter zusammengepreßten Boden nicht die Zeit zum Ausdehnen und Anpressen an den Pfahl; es steht der Pfahl im Boden so zu sagen ringsum frei, so daß bei dem weiteren Einschlagen faßt nur der Widerstand zu überwinden ist, welcher dem Eindringen der Pfahlspitze entgegensteht. Dieser Umstand macht sich namentlich bei Arbeiten im weichen Boden, im Sand oder unter Wasser sehr bemerkbar.

Wenn somit bis jetzt nur die Fallhöhe, das Gewicht und die Zahl der Schläge eines Rammcyclus angegeben wurden, nach welchen der Pfahl festsaß, so dürfte fernerdin auch die Zeit zu notiren sein, innerhalb welcher die Schläge bis zum Ausüben deselben erfolgten.

Was endlich die Fallhöhe anbelangt, so variiert diese am meisten. Die beste Rammmaschine ist jene, bei welcher man schwächere wie stärkere Schläge schnell nach einander geben kann. Gewöhnlich beginnt man mit sanften Schlägen und steigt allmählich der Wucht, jedoch nur bis zu dem Maße, daß keine Beschädigung der Pfähle eintritt. Es dürfte deshalb eine Fallhöhe von 5 höchstens 6 Meter als äußerste Grenze angunommen sein, um so mehr, wenn der Erfolg schnell auf einander folgender Schläge berücksichtigt bleibt, bei welchen die Ramm- arbeit in kürzerer Zeit beendet wird.

Wo der Umfang der Arbeiten und die Aufstellungs kosten es gestatten, wird eine Ramme durch Dampfstraßen vortheilhafter betrieben als durch Menschenhand.

Die von Chrétien aufgestellte Dampframme, in Fig. 5 perspektivisch dargestellt, entspricht den im Obigen entwickelten Grundsätzen. Die Dampframme ist nach demselben System construirt wie dessen Dampfhähne, von welchen in diesem Journal Bd. CLXXII S. 189 eingehende Beschreibungen nach beigegebenen Abbildungen geliefert wurden.

Die Construction dieser Dampframme ist so einfach, daß eine Beschädigung der Maschine faßt unmöglich und ihre Unterhaltung sehr ökonomisch
ist. Man kann mit dervelben bis 60 ganz sanfte Schläge pro Minute geben; der Arbeiter, welcher sie dirigirt, bewegt den Steuerhebel entsprechend der Zahl der auszuführenden Schläge und läßt nach Maasgabe des Eindrückens des Pfahles ein wenig Kette von der Trommel der Winde ablaufen, damit der Rammhut stets bis zur Tiefe des Pfahltopfes falle. Eben so leicht versteht er die Anstrickvorschrift, von deren Höhe die Fallhöhe abhängt, alles dieses ohne Zeiterlust.

Die Rammarbeit erfolgt nämlich mit dieser Maschine auf zweiter Art, entweder ohne Lösung des Rammstoves, so daß dieser mit dem Haken und der Zugfette auf und ab geht, wenn sehr schnelle aber sanfte Schläge, wie z. B. im Beginne, gegeben werden, oder der Rammstove wird hoch gehoben, löst sich in der Höhe selbstständig los und fällt frei herab. Wenn der Haken an der sofort nach abwärts gehenden Kette von Knot wieder faßt, erfolgt ein neuer Hub desselben.

Die nähere Einrichtung dieser interessanten und von Sachverständigen sehr günstig beurtheilten Dampfamme ist nach den in den Progrè de l'industrie enthaltenen Zeichnungen aus Fig. 6—10 zu entnehmen.

Fig. 6 ist ein vertikaler Schnitt, Fig. 7 die vordere Ansicht von Chrétiens Dampfamme in 1/60 der wirklichen Größe.

Fig. 8 bis 10 sind die Details der Anstrickvorschrift in 1/25 wirklicher Größe.

Auch dem Schiffe A liegen die Traversen a, b, c und d, verbunden mit Längsbalken, als Grundgerüst der Ramme. Auf dem Balken b ruht das Lager p, in welchem die Drehachse des Dampfzylinders c gelagert ist, dessen Reigung von der Höhe des Rammgerüstes abhängt.

Der Dampf gelangt von dem transportablen Dampfkessel, welcher in Fig. 5 zu sehen ist, durch das Leitungsrohr t in den Dampfkessel T und entweicht nach verrichteter Arbeit durch das Ausblasrohr t'. Die Dampfertheilung erfolgt mit dem Hebel L von freier Hand oder automatisch mittels des Steuerungsgestänges t und t', das durch den zweibärmigen Hebel L, L verbunden ist. An der Stange S sitzt nämlich der verstellbare Baken e; an diesen und an den am unteren Ende befindlichen Knopf stößt der mit der Kolbenstange S (Fig. 6) auf- und abgehende Anstrichhebel g, je nachdem der Dampf unter oder ober dem Kolben drückend wirkt und der ausgenutzte Dampf abläßt.

sachen Rollenzug P', P, P'' um das Zweifache des Kolbenhubes gehoben werden.

Zwischen den beiden Säulen D hängt an dem Gelenktügel F der Ausrührbügel E, welcher mittels der um die Rollen i und j laufenden Schnur h, h vom Arbeiter in eine beliebige Höhe gehoben werden kann. Der Ausrührhebel q des Hebels G schiebt zunächst beim Heben des Kolbens M den Bügel E zur Seite, der weiterhin in die verticale Lage zurückkehrt und nach dem durch das Umsteuern erfolgten Rückgang des Kolbens resp. des Kammkolbens M den Hebel q zurückhält, somit den Kolben G ausrückt, so daß M frei herausfällt. Diese Auslösung ist deutlich aus Fig. 8 zu ersehen.

Die Straßenbahn mit nur einer Schiene, System Larmanjat.

Von Ingenieur Friedrich Bömche's.

Mit Abbildungen.

Billige Transportmittel ist das Leitungswork des Tages gleichzeitig ob durch secundäre, schnellspurige, durch Local-, Vicinal- oder Straßenbahnen geschaffen, und daher jedes Element gern gesehen, welches berufen sein dürfte, zur Bemühung der Frage über billige Eisenbahnen seinen Scheitel beizutragen.

Diese finden vorzüglich ihre Verbreitung in Ländern mit dünnbesiedelter und wenig wohlhabender Bevölkerung. So sehen wir ganze Nester von schnellspurigen, als den vornehmlichen Repräsentanten der billigen Bahnen in Norwegen, in Schweden, in Schottland, in Queensland, in Britisch-Indien und in Chili sich entwickeln. 100

Aber auch in wohlhabenden und nicht bevölkerten Staaten schenkt man ihnen die verdiente Würdigung, als billiges Transportsmittel einerseits, und andererseits als wichtiges Belebungsmittel der Hauptlinien.

So sind wir in Frankreich und Preußen, ungeschätzt der größeren Anzahl und Entwicklung der Hauptbahnen, das System der secundären, unter dem Namen der Vicinalbahnen, zum Theil mit namhaften Subventionen von Seite der Staatsgewalt in's Leben gerufen und in zeitiger Entwicklung begriffen.

Die Commission, von zahlreichen und namhaften Ingenieuren aus allen Theilen Deutschlands (Oesterreich inbegriffen) zusammengesetzt, stellte sich die Aufgabe, „technische Grundzüge über die secundären Bahnen“ auszustellen, um diesen eine ähnliche Stellung wie den bekannten, für Hauptbahnen längst bestehenden, zu verschaffen. 101

Es wird Niemand, welcher von der Bedeutung der secundären Bahnen überzeugt ist, die hohe Wichtigkeit dieser Arbeit für die gewerbliche Verkehrswirtschaft Deutschlands sich nicht folgen lassen kann. Die secundären Bahnen, von denen die Secundarbahnen für den Verkehr der nicht an Hauptbahnen anliegenden Orte bestimmt sind, sind in ihren Einzelheiten von großer praktischer Bedeutung, insbesondere für die Gewerbe- und Handelsbetriebe in kleinen Orten, da sie die Verkehrsverbindung mit den Hauptbahnen herstellen und dadurch die Wirtschaftsleben der kleineren Orte förderlich beeinflussen können.

Nach den veröffentlichten Berichten außerbörsicher fachmännischer Fachzeitschriften entstehen für jeden der secundären Bahnen komplette und aktuelle Daten, die in einem derartigen Handbuch ausführlich dargestellt sein sollten. Die erarbeiteten Ergebnisse werden in der Literatur und Fachzeitschriften publiziert und können von allen Interessierten genutzt werden.

lichen, die kommerziellen und die volkswirtschaftlichen Interessen der gesamten deutschen Lande unterschätzen.

Denken wir uns einen Augenblick die harmonische Entfaltung dieses im Interesse der Bahnen, der industriellen und landwirtschaftlichen Etablissements, der Forste, der Gewerke, der Dörfern, der Städte genügenden billigten Transportsmittels, so können wir uns leicht ein Bild machen von dem riesigen Neben sekundärer Bahnen, welches in wenigen Jahren in Deutschlands Gauen zur Ausführung kommen wird; wenn wir bedenken, daß die Gesamtlänge der Eisenbahnen in dem Bereich der deutschen Eisenbahnverwaltungen nicht weniger denn 4000 Meilen beträgt, von welchen über 1000 auf Österreich-Ungarn entfallen. 102

Dieser Stand der Dinge in Österreich ist eine vollkommen normale und werden an die Stelle der heutigen vierzig bis Hunderte, ja vielleicht Tausende von Meilen secundärer Bahn treten, sollen sie anders ihre natürliche Aufgabe als billiges und ausreichendes Transportmittel erfüllen.

Daher muß uns jedes neue System erübrigen sein als willkommenes Element, die heute noch bestehende Lücke in dem wirtschaftlichen und Verkehrsleben des Kaiserstaates auszufüllen.

In die Reihe dieser dürfte auch das von mir zu besprechende System Larmajat gehören.

Die Besucher der Welt-Ausstellung von 1867 werden sich einer

Es liegen zwei schwäbische Arbeiten auf dem fraglichen Gebiet bereits vor: die Sägen, welche die Besammlung deutscher Eisenbahn-Textil in Dresden 1865 aufgestellt hat, und eine umfangreiche Arbeit, welche der österreichische Ingenieur- und Architekten-Verein veranstaltet und in seiner Zeitschrift zu Anfang des Jahres 1867 veröffentlicht hat. Dazu fügt die Kommission die erste Arbeit für zu allgemein und die letztere noch einiger Umgestaltung bedürftig, um sie als Norm für ganz Deutschland anzusehen.

Was aber den Besuchern weniger bekannt sein dürfte, ist eine Promenade, welche die Maschine am 16. Mai 1867 mit einem angehängten Omnibus von der Ausstellung in's Bois de Bologne und zurück machte. Gegen 30 Personen, unter welchen sich Prinz Jerome Bonaparte befand, nahmen an dieser Fahrt Theil und konnten sich überzeugen, dass die Maschine mit der angehängten Last Steigungen von 1/16 mit 1 Meile Geschwindigkeit erkmern, Kurven von 5 Meter (16') beschrieb und mit großer Leichtigkeit den zahlreichen Wagen auswich, welche (es war die Zeit der größten Frequenz von 3 bis 4 Uhr) die Fahrt um die zwei Teiche des Bois machte.

Kein Zweifel, dass Herr Lærmaniat noch östere Probestreifen, und zwar mit mehreren angehängten Wagen auf weniger guten Straßen, als die in der unmittelbaren Nähe von Paris, unternommen haben wird. Bei dieser Gelegenheit dürfte er gefunden haben, dass die Maschine, die Lenkung des vorderen Rades durch die Unebenheiten der Schotterstraßen erleichtert und dass bei den Wagen die Seitenrichtungen auf dem stark gewölbten Profile der französischen Straßen, besonders wenn sie naß oder durch Schnee oder Eis schlüpfrig geworden sind, mit zunehmender Geschwindigkeit wachsen und geradezu betriebgefährlich werden können.

Eine Führung sowohl für die Maschine, als auch für die Wagen erfreute daher notwendig und vor der Veranschlagung zur Betting einer Schiene in den Straßenkörper 103; — eine Idee, welche sehr glücklich geeignet worden muss, weil nach zwei Richtungen hin fruchtbart.

Um die Funktion dieser Schiene zu kennzeichnen, bemerkt ich vorläufig, dass von den drei Rädern der Maschine das vordere, das Leitrad, auf der Schiene und die zwei Treibräder auf der gewöhnlichen Straße laufen, und dass die Wagen vier Räder besitzen, zwei in der Längsachse, welche auf der Schiene, und zwei nach der Querachse des Raftens, welche auf der Straße ruhen. Durch diese Einrichtung dienen die Schiene der Locomotive als Leit- und den Wagen als 104

103 Der Übergang von zwei Schienen zu einer geschah nur allmählich. Von der normalen Spurweite der großen Bahnen mit 4'-6.5" ging man auf die schmale von 3'-2.5", 2" über und endlich legt Keamaniat nur eine Schiene.
Traugleich. Was wird bei der einen, was bei der anderen hierdurch erreicht?

Es ist bekannt, daß die Entwicklung einer ausgiebigen Zugkraft die Anwendung schwerer Locomotiven notwendig macht, da es sich nicht nur um die Erzeugung des Dampfes, sondern auch um die Bedingung handelt, daß die Treibräder mit einem Druck auf die Schienen gepreßt werden, welcher so stark ist, daß dieselben bei ihren Umbiehungen unter der Wirkung des Dampfes nicht auf den Schienen gleiten.

Legeterer tritt namentlich bei feuchter Witterung trock der schwelsten Maschinen, welche z. B. aus dem Semmering und dem Brenner verkehren, ein und hilft man diesem Nebeneinander bekanntlich durch das Sandstreuen auf die Schienen ab, mit einem Wort, man vergrößert die Adhäsion, indem die Reibung zwischen Rad und Straße eine größere ist, als zwischen Rad und Schiene.

Dadurch also, daß die Treibräder der Maschine von Larmannjat auf der Straße laufen, wird die Abhäsion und dadurch die Zugkraft vermehrt; ohne das Gewicht der Maschine und somit die toden Last zu vergrößern. Während die Abhäsion zwischen Treibrad und Schiene 1/10 der Belastung beträgt, so ist durch die angestellten Versuche constatirt, daß diese zwischen Rad und Straße bis auf 1/3 steigt. Es resultirt aus dem Umstände, daß nur das Leitrad auf der Schiene und die Treibräder auf der Straße laufen, der wichtige Vorteil, bei dem gleichen Gewichte der Maschine eine größere Zugkraft zu erzielen.

So bei der Maschine. Wie steht es mit den Wagen?

Was bei der Maschine nützlich, nämlich die Vermeidung der Abhäsion durch Vergrößerung der Reibung, wäre bei den Wagen schädlich, weil dadurch das Gewicht der zu transportirten Last vermehrt und daher eine größere Zugkraft erfordert würde. Um letztere auf das Minimum zu reduciren, sucht Larmannjat das ganze Gewicht des Wagens durch die zwei in der Achse befindlichen Räder auf die Schiene zu übertragen, während die zwei seitlichen, auf der Straße laufenden Räder nur zur Erhaltung des Gleichgewichtes dienen.

Wie richtig auch diese Anwendung ist, wird durch die Tatsache klar, daß die Reibung der Straßenwagen 1/8, während die Reibung der Eisenbahnwaggons nur 1/2 noch der fortzuschaffenden Bruttolaft beträgt. Nach den angestellten Versuchen macht die Reibung bei den Wagen Larmannjat's nur 1/80 der Bruttolaft aus.

Wir sehen daher, daß die glückliche Combination der Schiene als Leitstechen für die Maschine und als Traugleich für die Wagen die zwei wichtigen Vorteile bietet: einmal die Zugkraft der Locomotive ohne...
Vermehrung des Eigengewichtes zu erhöhen, und dann das Gewicht der zu transportirenden Wagen zu vermindern.

Ich gehe nun zur genaueren Beschreibung des Systems über, wie dieses sowohl bei dem Überbau, als auch bei den Fahrzeugen auf der ausführlichen Probefahrt zur Anwendung gekommen ist.

Diese verbindet die beiden Ortschaften Raincy (Station der Müllerschaffener Linie) und Montfermeil, und hat eine Länge von circa 5 Kilometer. Die verwendete Schiene, welche in den beisetzenden Straßenkörper gebettet ist, steht 1,60 Meter von dem Fußwege ab, hat ein Gewicht von circa 13 Kilogramm, per laufenden Meter (circa 8 Pfund, per Fuß) und ist mittels Haltenägeln an Querschwellen von 0,40 Meter Länge, 0,16 Meter Breite und 0,07 Meter Höhe, welche in der Entfernung von 1 Meter von einander liegen, befestigt. Das Profil dieser Bahn ist in Fig. 1 und 2 ersichtlich.

Fig. 1.

Fig. 2.

Um die Fahrzeugen von den Erschütterungen auf der unebenen Straße weniger leiden zu lassen, wurde auf eine Länge von 200 Meter eine Holzbahn gelegt, welche auf den die Schienen tragenden Querschwellen Langschwellen zeigt, die mit Kies bedeckt, eine gleichmäßige

Die zwei Zylinder sind innenliegend und beträgt deren Kolben-
durchmesser wie Hub 0,14 Meter. Die Übertragung der Bewegung geschieht auf eine gemeinschaftliche Kurbelachse, auf welcher beiderseits Betriebe ausgeführt sind, die mit einer Umläufe von 1 : 6 in Zahn-
räder, welche auf der Drehbräderachse gefeilt sind, greifen und so die letzteren in Bewegung setzen. Die Waggons haben, wie erwähnt, in der Längenachse des Rahmens zwei Tragräder mit doppelter Spurfront und einem Durchmesser von 0,60 Met.; die Räder laufen in drehbaren Gestellen und ruht der Kasten mittels Spiralfedern auf denselben. In der Mitte des Waggons befindet sich die Querachse, auf welche die in der Spurweite der Triebräder laufenden Gleichgewichtsräder ausgefeilt sind. Diese Räder hängen mit ihren Lagern in Federn, deren Widerstandsflächen zu deren der Trag-

Wir beziehen uns mit dieser allgemeinen Beschreibung der Maschine und fügen nur noch hinzu, daß deren Konstruktion einige Abweichungen von der anderer Straßenlocomotiven aufweist. Diese bilden einen Bestandteil des von Larmajat genommenen Patentes (für Frankreich und das Ausland), welches sich also nicht nur auf den einseitigen Oberbau, sondern auch auf die Konstruktion seiner Maschine und Wagen erstreckt.

Die Kosten der Herstellung einer Straßenbahn nach dem System Larmajat betragen in Frankreich:

- per Kilometer Bahn auf gewöhnlicher Straße 10,000 Fr.
- eine Locomotive 10–20,000 Fr.
- ein Personenzug 2,500–3,500 Fr.

Reduzieren wir diese Preise nach dem in Österreich üblichen Einheitspreis für Material und Arbeitslohn, so dürften folgende Summen annähernd richtig beanspruchen:

Eine Weile Oberbau mit Langschwellen, welches System erfreulichemweise die besten Resultate gibt, würde 50,000 Fr., eine Locomotive (mit einer Leistungsfähigkeit von 1500 P.-Stk. auf horizontaler Strecke) 8000 Fr., ein Personenzug 1200 Fr. und ein Güterwagen 800 Fr. kosten.
und voraussichtlich bessere Resultate in Bezug auf Leistung ergeben werden. Es dürfte nicht schwer sein, nicht nur die Leistungsfähigkeit der Maschine aus 1000—1500 Zoll-Str. auf horizontaler Strecke zu erhöhen, sondern auch die Stellung des Beirates zum Einführen in die Curven von dem Stande des hinter der Feuerbüchse befindlichen Maschinenfahrers aus zu besorgen und somit einen Mann per Maschine zu ersparen.

Besprechen wir nun die Vortheile und Nachtheile des Systems. Unter den ersten erscheinen vor allem die rasche Ausführung und die geringen Herstellungskosten, beide durch den Umstand hervorgerufen, daß die Schiene auf der bestehenden Straße gelegt werden kann, den einzigen, aber selten einen Fall ausgenommen, wo eine größere als die Maximalseigung von 1 : 13 vorkommen sollte, in welchem Falle eine Umlagerung der Straße stattzufinden hätte. Ferner erscheinen die geringen Kosten für die zu transportirenden Lasten, welche erfahrungsgemäß nur 1/2 bis 1/8 der Pferdekraft auf Straßen Eisenbahn betragen.

Daß die Nachtheile von den Vortheilen ausgewogen werden, beweist übrigens der Umstand, daß sich das System Larmanjet im Lande der Erfindung einer ziemlich günstigen Aufnahme erfreut. Frankreich

106 Die Bröskalbahn, welche in die Station Treis Dorf der Deutz-Stegener Bahn (Bremen) eintönigen und Bergwirtschaftlichen Produkten vorgeführt, hat eine enge Spur von 2,5 Fuß, fällt einer Chauffeur in der Gesammtlänge von circa 3 Meilen und wurde anfänglich von Pferdekraft in Betrieb genommen. Später in eine Locomotivbahn verwandelt, machte man die angenehme Erfahrung, daß sich die Pferde der Straßenfahrwerte an Maschinen die einen Kran machen und einen Rauch ausstoßen, bald gewöhnten.

Concessions zum Bau und Betrieb von Straßenbahnen nach dem Systeme von Larmanjat sind schon in sechs Departements für acht verschiedene Linien genommen worden. Gewöhnlicherweise sind darunter mehrere, welche Orte mit einander verbinden, die an einer bereits bestehenden Eisenbahn liegen. Es ist also unter Umständen noch vorteilhaft, Orte, welche schon durch einen Schienenstrang verbunden sind, auf anderem Wege, welcher die Einbeziehung von industriellen und agrarischen Establisements, Ortschaften etc. ermöglicht, durch die Schiene Larmanjat’s mit einander in Beziehung zu bringen.

In Österreich ist das System Larmanjat’s mit einander in Beziehung zu bringen.
XCVI.

Die Frazer'sche Methode des Geschützrohr-Aufbausystems.

Die nach dieser Fraser'schen Manier des Ausbausystems con-
struirten Geschützrohre erreichen dann, die Schwanzschraube der Vorbe-
ladungs- und die Verschlussvorrichtung des Hinterladungs-Geschützes ab-
gerechnet, durch Einschrauchfenlassen der äusseren Lagen
zusammengefiigt aus dem durch Bohrung eines, vorher in Del
angelassenen massiven Stahlblockes dargestellten Kernrohre, welches
von genügender Stärke ist, um der zusammensiehenden Kraft der daraus
folgenden Cylinderschieflage hinreichend widerstehen zu können, einem
einzigen darauf gezogenen und hinsichtlich seiner Dicke der
Kalibergrösse angepassten Cylindermantel, welcher durch
spiralisformiges Aufwiceln und Schweizen einer einzigen Eisenkante von
dazu genügender Länge entstand, und endlich dem Bodenstück mit
voraus geschweißtem Zapfenstück, von denen erstere aus so vielen
überviander liegenden, sowie abwechselnd schraubenrechts und schrauben-
links gewundenen Coiltrühen zusammengeschweißt wird, als dieses der
Kalibergrösse des Geschützrohres nach notwendig erscheint, letzteres aber
durch Paarbildung allmässig in Form eines massiven Blocks ausge-
schmolzen werden muß, der zum Aufziehen auf den Bodenstück-Coil dann
zu durchlochen ist.

Der Stahl zum Kernrohre eines jeden auf diese Weise darzustellenden
Kanonengeschützes wird vor Verwendung des bestehenden Blocks an
herausgeschnittenen Probecylindern auf seine absolute, rückwirkende und
Torionsfestigkeit geprüft; zu den Coiltrühen bedient man sich eines
leicht und sicher schweißenden Eisens, und das Zapfenstück endlich kann
aus Abfälleisen dargestellt werden.

Bei der Zusammenlegung des Geschützrohres zieht man zunächst den
Coil-Cylindermantel warm auf das Stahl-Kernrohre deselben auf, stellt
dann beide vereinigt senkrecht auf den Köpf, und lädt hiernach das durch
Heizung von innen zur Notglühfähigkeit gebrachte Bodenstück mit genauer
Beobachtung der feststehenden Marken an seine Stelle gleiten, worauf die
Abkühlung desselben vermittels einer kriisförmigen Kupferrohre, deren
inne Wandfläche siebartig durchlöchert ist und welche allmässig empor-
gehoben wird, durch Wasserbespritzung von außen nach innen, respective
von unten nach oben hin erfolgt.

Stade, im April 1869.

Darapstky.
Die fünf Modelle der Boxer-Patronen.

Wie so ziemlich jedes neu der Praxis übergebene Einrichtung hat dann im Laufe der Zeit auch diese Patronen einige Veränderungen im Detail erlitten, worüber sich im Engineer vom 13. November 1868 nebst einem Hinblick auf die bisherigen Zündungsmethoden der Hinterladungsgewehre, und mit der beigefügten Warnung, in solchen kleinen Veränderungen dieser Patronen eine Schwäche des ganzen Constructions- systemes derfelben finden zu wollen — das Material zu dem hier folgenden Notizen von der

Das erste oder Modell I dieser Patronen erhielt zur Aufnahme der aus 0,003 Zoll dickem Messingblech und binnen weissen Papier 2½ fach übereinander gerollten, sowie unten umgebogen mit eingeseptem Papierprops verschienen Seitenwandhülse eine kurze, mit zentraler Deffnung und mit Bodenrand versehene Bodenhülse, welche aus einem einzigen Stück Messing ausgeprägt war. Das mit Zinnprops versehene

Beschrieben nach beigegener Abbildung S. 274 im vorhergehenden Heft.

108
Expansionsgeschoß war 1,12 Zoll lang, 525 Gran schwer und hatte zur Aufnahme seiner Fettung 4 Tunnelrungen. Der mit dem Zündhütchen Fig. 1 in die central durchbohrte Kapselfüllung des Patronenbodens eingefügte Amboß war nach der durch Fig. 1 dargestellten Durchschnittsform construirt.

Modell II wurde, an Stelle der aus einem einzigen Stück Messing dargestellten Bodenhülse mit vorstehendem Bodenrand (welcher leichter dabei meistens sich zu dünn ausprägte und dadurch beim Schuße häufig zum Ausblieben der Patrone nach hinten hin Veranlassung gab), mit einer aus Messingsblech gerollten Seitenwand der Bodenhülse und einer an deren unterem Umbug sich anliegenden central durchbohrten Bodenscheibe von Messing versehen; diese Bodenscheibe wurde dann durch den unteren Rand, respective den nietartig umgebogenen Kopf der im Boden der Patrone (in den Papierzapfen ihrer Seitenwandhülse) eingepreßten Kapselfüllung für das Zündhütchen des Enfield-Gewehres mit diesen Patronentheilen fest verbunden. Der Zündhütchen-Amboß aber erteilte die Fig. 2 durch Fig. 2 dargestellte Durchschnittsfigur, damit er beim Einlegen in das Zündhütchen an seinen Stellen c c von dem oberen Rande des letzteren festgehalten und so der Zündhütchenzahn gegen unbeabsichtigte Verstürzungen mit der Amboßspitze (Fig. 1 und 2) sicher gestellt werden konnte, auch ohne denselben zu diesem Zwecke eine Wachsfüll taufügen zu müssen.

Modell III unterschied sich von vorigen nur durch das Geschoß, welchem bei 3 Tunnelrungen nur 1,04 Zoll Länge und 450 Gran Gewicht gegeben wurden.

Modell IV erhielt ein Geschoß mit drei sägenförmig anhaft drei muschelförmig gestalteten Tunnelrungen und aus Sparingeisenträgerten an Stelle der Bodenscheibe von Messing eine solche von Eisen.

Modell V endlich wurde zur weiteren Ersparung von Fabrikationskosten an Stelle der aus 0,03 Zoll dickem Messingsblech und weissem Papier 2½ fach übereinander gerollten Seitenwandhülle mit einer solchen von nur 1¼ fach mit braunem Papier zusammengerolltem Messingsblech und anstatt der bei dem Modellen II bis IV ebenfalls aus ausgerolltem Messingsblech bestehenden Bodenhülse-Seitenwand mit zwei aus dünnem Messingsblech gestoßenen und dann gepreßten, sowie hernach ineinander geschnittenen Bodenscheiben von verschiedener Höhe versehen.

Die Ausrüstung der Boger-Patronen neuesten Modelles besteht demnach darin, daß eine sierene Bodenscheibe, sowie zwei aus dünnem Messingsblech bestehende Bodenscheiben und ein aus zusammengerolltem Papier gepreßter Piropf, an den sich die aus gerolltem Messings-

Stade, im April 1869.

Darapsky.

XCVIII.

Rick's hölzerne Rollen (Klöben) mit Metallbekleidung für Flaschenzüge, Takelwerk etc.

Die namentlich beim Takelwerk eines Schiffes vielfach zur Verwendung kommenden Flaschenzüge (Blöcke) erlangen wegen der Höchstgütigkeit des Materials, aus welchem die Rollen oder Scheiben der Sicherheit und Dauerhaftigkeit wegen erzeugt werden müssen, einen solchen Preis, daß man schon lange auf einen Ertrag des Polcholzes, das hierbei zur Verwendung kommt, sein Augenmerk gerichtet hat.

Ohne die in's Detail eingehenden Betrachtungen des Berichtes von Freninville über Rick's verbesserte Rollen hier mitzuteilen, sei erwähnt, daß man es bereits ver sucht statt der Scheiben aus Polcholz solche aus Bronze zu benutzen; obwohl hinreichend fest, war dieses Ertragsmittel zu schwer und zu teuer. Gussröhrige Rollen haben den Nachteil der leichten Drydurchlabität der Oberfläche, durch welchen Nebelsand die Reibung, resp. die Abnutzung der Taue, bedeutend erhöht wurde. Höhle, deshalb ziemlich leichte Rollen aus einer Legierung von Zink und Zinn bieten zu geringe Festigkeit; auch bei diesen wird die Reibung des Seiles
in der Spur der Rolle durch eine sich bildende Drucksicht vermehrt. Aus Porzellan verfestigte Rollen brechen leicht bei Stoßen und reiben schnell die Achsen aus.

Das Bohrschloß, welches über Hirn zu den Rollen verwendet wird, hat zwar auch einige Nachteile; die Rollentypur kann nur auf eine geringe Tiefe ausgedreht werden, damit die Seitenwände derfelben hinfällig stark bleiben, welche sich ohnehin allmählich aufschleifen; ferner schwärchen Ringstutzen die Pechrollen zuweilen bis zur völligen Unbrauchbarkeit.

Rick und Comp. in Paris (26, rue Pasquier) nehmen nun zur Erzeugung dieser Rollen wohrgetreutes Buchenhölz — als Längshölz —, dreven die Scheibe und eine tiefe Mitte ein, ohne Rücksicht auf die zu schwachen Seitenwände, indem zur Verstärkung derselben die Spur mit einem kupfernen Ring befestigt wird. Dieser kupferne Ring ist breit genug, um sich genau in die Spur einzulegen und um über die Wände derselben nach den Seitenflächen der Rolle gebogen zu werden. Die Art, wie dies Rick beweist, ist nicht angegeben; allein die mitgeteilten Versuchsergebnisse zeugen für die praktische Verwendbarkeit der so hergestellten Rollen oder Scheiben.

Bei einem weiteren Versuch kam eine Scheibe von 11 Centimeter Durchmesser zur Unterfahrung, welche zur Führung eines 16 Millimeter starken Taus bestimmt war. Ein aus 23 zwei Millimeter starken Drähten gedrehtes Drahtseil wurde um die Scheibe gelegt und mit Hilfe eines Schraubenapparates ein kräftiger Zug ausgeübt, dessen Betrag gering mit
3000 Kilogramm geschägt wurde, da eine direkte Messung nicht möglich war. Hierbei entsprach der Zug einer direkten Belastung von 22 Kilogramm pro Quadratzoll des Tanes, für welches die Scheibe eigentlich bestimmt war, also dem Siebenfachen dessen, was als Normale für die Anspruchnahme der Postkolbenheben auf der Kriegsmarine in Anschlag gebracht wird.

Der Preis der Niet'schen Rollen stellt sich bis jetzt gleich dem üblichen für Rollen aus Fichtenholz, wird jedoch bei einem Massenabfall eine bedeutende Reduction erfahren.

F. B.

XCIX.

Die patentirte Flachsbrechmühle von C. Kesseler u. Sohn in Greiffswald.

Aus dem Wochenblatt zu den preußischen Annalen der Landwirthschaft, 1869, Nr. 16. Mit Abbildungen auf Tab. VI.

Soll die Mühle ihre Arbeit beginnen, so wird sie vermittels der Transmission in Bewegung gelegt, wobei die conischen Walzen D, D 1) um die verticale Achse L und 2) um ihre eigene Achse rotiren, leb-
teres, weil die Triebe M in den feststehenden Zahnkranz I greifen und vermöge der ersten Rotation zu der zweiten gezwungen werden.

Wird nun in einen Schlitz H mit der Hand eine Quantität rohen Flachs in die Weise eingeführt, daß derselbe an einem Ende mit der Hand festgehalten wird und die übrige Partie in's Innere der Mühle gelangt, so passieren nacheinander die Walzen D den Flachs, legen ihn, nachdem der Kamm N den Büschel gleichmäßig geteilt hat, unter den oberen Deckel (der mit dem oberen Steine einer Mühle mit rotirendem Bodenstein zu vergleichen ist) und brechen ihn vermittels der Cannelirungen, wobei er indes im Gegenfahrt zum Prinzip alle der gleichem Zwecke bisher angewendeten Walzen in der Hand des Arbeiters verbleibt, weil die conische Walze D sich gegen den Deckel nur abrollt.

Durch die Umbredung des Kreuzes E mit den Walzen D, wobei die Peripheriegeschwindigkeit circa 20 Fuß per Secunde beträgt, wird ein hinlänglicher Luifstrom erzeugt, um alle abfallenden Scheben nach dem Umfange zu treiben, von wo sie durch besondere Kanäle abgeführt werden können, ohne weder die Gesundheit der Arbeiter zu gefährden, noch zu Feuersbrünsten Veranlassung zu geben.

Die Kämme N vor den Walzen D dienen zur Erzielung einer regelmäßigen Lage des Flachses, die Büschen O hinter den Walzen zum Abtreiben der losgewordenen Scheben.

Am 21. November v. J. wurde die Maschine einer Prüfung seitens der Maschinen-Prüfungs-Station des baltischen Vereines unterzogen; das ausführliche Prüfungsergebnis enthält Nr. 3 von 1869 der „landwirtschaftlichen Wochenzeitung“ des genannten Vereines. Wir entnehmen derselben Folgendes:
2) Der durch die Maschine gebrochene Flachs liefert mehr gehekelten, als der mit der Hand gebrochene; bei der Probe wurden 8,3 Proc. davon mehr gewonnen und die Hechelheede war von besserer und weicherer Beschaffenheit.
3) Die Leistungsfähigkeit der Maschine stellt sich in Betreff des Kostenpunktes vortheilhaft gegen die Handarbeit heraus. Denn wird zu einer gleichen Leistung wenigstens das Dreifache mehr an Handarbeit erfordert und sind zu diesem Zwecke 10 Arbeiter zu einem Tagelohne von 10 Egr. pro Tag mehr erforderlich, so beträgt die 3 Thlr. 10 Egr. eine Summe, die den Kostenaufwand von 2 Pferden und 1 Jungen zum Treiben mit zusammen 2 Thlr. um 1 Thlr. 10 Egr. übersteigt. Dieser Betrag von 1 Thlr. 10 Egr. ist nicht erforderlich, um die Maschine, die Unterhaltung und Amortisation der Maschine zu bestreiten.
4) Die Maschine empfiehlt sich schon wegen ihrer guten Leistungsfähigkeit und wegen der Güte der geleisteten Arbeit für alle größeren Flachs-Faktoreien, und es ist ungemeinhaft, dass bei der Benutzung von Dampfkraft ihre Leistung eine noch höhere als die hier geschilderte sein wird.

Die geprüfte Maschine hatte 3 Walzen und 5 Schlüße, später sollen zur Abführung der Arbeit 4 Walzen und 7 Schlüsse angewendet werden.

C.

Über die Sprottauer Waschmaschine für Leinendruckereien; von Dr. Anton Spirk in Prag.

Mit Abbildungen auf Tab. VI.

Unter den Waschmaschinen welche in den Leinendruckereien verwendet werden, nimmt die hier zu besprechende nicht nur wegen ihrer vorzüglichen Leistung, sondern auch wegen der erforderlichen geringen Betriebs- und Arbeitskraft sicherlich den ersten Rang ein. Auf dieser (in Fig. 11
und 12 dargestellten) Maschine ist die Baare nicht gespannt, sondern liegt lose in einem vorpringenden Wasserbehälter von 60 Meter Länge in 20 Spiralen neben einander. Das schmutzige Wasser fließt bei a Fig. 11 continuirlich ab. Die Stüde befinden sich im Wasserbehälter in einer nicht viel größeren Wassermenge als sie aufgefangt zurückhalten. Auf dieser Maschine können per Stunde circa 7200 Meter Stoff gewaschen werden. Gefärbte Baare muß zur vollständigen Reinigung viermal durch die Maschine gehen; geschlose und gesiebte Baare läßt man nur einmal durch die Maschine gehen. Der gegenwärtig so beliebte Artikel „Chromorange“ geht bei allen Operationen einmal hindurch, indem man dabei mittels der einen Schraube b, Fig. 12, auf der Seite des Ausganges die Druckwalze in die Höhe stellt, worauf die Farben nicht mehr abfließen. Auf dieselbe Art wäscht man gedruckte wollene und halbwollenen Stoffe, sowie mit Dampfsäuren bebrütete Baumwollstoffe.

Knoten und Verschlingungen der Baare kommen bei Anwendung dieser Maschine selten vor, weil dieselbe zum Stillstand kommt sobald sich solche zu bilden beginnen.

Ein weiterer Vortheil dieser Maschine ist der, daß durch die beiden Schrauben b, b (Fig. 12) die obere Pressionswalze so genau gestellt werden kann, daß der Druck fast Null wird.

Den Maschrädern ist diese Maschine in Bezug auf die Reinigung der Baare fast ebenbürtig, sie hat aber vor denselben den Vorzug, daß der seine Flamm der Baare nicht ausgerottet werden kann.

Eine solche Waschmaschine erzeugt 4 bis 5 Maschräder; sie erfordernt zur Bedienung 1 bis 2 Arbeiter und zum Betriebe höchstens 2 bis 2½ Pferdekraften. Da bei derselben überdies der Wasserverbrauch ein sehr geringer ist, so ist es nicht unwahrscheinlich, daß sie binnen kurzer Zeit alle anderen jetzt gebräuchlichen Reinigungsmaschinen verdrängen wird.

Waschmaschinen dieser Art liefern die Maschinenbau-Anstalt des Eifenhüttenwerkes „Wilhelmshütte“ bei Sprottau in Schlesien.

Cl.

Über ein neues Verfahren zum Reproduciren industrieller Zeichnungen; von H. Cauderay, Telegraphen-Inspector in Lausanne.

Mit einer Abbildung auf Tab. VI.

Um in den Künsten und verschiedenen Industriezweigen eine oder mehrere Copien von einer Originalzeichnung zu erhalten, macht man häufig Gebrauch von einer eigenthümlichen leicht ausführbaren Papiermethode, die im Durchschnitt einer großen Zahl von seinen Lüchern bezieht, welche die Contouren einer Zeichnung repräsentiren.

Eine derartig durchgestochene Zeichnung kann wieder unmittelbar als Papierblatt verwendet werden.

Um diese Methode auf dem Holze, der Leinwand, dem Glas, Papiere oder anderem Stoffe anzuwenden, auf denen man ein Muster durch Malerei, Zeichnung oder Stickerei reproduiren will, genügt es, wenn man das durchgestochene Muster oder die Patrone mit einer sogenannten Poncelette (Tuch-Tupfer, einem spiralsförmig zusammengerollten Tuchbande), welche mit einer colorirenden Substanz befeuchtet ist, behutsam schlägt.

Die Substanz, welche sich vom Tupfer ablösst, geht durch die Löcher der Zeichnung (Patrone) hindurch, und haftet an der Oberfläche des betreffenden Stoffes, auf welchen pausirt werden soll, indem sie eine Reibe von gefärbten, den durchgestochenen Löchern entsprechenden Punkten zurücklässt.

Die auf diese Art mit gepulverter Zeichnungskohle, gepulvertem Graphit etc. 100 erzeugten Contouren können mit einem Pinsel befeuchtet (abgestaubt) werden, was nützlich wird, wenn eine nicht gelungene Zeichnung erneuert werden soll. Wenn es erforderlich ist, die Contouren der Zeichnung stetig zu erhalten, so macht man von einem harzigen Pulver Gebrauch, 111 über das man mit einem heißen Bügeleisen fährt, nachdem

100 Ueberhaupt können alle Substanzen angewendet werden, welche sich leicht in Pulver verwandeln lassen; außer den oben genannten kann man auch Bleiweiß, Stärke und selbst Mehl benutzen.

111 Schwarzes Pulver für Tafel. 6 Theile Zudeinpech
13 „ „ Copal
1 Theil Beinischwarz
man vorher zwischen das betreffende Pulver und das Bügelleisen ein Blatt reinen Papieres gelegt hat.

In früheren Zeiten bediente man sich, um eine Zeichnung durchzustechen, einer feinen Nähnadel, welche einen großen Siegellackkopf hatte. Gegen das Jahr 1824 erfand ein französischer Ingenieur, Barthélémy, eine Maschine mit Federn, deren Spiel eine Nadel in Bewegung setzte, welche sich in einem kleinen Rohr befand, das der Arbeiter oder die Arbeiterin nur längs der Zeichnung zu führen hatte. Im Jahre 1830 construierte Barthélémy aber zum Durchstechen von Zeichnungen einen Tretmechanismus mit Schwungrad; dieses setzte mittels Transmissionen eine Reihe von Rollen in Späthärt, deren lezte mit exzentrischer Achse bei ihrer Rotation die Durchstechnadel hob und senkte.

Als daher bald daraus eine Barthélemy'sche Maschine nicht mehr regelmäßig funktionierte, machte ich den Vorschlag, statt derselben den Ruhmkorff'schen Funkeninductor zu verwenden, was auch ange nommen wurde. Nach verschiedenen Versuchen ließ ich einen vollständigen Apparat zu diesem Zweck zusammenstellen, welcher sehr befriedigte und definitiv in Gebrauch kam.

| Schwarzes Pulver für Misteln | 17 Theile Copal
| Blaues Pulver | 2 " Tolephonium
| Anderes blaues Pulver | 1 " Beinschwarz
| Weisses Pulver | 17 Theile Tolephonium

Man gibt eine Portion dieser Gemenge in ein irideses Gefäß und läßt sie am Feuer schmelzen, indem man nur nach Maßgabe des Schwiegens weitere Portionen zugiibt. Man zerreibt dann das Product mit einer güttern Känse auf einer Glättafel oder einem Stein.
Dieser Apparat ist in Fig. 14 dargestellt und besteht:

1) Aus einer Batterie A, nämlich zwei einfachen Glühfaden-Elementen (ohne Diaphragma) mit doppelt-chromsaurem Kali als Erregungslösigkeit. Diese Elemente werden derartig mit einander verbunden, dass man das eine oder das andere, oder nötigenfalls beide gleichzeitig wirken lassen kann, was die Erregungslösigkeit so viel als möglich auszunützen gestattet; dazu genügt es, dass eine oder das andere, oder beide Gläser, welche die Lösigkeit enthalten, in die Höhe zu heben; soll der Apparat nicht mehr functioniren, so läßt man die Gläser wieder herab. Zum Heben und Senken der Gläser dienen die hölzernen Würfel a und b, welche beliebig unter dieselben geschoben werden können.

2) Aus einer kleinen Ruhmkorf'schen Spirale B.

5) Mittelst eines hölzernen oder metallenen Ständers E kann der Conductor (Halter) D von der Person, welche lehret in der Hand hält, leicht bewegt und daher der Stift längs den Contouren der ganzen Zeichnung herumgeführt werden.

Die zu pausierende Zeichnung wird auf das Papier, auf welches pausirt werden soll, gebracht und dann werden beide auf die Metallschicht C gelegt und irgendwie befestigt (z. B. durch Ankleben der Ecken). Um die Zeichnung zu copiren, braucht man nun bloß längs den Contouren derselben so schnell als möglich den Stift S der isolirten Conductors D, resp. dessen Spitze, herumzuführen, und zwar möglichst senkrecht auf die Zeichnungsebene (Metallschicht), damit man nicht Löcher außerhalb der Linien des Originals erhält. Auf diese Weise erhält man eine genaue Copie des Originals, deren Contouren durch nahe an einander liegende Löcherchen gebildet werden, welche von den Inductionsfunken durchgeschnitten wurden.

Die Sicherheit in der Führung des Stiftes braucht nicht so groß zu sein, als man glauben könnte, denn die Funken Schießen vorgängweise den mit Tinte oder Bleistift gezogenen Linien zu folgen, deren

112 Zur Darstellung der Flüssigkeit löst man in 800 Grm. heißen Wasser 100 Grm. doppelt-chromsaurem Kali auf und setzt dann 100 Grm. Schwefelsäure zu.
Leitungsfähigkeit größer ist als die der nicht bezeichneten Theile des Papieres.

Selbst wenn man mehrere Bogen weissen Papiere's unter die Originalzeichnung bringt, werden dieselben auf gleiche Weise durchgestochen. Die Personen, welche sich das erstemal des Apparates beobachten, erhalten von Zeit zu Zeit elektrische Schläge; dieser nicht bedeutende Nebelstand verschwindet aber mit der Nüchternheit.

Wie man sieht, gewährt die Elektricität durch Benutzung des Funken-inductors große Vorteile vor der Barthélémy'schen Durchschreithmachine; mein Apparat arbeitet schneller, nimmt einen viel geringeren Raum ein, und da der unangenehme Gebrauch des Pedales wegfällt, so kann der Arbeiter seine ganze Aufmerksamkeit der Zeichnung zuwenden.

J. W.

CII.

Vervollkommnung des Cauderay'schen Verfahrens zur Reproduction industrieller Zeichnungen; von J. Welsey in Prag.

Mit einer Abbildung auf Tab. VI.

Bei dem Cauderay'schen Verfahren zur Reproduction industrieller Zeichnungen kann man:

1) Die Copien bloß im Maasstabe der Originalzeichnung erhalten, also so, daß alle Dimensionen der Contouren von Copien mit jenen des Musterblattes vollkommen übereinstimmen;

2) wird das Original längs den Contouren ebenso pitirt (durchlöchet), wie alle durch den Strom erzeugten Copien, was in manchen Fällen sehr unangenehm sein kann; denn falls die Musterzeichnung ein

* Im J. 1866 erschien die fünfte Auflage dieses Werkes.
Unicum ist, wird durch mehrmalige Verwendung — ungeachtet der regelmäßigen Vorkunft bei den Copien — die Originalcontour doch unregelmäßig gereihte Durchstichpunkte zeigen, und die Zeichnung mit der Zeit verderben;

3) außerdem ist es durch die Caundray'sche Anordnung nicht möglich, uns von einem Original entweder eine im beliebigen Maßstab vergrößerte oder je nach Bedarf auch verkleinerte Copie zu verschaffen, was natürlich in vielen Fällen notwendig ist, z. B. wenn eine sehr gelungene, jedoch große Zeichnung, uns für bestimmte Zwecke bloh im kleineren Maßstab ausgeführt, als vassend erscheint und umgebet.

Alle erwähnten Unvollkommenheiten des Caundray'schen Apparates werden aber behoben durch Mittelung eines Instrumentes, welches ich zu diesen Zwecke hiermit vorzustelle und zur Benutzung empfinde; dasselbe verdient um so mehr Berücksichtigung, als dadurch im Ganzen die Caundray'sche Anordnung nur eine leicht ausführbare Modificirung erfordert.

Ich meine nämlich den Pantographen oder Storchsnabel, und zwar entweder in seiner äusseren (Voightländ'schen) Construction, oder den neueren (auch Mailänder Pantograph genannt), wie er vom Mechatir Kraft in Wien in einer in mancher Hinicht von der ursprünglichen abweichenden, verbesserten Einrichtung ausgeführt wird.

Obgleich sich beide Arten zu dem oben angegebenen Zwecke eignen, so dürfte doch (wie ich mich selbst überzeugt habe) der Mailänder Pan
tograph wegen seiner größeren Präcision und leichter Handhabung beim Copieren bedeutend sicherere Resultate liefern.

Zum Copiren und zugleich Reproduiren ist ein hinlänglich groher, ebener, polirter Tisch von wenigstens 1 Quadratmeter (Länge und Form) notwendig, wovon die Hälfte II des Tischblattes, Fig. 15, eine vollkommen ebene Metallplatte (z. B. eine Kupferz oder Eisenplatte) trägt, welche in ein-

gelassen ist, daß beide Oberflächen I und II in derselben horizontalen Ebene liegen. Das Original wird an das Tischblatt I gelegt, die Hülse des Pantographen werden auf die erforderlichen Intervalle (Vergrößerung oder Verkleinerung) gesetzt und hierauf wird der unverrückbare Hauptschrauben des Pantographen durch Verlänge so ausgerichtet, daß die äußersten Grenzen des Originals von dem sogenannten Führungsschaf erreicht werden können.

Man thut am besten, wenn man die Grenzen der Originalzeichnung mit einem Rechteck einfärbt, und das mit einer glatten Oberfläche versehene Papier für die Copie auf der Metallschablone II so lange verschiebt, bis 3 Ecken der nach gegebener Verjüngung auf demselben konstruirten Rechtecks von dem Zeichnungsschaf getroffen werden, wenn die Führungsschaf auf die gleichnamigen Punkte des Originals gebracht wird. In dieser Lage befestige man mit Sorgfalt sowohl das vollemale glatt aufgelegte Original, als die ebenso ausgebreiteten Blätter für die Blei- und Filz-Copien.

Ist das Original so groß, daß der Führungsschaf des festelegten Pantographen nicht alle Contouren erreichen kann, so theile man das große Rechteck in so viele kleinere als nöthig, damit das frühere Verfahren der Copierung benutzt werden kann. Nun wird der Bleistift eingesteckt und untersucht, ob er centrisch gespitzt ist, was zur genauen Copierung notwendig ist. Für unsere Zwecke wählt man am besten einen in Holz nicht eingesetzten Bleistift, weil dadurch eine bessere Leitungfähigkeit des Zeichnungsschaffes für den elektrischen Strom hergestellt wird. (Graphit ist bekanntlich ein guter Elektrizitätssleiter.) Derselbe nehme eine Bleifeder, wie sie gewöhnlich den kleinen Notizbüchern beigegeben werden, nämlich einen Metallschaf (z. B. von Messing), welcher unter einer Bleifederleibung verzeichnet; jedoch muß die Spitze selbstverständlich so beschaffen sein, daß sie bei der Arbeit das Papier nicht aufrißt. Die Zeichenfeder wird durch einen mit Seide umspinnenden Kupferdraht in metallische Contactverbindung mit dem Inductor gebracht, damit der elektrische Strom sich in dieselbe geleitet werde. Tandler's Handconductor D fällt demnach bei dieser Anordnung weg. Natürlich muß auch hier die Metallschablone II durch einen isolirten Kupferdraht mit dem Funkeninductor in Verbindung gebracht werden. Was nun den Führungsschaf anlangt, so kann dieser (wie beim Maltänder Pantographen von Kraft) ein doppelter sein, und zwar ein breitbäuger, welcher in fester Verbindung mit einem parallel laufenden isptigen ist. Der isptige Schaf, gewöhnlich von Stahl, berührt jedoch nicht die Zeichnungsfläche, sondern fährt bloß mit Hülse des zweiten führenden mit der Spitze des

CIII.

Verbesserter Morse'scher Farbendrucker.

Mit Abbildungen auf Tab. VI.

Lange Jahre hindurch behauptete sich der sogenannte "Morse" in der Praxis als der einzige die telegraphische Depeche ausdrückende Apparat, welcher die üblichen Schriftzeichen in einem Papierstreifen einbringt und dadurch sichtbar macht. 114 In Amerika waren und sind noch

114 Schon Morse hat Versuche gemacht, um bei seinem System mittels eines Blassstiftes oder einer Feder zu, d. aus Punkten und Strichen zusammengefaßten Schriftzeichen darzustellen, ist aber wegen Schwierigkeiten, auf welche er bei der Ausführung stieß, bei der Reliefschrift sieben gebieten. W.
bis jetzt grösstentheils Morsche Apparate im Gebrauche, jedoch gewöhnlich als bloße Schlaginstrumente (sounders), indem die Depeichen nur nach den hörbaren Schlägen und den zugehörigen Zeitintervallen von geübten Telegraphisten niedergeschrieben werden, ohne daβ der Apparat selbst die Zeichen ausnimmt.

165 Fronent construirte im Jahre 1852 im Auftrage der sardinischen Regierung einen dem Morse'schen ähnlichen Schreibapparat, bei welchem die Depeiche selbständig in Chiffren mittels eines Stiftes auf einer mit Papier umhüllten Trommel niedergeschrieben wird. Der Stift hatte eine hin- und hergehende und zugleich drehende Bewegung; die letztere bestand für die beiden oberen und unteren Teile des Stiftes aus der Mitte heraus. Ob diese Fronent'sche Anordnung in der Praxis sich bewährte und weitere Verbesserung gefunden hat, darüber fehlen nähere Nachrichten. Bv.

Digney benutzt eine Filzrolle, welche mit Drucktinte versehen wurde. Durch diese wurde eine straffe Scheibe gebildet, deren Peripherie folglich mit Tinte reichlich getränkt erhalten werden konnte. An der Scheibe vorbei bewegte sich der Papierstreifen, unterstützt durch einen mit dem Anker in Verbindung stehenden Hebel. Die Zeichen erhielt man durch Anbrücken des Papierees an die Scheibe.\(^{17}\)

Diese Einrichtung fand in Frankreich, Belgien, Preußen und anderen Staaten eine sehr günstige Beurteilung und allgemeine Aufnahme,\(^{18}\) sowie auch jene Versuche einer Anwendung, welche in dieser Hinsicht von H. Siemens gemacht wurden. Der erste dieser Versuche weigerte ein wenig von jenem Digney's ab, indem Siemens bei seinem polarisierten Schwarzesreiber — wie der Apparat nennt — statt der Filzwalze, welche oftmaliges Tränken erforderte, eine kleine Flasche mit Tintenvorrath in Anwendung brachte, deren Hals mit jedem Filz verstopt war, und hiermit die Digney'sche Walze ersetzte. Dies hatte aber seine Nachtheile, indem durch Wärme etc. der Filz trocken wurde, und somit die Tintenzuleitung eine unzulängliche war. Indem nun die Beamten durch Nadelstiche nachhalten, wurde die zugeführte Tintenmenge zu groß und der Apparat sowie die Schrift selbst durch Tintenspeck verunreinigt. Bei seinem zweiten Versuche (Brix, Zeitschrift des deutsch-österreich. Telegraphen-Bereichs, Jahrg. IX S. 205) tauchte H. Siemens die Scheibe zur Hälfte in ein Gefäß, welches mit Tinte gefüllt war.\(^{19}\) Die anderen Modifikationen in dieser Richtung verdienen keine weitere Erwähnung.

Alle diese Methoden haben jedoch den Nachteil einer schlechten Zuführung der Tinte, was bei telegraphischen Apparaten möglichst zu vermeiden ist.

Die letzte Anordnung in dieser Hinsicht ist die der India-rubber, Guttapercha, and Telegraph Works Company patentirte.

\(^{18}\) Cosmos, Revue encyclopédique, 1858, t. XII p. 380; polytechn. Journal de CXLIX S. 115; Du Monceau, Revue des applications etc., p. 168. M.

Außerdem daß durch die neue Anordnung die erwähnten Nachtheile als beseitigt erheblich, besteht der im folgenden beschriebene Apparat noch mehrere schädenswerthe Vortheile. Die Figuren 16 bis 18 zeigen die Anordnung des Druckapparates selbst, und die Figuren 19—23 stellen die Construction der Tintensieder (Schreibfedern) dar.

Der Elektromagnet E, E zieht den Anker A an (Fig. 17 und 18). Mit dem Anker zieht ein Arm L in Verbindung, welcher an seinem freien Ende die Feder P trägt, unter der das Papier sich fortbewegt. Dieses wird von der Rolle D so abgewickelt wie es die Figur darstellt. Das Aufzeichnen der Zeichen geschieht auf dieselbe Weise wie bei anderen Morse'schen Apparaten. Wird der Elektromagnet thätig, so zieht der Anker an, die Feder berührt das Papier, und zeichnet eine Linie oder einen Punkt auf, je nachdem der Strom mehr oder weniger lang andauert; oder sie zeichnet die gebräuchlichen Morse'schen Zeichen, je nach dem Willen des Telegraphirenden.

In der Construction der Feder liegt der große Unterschied des patentirten Apparates von allen bisherigen Anordnungen. Der Schreibapparat bildet nämlich nicht eine bloße Feder, sondern ein Reservoir, welches nur sehr selten mit Tinte gefüllt zu werden braucht, eine Feder die nie austrocknet, sich außerordentlich reinsthält und stets zum augenblicklichen Gebrauche bereit ist.

Fig. 19 zeigt den Antrieb der Feder, und Fig. 20 den Durchschnitt derselben. Die Tinte ist im Reservoir R enthalten und wird dadurch eingeschlossen, daß man den Hinterscheiß b b abschraubt. Sie fließt in das Reservoir durch die Löcher c Fig. 22. Vor dem Reservoir ist eine konvexe Platte B, welche als die eine Spige der Feder dient und durchlöchert ist (0,0 Fig. 21). Durch diese Löcher fließt die Tinte in die Feder. Die andere Spige dieser Feder bildet ein ähnliches metallisches Ende B ohne Deffinitionen. Auf derelben Achse zwischen den beiden Spizen (Fig. 20) ist die gezapfte Scheibe x Fig. 23 angebracht, welche dazu dient, die Tinte gegen die beiden Spizen zu leiten. Daraus ist einleuchtend, daß die Feder ganz sicher und rein arbeiten und so lange in Thätigkeit bleiben muss als Tinte vorhanden ist, ohne daß solche verschwendet wird, indem die Tinte nur dann verbraucht werden kann und aus der Feder heraustritt, wenn das Papier dieselbe berührt. Z. W.
Ueber die bisherigen Berechnungen der Wasserlaufs geschwindigkeit in den Saugdrains.

Den Berechnungen der Wasserlaufs geschwindigkeit in den Drains ist bisher die Formel von Cytelwein

\[c = 6,42 \sqrt{\frac{50 \, \text{dh}}{1 + 50 \, \text{d}}} \]

mit der Modifikation nach v. Möllendorff, Wasse und C. John (man s. polytechn. Journal, 1855, Bd. CXXXVIII S. 257)

\[c = 6,42 \sqrt{\frac{46,5 \, \text{dh}}{1 + 46,5 \, \text{d}}} \]

Die Formel gilt für volllaufende Höhren, welche durch ihr oberes Ende gespeist werden, so daß das Wasseraquantum, welches durch den unteren Teile der Höhre austritt, die ganze Höhe der Höhre durchfallen hat.

In die Saugdrains tritt das Wasser weder durch das obere Ende, noch durchsitzt das ganze Wasseraquantum die ganze Höhre, vielmehr tritt das Wasser in die Saugdrains (woher dieselben ihren Namen haben) auf ihrer ganzen Tour von Fuß zu Fuß ein, ohne dabei eine bemerkenswerte oder in der Maasichale fallende Eintrittsgeschwindigkeit zu haben.

Der Wasserlaufs geschwindigkeit zum Grunde liegt das allgemeine Fallgesetz

\[c = 2 \sqrt{gh} \]

Der Verf. dieses hat nun mit Rücksicht auf den speziellen Fall der Drainage die eben genannte Formel des Fallgesetzes weiter entwickelt und gefunden, daß wenn eine Masse \(Q = nq \) eine Höhe \(H = nh \) derart durchfällt, daß zu der ersten Masse \(q \) nachdem sie den Raum \(h \) durchfallen hat, sich eine zweite Masse \(q \) gesellt und mit ihr vereint den zweiten Raum \(h \) durchfährt und so fortwährend nach jedem Fallraum sich eine neue Quantität \(q \) zu den vorhergehenden geselle, die Ent- geischwindigkeit der Masse \(Q \) sey:

\[c = 2 \sqrt{gh \frac{(n + 1)(2n + 1)}{6n}} \]

Seht man in die Formel für n einen größeren Werth oder richtiger $n = \infty$ so ergibt sich:

$$c = 2 \sqrt[\frac{g}{3}]{}$$

worin H wie oben bemerkt gleich h die ganze durchfallene Höhe bedeutet.

Es ergibt sich daraus, daß die Wasserlauffgeschwindigkeit in einem Saugdrain sich zu derjenigen in einer von oben ab volllaufenden Nöhe annähernd verhalten muß wie $\sqrt[\frac{1}{3}]{} : 1$, natürlich unter sonst gleichen Bedingungen des Gefälles und der Glätte der Rohrenwände wie ihrer Weite. Einen Unterschied bedingt der Umstand, daß der Natur der Sache nach der Saugdrain nicht voll laufen kann, sondern namentlich auf seiner ersten größeren Tour nur als Rinntal dient, mithin der Reibungskoeffizient ein anderer ist.

Es ist somit auch ersichtlich, daß bei der früheren Anwendung der im Eingang genannten Formel von Tytelwein die bisherigen als Norm angegebenen Maße der Drains etwa um die Hälfte zu hoch geschätzt sind. Ebenso ist nach dieser Berechnung ersichtlich, daß die Drainage bei uns noch sehr im Argen und Dunkeln liegt.

Der Verfasser dieses hat nun unter Benutzung der von ihm entwickelten Formel die Fähigkeiten der Saugdrains von Neuem berechnet und die Resultate wahrscheinlich auch in Bälde veröffentlichen; er erlaubt sich aber, auch an dieser Stelle darauf aufmerksam zu machen, wie unendlich notwendig für eine billige und den Erfolg sichernbde Herstellung der Drainagen es ist, die Durchlässigkeit der verschiedenen Bodenmischungen und Steckungen genau in Zahlen auszudrücken zu können und ist überzeugt, daß es keine große Schwierigkeiten machen kann, auf Grund von Versuchen an alten und neuen Drains bestimmte Zahlen auszudrük für die Durchlässigkeit festzustellen.

F. v. Schmelting,
Drainenschüler.
CV.

Aus Armengaud’s Génie industriel, Januar 1869, S. 12.

Unter sucht man die verschiedenen, bisher empfohlenen und wirklich angewendeten Methoden zur Leuchtgasfabrikation, so ergibt sich folgendes:

1) Schon von Beginn dieser Entdeckung an ist die bei fabrikmäßiger Betriebe erzeugte Gasmenge um 13 Proc. hinter der theoretischen zurückgeblieben. Im Durchschnitt gehen nämlich 100 Th. Steinkohle bei der Destillation 75 Th. Kohls auf 25 Th. flüchtiger Substanzen, welche letztere aber nur 12 Th. brennbaren Gas liefern, was also eine Differenz von 13 Proc. hervorbringt.

2) Diese Differenz läßt sich aus den bei der Flamme und den bei der Destillation auftretenden Erklärungen leicht erklären.

Was nämlich die Flamme anbetrifft, so besteht das Leuchtgas fast gänzlich aus gasförmigen Kohlenwasserstoffen, in denen der Wasserstoff, ein außerordentlich entflammbarer und brennnbarer Element, zuerst sich entzündet, entsprechend dem chemischen Prinzip, das „wenn ein aus mehreren Bestandteilen zusammengesetzter Körper der Einwirkung einer zu seiner vollständigen Verbrennung ungenügenden Sauerstoffmenge unterworfen wird, die brennbarten seiner Bestandteile fatts zuerst verbrennen.“ Der Wasserstoff entflammt sich also; bekanntlich ist aber die Leuchtkraft der Wassersoffgasflamme eben so gering, als die Entzündlichkeit und Brennbarkeit derelben bedeutend ist. Dagegen kann bekanntlich die Wassersoffgasflamme durch Einführen fester, feuerbeständiger Körper (wie Platin, Kalk etc.) außerordentlich leuchtend gemacht werden. Beim Leuchtgas verdankt die Wassersoffgasflamme ihre Helligkeit den seinen Kohlenstoffbehelfen, welche sich bei der Weißrothgluth aus ihr abscheiden.

Schon hieraus geht hervor, daß man der Flamme des Wassersoffgasen, welche an und für sich nicht leuchtet, durch physikalische Mittel, z. B. mit Platin, eine ebenso große und noch größere Leuchtkraft als das Leuchtgas besitzt, mitzutheilen vermöge, so daß es unnützig ist, zu diesem Zweck das Wassersoffgas zu carburiren (mit Kohlenstoff zu imprägniren).

Was nun die Destillationsergebnisse anbelangt, so gibt die Steinkohle, wenn sie nach dem gewöhnlichen Verfahren und der veröffentlichtheorie entsprechend, allmählich der Einwirkung höherer Temperaturen

Hieraus ersieht man, daß der größte Theil des in der Steinkohle enthaltenen Wasserstoffes für die Leuchtgasfassiculation verloren ist, indem sich dieser Körper verbindet:

a) zunächst mit dem Sauerstoff zu Wasser in dem Verhältnisse von 2 Vol. Wasserstoff auf 1 Vol. Sauerstoff;

b) dann mit dem Stickstoff zu Ammoniak (3 Vol. Wasserstoff auf 1 Vol. Stickstoff);

c) ebenfalls mit dem Schwefel zu Schwefelwasserstoff (2 Vol. Wasserstoff auf ½ Vol. Schwefel);

Aus der Einstellungswarte und Zusammenfassung dieser Produkte ergibt sich nun bei Berücksichtigung ihrer chemischen Eigenschaften folgendes:

1) Die Leuchtgasfassiculation (aus Steinkohlen) könnte noch ökonomischer werden und ein Gas von besserner Qualität erzeugen; sie ist nämlich bisher aus halbem Wege stehen geblieben, da sie in den Nebenprodukten (Theer und Ammoniakwasser) den größten Theil ihres Hauptproduktes (des Wasserstoffes) zurückläßt.

2) Auch in Bezug auf die Darstellung von Kohlenwasserstoffen ist das Ziel nicht erreicht worden, insofern die dichtesten, sowohl flüchtigen als festen, somit die härteste Leuchtkraft enthaltenen Hydrocarbur (wie das Benzin, Paraffin etc.) im Theere zurückbleiben.

3) Wenn aus dem Theere bisher nicht so viel Gas erzeugt wurde, als man zu erwarten berechtigt war, so liegt der Grund davon einerseits darin, daß sich dieses Produkt der trockenen Destillation an der Luft in Folge Aufnahme von Sauerstoff verbrann, und bei der Destillation dann
auf Kosten seines Wasserstoffgehaltes nochmals Wasser gibt; andererseits
darin, daß bisher bei der Zersetzung des Theeres die Hitzé nicht hoch
genug gesteigert wurde.
4) Da die Steinösfe schon an sich Sauерstoff enthält, so ist es von
Wichtigkeit, ihr beim Besichfen der Retorten nicht neue Mengen von
diesem Körper mit der Luft zuzuführen.
5) Da ferner die Steinösfe schon an sich Wasser enthält und da
sich solches auch bei ihrer Destillation bildet, so ist es nutzlos, ihr (wie
dies bei manchen Verfahren geschieht) während der Operation Wasser
zuzufügen, indem dadurch der Verlauf der Destillation verzögert, die
Retorte abgekühlt und der Brennmaterialaufwand (wegen der Notswen-
gigkeit die Temperatur wieder zu erhöhen) vermehrt wird.
6) Um mit dem Maximum der Kohlung die höchste Production zu
erreichen, muß die Hauptreaction nicht in der Kohle selbst vor sich
gehen, sondern vielmehr in den entwickelten Dämpfen und Gafen, inso-
fern die Retorten stets mehr oder weniger bedeutenden Temperaturwech-
seilen ausgesetzt sind, in folge deren im Anfange der Operation und beim
Besichfen der Retorten condensirbare unzersetzte Dämpfe (Ammoniak,
Theer &c.) entleben und zulezt reiner Wasserstoff sich entwickelt, welcher
von der Zersetzung bereits gebildeter gasförmiger Kohlenwasserstoffe ber-
rührt. Daraus ergibt sich die Notwendigkeit, die Steinösfe so stark
zu erhöhen, daß mehr Dämpfe und weniger Gase erzeugt werden, und
bie Dämpfe und Gase vor ihrem Eintritte in den Condensator im aus-
steigenden Robre konstant zwischen 525° C. (beginnendes Blasen) und
800° (beginnende Kirschwasserthut) zu überhöhen, so daß das Ammoniak
und der Schwefelwasserstoff zerlegt werden. Das Zerfallen dieser beiden
Verbindungen in Gegenwart von Ashtalk und Eisen findet stets vor
der Entfaltung der Dämpfe statt; sogleich werden durch die Umwandelung
dieser theerigen Dämpfe im Gas nur gut gekühlte Hydrocarbure erzeugt.
7) Wenn die Gasfabriken sich entschließen wollten, anstatt des von
ihnen bisher producirten Kohlenwasserstoffes nun entdöchtlen Wasser-
stoff zu erzeugen, so würden sie durch Ueberhitzung ihres Gases, nach
dem Reinigen desselben, im Stande sein, das Volum ihres Productes
mittels Entfaltung und Spaltung der Einfach- und Zweifach-Kohlen-
wasserstoffe um das Doppelte zu vermehren, so daß eine Anstalt, welche
jährlich 2 Millionen Rubelth von gereinigtem Gase producirt, auf diesem
Wege 4 Millionen zu erzeugen vermöchte, vorausgesetzt, daß das von
ihr fabrizirte Gas gänzlich aus den erwähnten beiden Kohlenwasser-
stoffen befeucht.
8) Die Menge des producirten Gases würde noch weit beträchtlicher
auslassen, wenn man anstatt des gereinigten Productes die in der Bil-
dung begriffenen Dämpfe und Gase auf die angebendene Weise mit An-
wendung physikalisch oder chemisch activer Körper (z. B. Ziegelskeinen,
Neptalk, Eisen u.) zerlegen wollte; dadurch könnte das Aushren dem
Volumen nach mindestens auf 60 bis 70 Kubikmeter per 100 Kilogr.
Kohle, anstatt der bis jetzt produzierten 22 Kubikmeter gesteigert werden.

9) Bei Anwendung von fetten Schmiedeleichen anstatt mageren
Steinkohlen mit langer Flamme würde sich das Quantum der produzi-
ten Gase auf 80 Kubikmeter per 100 Kilogramm steigern lassen, da die
ersieren nach Regnault's Analyse mehr Wassersstoff und weniger
Sauerstoff enthalten als die letzteren.

10) Von allen Wassersstoffverbindungen ist das Ammoniak un-
streitig die an Wassersstoff reichste und auch dienigste, welche sich am
leichtesten zerlegt, ohne dass der in diesem Falle beim Wassersstoffgase
beigemischte bleibende Stickstoff die Brennbarkeit des ersteren beeinträch-
tigt, infolgedessen die zur Verbrennung des gewöhnlichen Leuchtgases erforder-

11) Die Leitungen und Condensationsapparate würden in den er-
wähnten Fällen nicht mehr durch die großen Mengen von saft vertauscht
Naphthalin verstopft, und nicht mit Ammoniak und Theer angesüßt werden,
welche für die Gasanstalten einen so beträchtlichen Verlust ausmachen
und in Folge ihres Versicherns in dem Boden so häufig zu Streitigkeiten
Veranlassung geben.

12) Die Gasanstalten könnten auf die angegebene Weise in ihren
Retorten eine hohe gleichmäßige, leicht regulierbare Temperatur unter
halten und ein brennbares Gas erzeugen, welches immer die gleiche
Zusammenlegung hat, sich leicht comprimiren lässt, nicht condensirbar,
indurch die Einwirkung der Höhe schon an sich gereinigt und frei von
Kohlenstoff ist. Sie würden also nicht mehr mit jenen Schwankungen
in der Leuchtstärke ihres Productes zu kämpfen haben, welche sich bemerk-
bare machen, wenn in strenger Winter die leichtkräftigen Kohlenwasser-
stoffdämpfe sich condensiren, oder wenn in Folge zu starfen oder zu ge-
ringen Erhöhen der Retorten nicht leuchtende Gase oder condensirbare
Dämpfe erzeugt werden.

13) Bezüglich des auf solche Weise erzeugten Gases lässt sich behaup-
ten, dass dasselbe fast immer nahezu die Zusammenlegung des soge-
nannten Wassergases (gaz de l'eau) haben wird, welches, je nachdem
man Wasserdampf auf Holzkohle oder auf Kohls einwirken lässt, drei
oder vier Beinanthihlie enthält: nämlich Wassersstoff, Sauerstoff und
Kohlenstoff, oder Wasserstoff, Sauerstoff, Kohlenstoff und Schwefel. Man
können ja als Princip auffallen, dass unter den brennbaren Gegen der Wasserstoff dasjenige ist, welches unter allen übrigen bei weitem den Vorzug verdient und dessen Production aus diesem Grunde das letzte Ziel der Gasbeleuchtungskunst zu sein scheint, wenn man auch fernerhin als das beste Leuchtgas dasjenige anerkennen, welches bei derselben Lichtstärke am wenigsten Sauerstoff verbraucht, am wenigsten Kohlenäure bildet und die geringste Wärmenenge erzeugt, wie dies bezüglich des sogenannten Wassergases durch die von Gillard

120 in Narbonne und in Passy angestellten Versuche, sowie durch die von Dr. Verver

121 ausgestellten vergleichenden Untersuchungen erwiesen ist.

Die von Dr. Verver im Jahre 1859 bezüglich des Narbonner Wassergases veröffentlichten Schlussfolgerungen sind die nachstehenden:

1. In Bezug auf Schönheit läst die Wasserstoffbeleuchtung wenig zu wünschen übrig, weil dies Licht wegen der großen Beständigkeit und Unbweglichkeit der Flamme bemerkenswerth schön ausfällt, ohne die Augen zu erbluten, wobei es den großen Vortheil gewährt, daß es die Farben nicht verändert.

2. In Bezug auf Gesundheit hat die Wasserstoffgasfabrikation vor der des Kohlenwassergasfages den unbestrittenen Vorzug, daß alle ammonialischen, schwefligen und theeren Dämpfe wegfallen.

3. Die Verbrennungsprodukte betreffend, wird die Luft der zu beheizenden Häuser durch das Wasserstoffgas oder sogenannte Wassergas weniger verdorben, als durch Dampf- und Dampfrothstoff, weil ersteres nur den vierten Theil der zur Verbrennung der beiden letzteren Gase nötigen Sauerstoffmenge erfordernd und als Verbrennungsprodukt nur Wassertopty gibt, vorgesehen das gewöhnliche Leuchtgas üblich bedeutende Mengen von Kohlenäure erzeugt.

4. Das Wasserstoffgas ist geruchslos, vorgesehen das gewöhnliche Gas einen ebenso starken als unangenehmen Geruch besitzt und gleichzeitig nachtheilig auf den Organismus einwirkt.

5. Es ist aber leicht, dem Wasserstoffgas, um seine Gegenwart bei Ausströmungen aus unichtigen Stellen der Leitungen, aus nicht vollständig geschlossenen Hähnen etc. in der Atmosphäre entdecken zu können, einen hinreichend starken Geruch mitzuteilen, indem man es vor seinem Eintritte in das Gasometer durch eine flüsige Flüssigkeit streichen lässt.

120 Polytechn. Journal Bd. CXVI S. 222 und Bd. CXVIII S. 166.

7. Das Wasserstoffgas brennt ganz ruhig, ohne das beständige Zischen und Brausen des gewöhnlichen Gases zu zeigen.

9. Wenn auch eine allgemeinere Anwendung des Wasserstoffgases bisher dadurch verhindert wurde, daß bei der Darstellung desselben nicht, wie bei der des gewöhnlichen Leuchtgases, ein so wertvolles Nebenprodukt wie die Kokskohle gewonnen werden kann, so wird doch sicherlich Niemand Anstand nehmen, daß es eine neue und sehr benutzt zu benutzen, so bald sein Preis ein billigerer geworden sein wird.

Diesen Schlüfsfolgerungen kann man noch die nachstehenden hinzuüben:

Da das Wasserstoffgas auf die Leitungen nicht zerstörend einwirkt, wie dies bezüglich des gewöhnlichen, stets Ammoniak, Schwefelwasserstoffgas z. c. enthaltenden Leuchtgases der Fall ist, so wird das Entweichen von Gas aus unbekannten Stellen z. c. niemals so bedeutend werden können, als bei dem letzteren. Das nach dem im Vorstehenden beschriebenen Verfahren aus Steinöle dargestellte entkohlte Wasserstoffgas läßt sich jedenfalls mit großem Vortheil als Heizmittel, sowie als Triebkraft bei seiner Anwendung für Lenoir’sche und andere Gasmotoren benutzen.
Die Umwälzung in der Gasbeleuchtung; von C. Schinz.

Mit einer Abbildung.

Unter den menschlichen Lebensbedürfnissen ist die Erzielung des Tageslichtes durch künstliche Beleuchtung eines der wesentlichsten, und daher jeder technische Fortschritt, welcher die Befriedigung dieses Bedürfnisses erleichtert, eine Wohltat für die Menschheit.

Die Entdeckung der mit siebenterartig ausgebauten Borräthe von Petroleum in den Vereinigten Staaten von Amerika hat nun eine Zeit lang zur Befriedigung dieses Bedürfnisses in außerordentlichen Maße beigetragen, daselbe aber auch gleichzeitig gesteigert, indem das Erdöl selbst dem weniger Benittelten gesättigte, seine herkömmliche Beleuchtung durch eine bedeutend intensivere zu ersetzen.

Die Zeit ist jedoch schon herangekommen, wo die Production oder vielmehr die Ausbeute des Petroleum's nicht mehr dem Gunstum folgen kann, und es läst sich nicht bloß vermuten, sondern es ist vielmehr mit Gewißheit anzunehmen, daß diese obgleich sehr bedeutenden Borräthe im Inneren der Erde in nicht ferner Zeit erschöpft sein werden.

Es ist daher wohl motivirt, daß das Beleuchtungswefen in unseren Tagen sowohl die Wissenschaft als die Technik vielseitig beschäftigt.

Das, worauf es endgültig allein ankommt, ist natürlich die ökonomische Seite der Frage, d. h. wie kann um einen gleichen Preis die größte Lichtmenge produziert werden. Lassen wir aber vorläufig diese Frage unberücksichtigt und betrachten wir zuerst die rein wissenschaftlichen Gesichtspunkte.

Diese Substitution des Platinis wäre ein sehr bedeutender Fortschritt für das Beleuchtungswefen gewesen, wenn es gelungen wäre die Gase, welche zur Erbignung des Platinis dienen sollen, ökonomisch darzustellen, da in diesem Falle die Zahl der leuchtenden Punkte stets dieselbe ist, und
nicht wie beim gewöhnlichen Leuchtgas von der Qualität der verwendeten Steinkohlen und der mehr oder minder großen Sorgfalt bei der Darstellung und Reinigung des Leuchtgases abhängt. Ferner bietet diese Beleuchtungsart den hoch anzuschlagenden Vortheil, daß die Flamme oder eigentlich das leuchtende Plattingewebe keinerlei zitternde Bewegung macht, wie sie bei der Leuchtgasflamme in einem den Augen sehr schädlichen Grade auftritt.

Durch diese Substitution des leuchtenden Stoffes wird jedoch die Intensität des erzeugten Lichtes nicht erhöht. Eine Erhöhung dieser Intensität wird aber, wie schon im vorigen Jahrhundert von Lieutenant Drummond gezeigt wurde, dadurch erlangt, daß die Temperatur des leuchtenden Körpers geheizt wird.

Dies bewirkte Drummond, indem er brennendes Knallgas auf Kalt leitete, welcher der hohen Temperatur des Knallgases widerstehen ohne zu schmelzen und Lichtstrahlen der höchsten Intensität auswirkt.

Wenn es nun auch Tessié du Motbay gelungen ist, aus man- genfachen Natron oder aus Bariumsuperoxid den Sauerstoff wohlsiefer darzustellen 123 als vieh früher möglich war, so steht doch die erhaltene vermehrte Lichtintensität in gar keinem Verhältnisse zu den vermehrten Kosten, und selbst wenn dieses Verhältniss ein günstiges wäre, so würde diese gesteigerte Intensität keineswegs dem Bedürfnisse entsprechen, denn zu große Lichtintensität ist den Augen unnützlich viel schädlicher als die zitternde Bewegung der Gasflamme; ferner würde es unmöglich sein, den einzelnen Brennern eine Lichtstärke zu geben wie sie dem Bedürfnisse der Einzelnen oder der Mitteln der ärmeren Volksclasse angemessen wäre.

Das du Motbay'sche Magnesialicht wird also wie das Drummond'sche Kahllicht von der allgemeinen Anwendung ausgegeschlossen bleiben, und für specielle Zwecke, wie z. B. Leuchttürme oder Theaterscfecte, kaum den eletrischen Lichtbogen ersetzen können.

123 Polytech. Journal Bd. CLXXXVI S. 393.
Die Davy'sche Theorie der Lichterzeugung, auf welcher die bisher beprochenen Verfahrensarten beruhen, hat den Bemühungen Frankland's und Sainte-Claire Deville's eine Erweiterung zu verbreiten; diese haben nämlich gezeigt, dass selbst reinen Wasserstoffgas durch seine Verbrennung Licht von ziemlich großer Intensität ausgeben kann, wenn die Temperatur noch weiter gesteigert wird als dies bei dem Drummond'schen Rafllichter der Fall ist.

So hat Frankland Kesselfarbe in einem mit einer dicken Glas scheibe versehenen schmiedeeisernen Gefäße unter einem Druck von 20 Atmosphären zur Verbrennung gebracht; sobwohl natürlich die Temperatur unendlich gesteigert wurde, und wobei das erzeugte Licht intensiv genug war, um auf 10 Fuß Entfernung noch eine Zeitung lesen zu können. Ebenso zeigte dieses Licht Intensität genug, um im Spectrum alle Farben von Röth bis zum Violett mit großem Glanz zu geben.

Sainte-Claire Deville ist noch um einen Schritt weiter gegangen, indem er zeigte, dass bei der Compressio der brennenden Gase auf 20 Atmosphären die Temperatur so sehr gesteigert werde, wie bei diesem Drucke die von ihm entdeckte Dissociation (das Zerfallen) der Elemente nicht mehr stattfinden konnte, und da die Dissociation notwendig der Wärmeproduction entgegenstehe, so müsse in diesem Falle letztere in dem Masse größer werden, als die Dissociation verhindert werde.

Dieser Ansicht kann ich jedoch nicht beitreten; denn die Wärmemenge, welche eine Volumen- oder Gewichtseinheit irgend einer brennbaren Sub stanz im Calorimeter gibt, ist wohl die totale Wärmemenge, die dieser Körper zu geben vermöge, und findet auch in einem Punkte des Verbrennungsraumes Dissociation statt, so wird diese abseits wieder aufgehen, indem die getrennten Elemente auf ihrem Wege durch den Apparat nur nach und nach ihre Temperatur verlieren und folglich sich auch wieder vereinigen. Die Steigerung der Temperatur im comprimierten Raume ist also lediglich dem Umstande zuzuschreiben, dass die ganze Wärmemenge im engeren Raume proportional auch intensiver sein muss.

Gewiss haben diese wissenschaftlichen Untersuchungen und Resultate in theoretischer Hinsicht ihren Werth, wenn sie auch eindeutig für die Praxis wertlos sind, denn die Compression erfordert eine fühlbare Kraft und steht daher den Anforderungen einer ökonomischen Lichterzeugung entgegen.

Eine Steigerung der Lichtintensität ist also aus oben angesührten

124 In den Abhandlungen S. 285 u. 288 im vorhergehenden Heft dieses Journals.
Gründen an und für sich nicht wünschenswerth, und außerdem sieht sie, mag sie nun durch chemische oder mechanische Mittel hervorgerufen werden, der Dekonomie entgegen.

Daher kann eine praktische Verbesserung des Beleuchtungswesens, wenigstens einstweilen, nur auf der möglichst wohlselten Darstellung eines Gases beruhen, welches durch Verbrennung mit atmosphärischer Luft eine hinreichend hohe Temperatur erzeugt um Platingewebe in vollkommen weissglühenden Zustand zu versehen.

Um sowohl die zuerst sich bildenden gasformigen Kohlenwasserstoffe, als die dampförmigen, welche sich zu Theer verdichten, und endlich das Ammoniak so zu zersetzen, daß man schließlich reines Wasserdioffgas erhalten, bedarf es unzweifelhaft einer sehr bedeutenden Verbreitung an erhitzter Zersetzungsläche, welche nur durch Aufwand entsprechender Mengen von Brennstoff zu erhalten ist.

Ohne genaue Versuche anzustellen, läßt sich die Dekonomie der Darstellung von Wasserdioff durch Dissociation (Zersfallen) oder durch Spaltung (wie sich Vial ausbrückt) durchaus nicht feststellen, da Kohlenstoff und Wasserdioff sich direct nicht mit einander verbinden lassen und daher die bei solchen Verbindungen freierwerdenden Wärmemengen nicht bekannt sind, aus denen sich auf die Wärmemenge schließen lassen würde, die zu deren Zersetzung notwendig ist. Man kann indessen mit ziemlicher Sicherheit annehmen, daß im günstigsten Falle die Darstellung von 44 Kubikmeter Wasserdioff pro 100 Kilogr. Steintohle statt 22 Kubikmeter Leuchtgas, für daselbst Kohlenquantum auch doppelt 20mal breiter Brennstoff in Aufschre geben werde als zum Leuchtgase erforderlich ist, und folglich werden die 44 Kubikmeter Wasserdioff nicht wohlselten zu sieben kommen als die 22 Kubikmeter Leuchtgas.

Dafür hätte man allerdings eine rationellere und bessere Belichtung, aber auch Gasverluste, welche, wie wir später zeigen werden, bei-

125 Vorstehend Seite 382 mitgeheilt.
nahe unvermeidlich sind, und die der Dekonomie abermals in großem Masse entgegentreten.

Solche und ähnliche Betrachtungen führten mich zu dem Schlusse, daß die Darstellungweise von Wasserstoff als Mittel zur Beleuchtung nur sehr wenige Chancen des Erfolges haben könne und ich sand mich daher nicht bewogen weit gehende Versuche anzustellen, in der Voraussicht, daß solche nur zu negativen Resultaten führen dürften.

Wenn ich aus Zink und Schwefelsäure erhaltenen ganz reinen Wasserstoff verbrennte, so behnte sich der Gasstrom über den einzelnen Brennern-Öffnungen auf 20 Millimeter Höhe um 10 Millimeter aus; hatte ich dagegen ein Gasgemisch dessen spezif.

Gewicht circa 0,5 war, so war die resultirende Ausströmungsform —
Da nun die Verbrennung an den Grenzlinoen dieser Ausströmungsfornen stattfindet, so kann das Platigewebe nur dann zum vollständigen Weisglüben gelangen, wenn es sich in dieser Grenzlinie selbst befindet; das Platigewebe befindet sich aber in keinem dieser zwei Fälle auf der Grenzlinie dieser Ausströmungsfornen, sondern in der Mitte zwischen beiden; daher leuchtet es stärker, wenn die Ausströmungsforn diejenige des dichteren Gases ist, weil es dann diesen Grenzlinoen am nächsten steht.

Wenn nun auch die Ausströmungsforn der dichteren Gase befriedigendere Resultate gibt als die für einen Wasserstoff, so ist dennoch auch jene keineswegs geeignet einen Maximaleffekt hervorzubringen, und dieser ist nur dann erreichbar, wenn das Platigewebe wirklich in der Grenzlinie der Ausströmungsforn liegt; da aber diese Form zwei solcher Linien hat, so kann der Maximaleffekt erst dann erreicht werden, wenn beide Grenzlinoen benutzt werden.

Dieses besättigte sich auch in glänzender Weise, als ich die Form und Construction des Platigewebes so modifizirte, daß beide Grenzlinoen benutzt wurden; die dadurch erhaltene Leuchtkraft steigerte sich gleichsam um das Zwei- bis Dreifache.

Was ist nun der Erfinder der Wasser-gas-Beleuchtung in Narbone über diese Schwierigkeiten hinweggekommen?

Er hat die Ausströmungs-Deßnungen der Brenner in ihrem Durchmesser auf ein Minimum reducirt und seinem Gasometer einen Druck von 17 bis 20 Centimeter Wassertäule gegeben, so daß dieselbe an den Brennern noch 13 Centimeter Wassertäule war. Dadurch ist natürlich die Ausströmungs-Geschwindigkeit der Gasstrahlen eine sehr große geworden und folglich auch die Ausströmungsforn eine sich nach oben nur wenig ausbreitende, so daß das Platigewebe sich der Grenze der Verbrennungslinoen sehr nahe befand.

Ein Druck von 13 Centimeter Wassertäule, welcher in dem Gasometer zurück sich auf 20 Centimeter steigert, ist aber wohl die äußerste Grenze dessen, was dem ganzen System, jedoch nicht ohne bedeutende Nachtheile, zugemutet werden kann. Bei Anwendung irgend eines Gasgemisches, welches dichter ist als reiner Wasserstoff, hätte, um das nötige Volumen in der Zeiteneit durchzubringen, entweder der Druck noch weiter vermehrt werden müssen, oder die Ausströmungs-Deßnungen hätten weiter gemacht werden müssen, wodurch dann wieder die Ausströmungsforn eine mehr sich nach oben ausdehnende geworden wäre und in Folge dessen abermals eine Verminderung der Leuchtkraft eingetreten wäre.

Daraus wird es begreiflich, wie er zu dem Schlusse gekommen ist.
baß die Beimischung von Kohlenoxydgas zum Wasserdampf für die Erzeugung der Leuchtkraft unzuträglich sei.

Trotz dieser für die Detonationsgleichung günstigen Bedingungen einer solchen Druckes und der ausschließlich Beimischung von reinem Wasserdampf, ist es in Narbonne nicht gelungen einen konstanten, dem Consum proportionalen Lichteffect zu erhalten, denn die verschiedensten Brenner brachten zur Erzeugung des selben Lichteffectes 23.75; 19.17 und 25.00 Liter Gas.

Man beachte, daß beim gewöhnlichen Leuchtgas der Lichteffect mit dem Consum in einem progressiven Verhältnisse zunimmt, wenn aber der leuchtende Körper ein aus eine bestimmte Temperatur zu bringendes Platingeweben ist, so sollte der Consum der zu erwärmmenden Platinnasse proportional sein, oder es müßte wenigstens dieser Consum mit der wachsenden Platinnasse abnehmen, während in Narbonne der Consum auf eine Weise einem solchen Gesetz entspricht.

Wenn die Bedingung, daß das Platingeweben in die Verbrennungslinie der Ausströmungsform zu liegen kommt, entsprochen ist, so ist für dasselbe Gasvolumen die Leuchtkraft dieselbe, ob das Gas aus reinem Wasserdampf oder aus einem Gemisch von gleichen Raumtheilen Kohlenoxyd und Wassertoff besteht, nur muß für eine gegebene Lage des Platingewebes das Gas stets von gleicher Dichte sein.

Dieses Problem nur läßt sich viel ökonomischer dadurch lösen, daß man die Operation so leitet und den Apparat so einrichtet, daß man stets ein Gemisch von sehr annähernd gleichen Raumtheilen Kohlenoxyd- und Wassertoffgas erhält, was ich in der Praxis schon vor dreißig Jahren mit allem Erfolge bewerkstelligte.

Welches die Bedingungen sind, unter denen man ein constantes Gemisch von gleichen Raumtheilen Wassertoff und Kohlenoxyd erhält und wie der Apparat dafür eingerichtet werden muß, haben die Resultate

In Narbonne sind die Platinnassen für die drei Brenner:

<table>
<thead>
<tr>
<th>Lichteffect</th>
<th>Consum</th>
<th>Platinnasse</th>
<th>Lichteffect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1419</td>
<td>972</td>
<td>729</td>
<td>16</td>
</tr>
<tr>
<td>23,75</td>
<td>19,17</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Die Resultate meiner eigenen Beobachtungen, mit II und CO, amometerischem von 0,013 Met. Wassertoff hatte 0,13 in Narbonne, sind:

<table>
<thead>
<tr>
<th>Lichteffect</th>
<th>Platinnasse</th>
<th>Lichteffect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1625</td>
<td>931</td>
<td>518</td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>

Man sieht also, daß die rationelle Construction des Platindrechtes und die Druckverhältnisse eine der Vermeidung der Platinnasse wohltun ungleich proportional Verminderung des Consums hervorbringen.
meiner früheren und meiner jetzigen Studien herausgestellt, die ich aber einstweilen der Offenheit nicht übergeben will, da ich in naher Zukunft dieselben zu eigener Verwertung zu benützen wünsche.

Merkwürdig ist aber der von Narbonne ausgegangene Gas, daß das Kohlenoxydgas als ein giftiges Gas von technischer Benützung ausgeschlossen werden müßte, weder in viele technische Werke übergegangen ist.

Diese Bemerkungen wollte ich nur machen, um zu zeigen, wie absurd die Meinung ist, daß das Kohlenoxyd wegen seiner Giftigkeit von aller technischen Verwendung ausgeschlossen werden müßte.

1 Volumen Wasserstoff wiegt 0,08961 Gewichts-Einheiten, daher verziebe à 34000 Wärme-Einheiten, deren 3046,7 produziert; berücksichtige man aber die latente Wärme des H2O, so ist diese Menge = 2613,9 B. C.

1 Vol. Wasserstoff erfordert zur Verbrennung ½ Vol. Sauertoff, und daraus wird 1 Vol. Wassertoff gebildet, dessen Wärme-Capacität 0,38225 ist. Daraus ergibt sich die Verbrennungstemperatur = 0,38225

= 6838° C.; für die Verbrennung in atmosphärischer Luft erhalten wir

26°.
\[
\frac{2613.9}{0.38225 + 1.86 \cdot 0.30661} = 2634.8 \text{ °C}.
\]
1 Vol. Kohlenoxyd in Sauerstoff verbrannt gibt
\[
\frac{3003.6}{0.42557} = 7057.5 \text{ °C};
\]
in Luft verbrannt gibt dasselbe
\[
\frac{0.42557 + 1.86 \cdot 0.30661}{3003.6} = 3016.1 \text{ °C}.
\]

Somit ist die mittlere Temperatur eines Gemisches von gleichen Raumteilen Wasserstoff und Kohlenoxyd, in Luft verbrannt, \(= 2820\), also um \(195\) höher als die Verbrennungstemperatur des reinen Wasserstoffes, womit auch die Erfahrung übereinstimmt, dass dieses Gemisch ebenso geeignet ist das Platingewebe zum Weißglühen zu bringen als das reine Wasserstoffgas, und wenn daher jenes Gemisch billiger herzustellen ist als reiner Wasserstoff, so verdient es nach Maßgabe der größeren Billigkeit den Vorrang zu diesem Zweck.

Wenn nun 1 Vol. Wasserstoff bei seiner Verbrennung 3046,7 W. C. produziert, so muß die Wäsermenge, welche 1 Vol. Wasserstoff liefert, notwendig ebenso viele Wärme-Einheiten absorbieren, wenn dieselbe in Wasserstoff und Sauerstoff zerlegt wird; findet aber das gleichzeitige frei werdende \(\frac{1}{2}\) Vol. Sauerstoff Kohlenstoff vor, mit dem es sich verbinden kann, so werden hinwiederum 1287,2 W. C. erzeugt, indem sich Kohlenoxyd bildet, und der Aufwand an Wärme zur Zerlegung des Wasserstoffs reduziert sich auf 3046,7 − 1287,2 = 1759,5 W. C.

Wird aber so viel Wasser zersetzet, daß daraus 2 Vol. Wasserstoff und 1 Vol. Sauerstoff entstehen, so wird die erste Hälfte des ausge- schiedenen Sauerstoffes Kohlenoxyd bilden und wie eben 1287,2 W. C. erzeugen, die andere Hälfte wird dieses Kohlenoxyd zu Kohlen säure verbrennen und 1501,8 W. C. erzeugen, und der Wärme-Aufwand wird alsdann 2 : 3046,7 − 1287,2 + 1501,8 = 3304,3 W. C.; also beinahe doppelt so groß als im ersten Falle.

Aus dieser theoretischen Betrachtung des Vorganges bei der Produktion des Gemisches von gleichen Raumteilen Wasserstoff- und Kohlen- oxydgas einerseits und des reinen Wasserstoffes andererseits erklärt es sich, was auch die Praxis herausgesetzt hat, daß die Darstellung jenes Gemisches um beinahe die Hälfte billiger ist als diejenige des reinen Wasserstoffes.

In Wirklichkeit ist aber dieses Verhältniß noch günstiger, insofern jenes Gasgemisch sich bei einer Temperatur von 600 bis 800° darstellen
läßt, während zur Erzeugung von reinem Wasserstoff eine Temperatur von 1000° unumgänglich notwendig ist.

Da nun bei allen unseren pyrotechnischen Apparaten nur die kleinere Menge der entwickelten Wärme wirklich benutzt und die größere Menge zum Theil evaucirt, zum Theil durch die Ofenwandungen an die äußere Luft transmittirt wird, so ist es ökonomisch ungleich vorteilhafter bei einer geringeren Temperatur zu operiren, inssofern dies sonst zulässig ist, weil durch die geringere Temperatur weniger Wärme evaucirt und weniger transmittirt wird.

Um nun den nötigen Wärme-Aufwand in Gewichtseinheiten von Brennstoff zu berechnen, können uns die von Dr. Berver gemachten Angaben über den Betrieb in Harbonne dienen.

Wir aber zu dieser Berechnung übergehen, haben wir noch zu zeigen, daß die Production an Wasserstoff in der That größer war als das von Dr. Berver angestellte Experiment sie angibt.

Er erhielt nämlich aus 48 Kilo. Holzstoff 148 Kubikmeter gereinigtes Gas von folgender Zusammensetzung:

\[
\begin{align*}
\text{Wasser dampf} & \quad 1,02 \text{ Vol.} \\
\text{Kohlen säure} & \quad 0,50 = \text{ Vol. C 0,25} \\
\text{Kohlen} &\text{oxyd} \quad 3,54 \quad \text{bei 280° T. u. 0,758}
\text{Met. Barometer stand.} \\
\text{Sumpf gas} & \quad 0,38 \quad \text{Vol. H 0,804} \\
\text{Wasserstoff} & \quad 94,08 \\
\text{Stickstoff} & \quad 2,096 \\
\text{Verlust} & \quad 0,36 \\
\hline
\text{bei 280° T. u. 0,758} \\
\text{Met. Barometer stand.} \\
\end{align*}
\]

Über diesen Verlust wird man sich nicht wundern, wenn man weiß, daß das Gas in den Retorten unter einem Drucke von 20 Centimeter Wasser säule erzeugt wurde, denn selbst der dichteste Eisenguß ist porös.
genug, um unter solchem Drucke eine bedeutende Gasmenge durchzulassen, namentlich von einem Gase, welches unter demselben Drucke, und durch dieselbe Doseung 2 bis 3mal schneller austroömt als das dichtere Gasgemisch von Kohlengas und Wasserstoff.

Es geht daraus hervor, daß die Bedingungen eines Druckes von 20 Centimeter Wassersäule und der ausschließlichen Verwendung von Wasserstoff solche sind, welche der Preunomie dieser Art, so schön Betrachtungserfolg absolut entgegenstehen, weshalb dieselbe auch keine Verbreitung finden konnte.

Nehmen wir an, die Direction sey im Rechte, so würde der Consum für 144,484 Rub. Met. Wasserstoff nur 130,2 Kil. Newcastle Kohle gewesen seyn, also per 1 Rub. Met. Gas = 0,901 Kil.

Ist der theoretische Aufwand für die Erzeugung des Gemisches von CO und H = 1759,4 W 3, so ist dieser in Kil. Brennstoff = 0,2264 für 1 Vol. CO und 1 Vol. H, und wenn wir, um den wirklichen Aufwand zu erhalten, mit 4/5 multipliciren, so wird er 0,9622.

Dieser Aufwand wäre aber nur so groß, wenn in beiden Fällen gleiche Drucktemperaturen nöthig wären. Wie wir gesehen haben, ist dies nicht der Fall und es können 700° für das Gasgemisch genügen, während für reinen Wasserstoffgas 1000° notwendig sind. Ist nun die spezifische Wärme der Verbrennungsprodukte aus 1 Kil. Steinkohle =
2,82, so sind die pyrometrischen Äquivalente für die Temperatur 700° = 700,2,82 = 1974 und für die Temperatur 1000° = 2820, also 0,7 : 1 und der effective Aufwand für die Production des Gemisches CO und H wird = 0,7 : 0,9622 = 0,67364 Kil. gegen 1,802 Kil. für ein gleiches Volumen reinen Wasserdampfes.

Dann folgt die unten folgende Berechnung der Fabrikationskosten aufstellen.

Es ist mir unerläßlich, warum man in Narbonne zur Herstellung des Wasserdampfes Holzkohle und nicht Kohls anwendet, da letztere ja überall um das Vierfache wohlsätter und da Kohls sich sogar besser eignet als Holzkohle, wenn man den Kohlenstoff in Kohlenlauge überführen will.

Soll dagegen Kohlenoxyd produziert werden, so sind Holzkohlen selbst bei ziemlich höherem Preise den Kohls vorzuziehen; hingegen könnte vielleicht in den Sommermonaten, wo der Gaskonsum klein ist, es vorteilhaft werden, Kohls anstatt der Holzkohlen zu verwenden.

Wir nehmen aber, um uns gegen jede Täuschung sicher zu stellen, Holzkohle als das gewöhnlich verwendbare Material an und berechnen solche zu dem Preise von 8 Francs per 100 Kilogramm.

Fabrikationskosten für das Gasgemisch (Kohlenoxyd und Wasserdampf).

Wenn 2 Kub. Met. CO + H = 0,67364 Kil. Steinkohle brauchen, so ist der Aufwand für 948 Kub. Met. = 319 Kil. á 18 Fr. per 1000 5,74 .

Da bei dieser Fabrication keine Kohls aus der Retorte auszugeben, zu lösen oder in's Magasin zu bringen sind und auch das Füllen der Retorten eine äußerst geringfügige Arbeit ist, so werden zwei Mann am Tage und zwei Mann bei Nacht nüchtern um 1000 Kub. Met. Gas für 24 Stunden zu feiern, daher der Arbeitslohn á 4 Fr. 8,00 .

Für An- und Reparaturen recliniert Dr. Bering bei einer täglichen Production von 800 Kub. Met. Gas 3,25 Fr. per Tag, das gäbe pro Jahr 1186,25 Fr., und wenn wir annehmen, daß die erforderlichen 8 Retorten und 2 Dosen nebst 2500 Fr. kosten und die ersteren bei der niedrigen Temperatur von 700°, woß 1½ und die Dosen 5 Jahre aushalten, und daß die verbrauchten Retorten noch 750 Fr. einbringen, so würden die Auslagen in 5 Jahren = 3500 Fr.
und per Jahr 600 fein; somit werden 1180,75 Fr. jährlich
für 1000 Kub. Met. Gas per Tag vollständig genügen und
wir fügen daher dafür an 3,25 Fr.
Somit würden die 1000 Kub. Met. Gas unter die Glocke gebracht kosten: 40,35 Fr.

Fabrikationskosten für Leuchtgas aus Steinkohlen.
Im günstigen Falle rechnet man, daß 100 Kub. Steinkohle 22 Kub.
Met. gereinigtes Gas unter die Glocke bringen, somit würden
1000 Kub. Met. erfordern 4545 Kub., welche à 18 Fr. per
1000 Kub. beträgen .. 81,81 Fr.
Die Reinigung von 1000 Kub. Met. Gas sind erforderlich
100 Kub. Kalk à .. 1,90 Fr.
Der Aufwand für Arbeitslöhne vermeidet sich gegen oben, wegen
der bedeutenden Manipulation der Kohle um 2 Fr. n. ist somit
10,00 Fr.
Für Reparaturen und Verbranck ist ebenfalls mehr in Rechnung
zu bringen, weil die Retorten viel heisser gemacht und daher
schneller umbrandbar werden, und weil die Reinigung des Gases
nicht nur mehr Gebäudelosten, sondern auch mehr Apparate
erfordert, somit werden 4 Fr. per 1000 Kub. Met. verhältniß
mässig eher zu wenig als zu viel feyn 4,00 Fr.

Summa der Anlagen ... 97,71 Fr.

Dagegen sind in Abrechnung zu bringen für die Nebenprodukte
davon zum Heizen der Retorten per 100
Kohle 20 .. 909 Fr.
bleiben .. 2272 Fr.
minus 5 Proc. für Staub und Abfall 113 Fr.

Verkäufliche Kohls à 2 Fr. per 100 Kub. 2159 Fr.
Theer und ammoniakalisches Wasser à 7,25 Fr. 43,18 Fr.

Somit kosten die 1000 Kub. Met. unter die Glocke gebracht:
97,71 Fr. minus 50,43 = 47,22 Fr.

Um nun diese Darstellungskosten des Wassergases und des Leucht-
gases mit einander vergleichen zu können, müßte man vorher genau
ermitteln können wie groß der Consum beider Gase ist, um gleiche
Lichtmengen hervorzubringen; dies ist aber im Allgemeinen eine Sache
der Unmöglichkeit, denn die Qualität des Leuchtgases wechselt so zu
sagen jeden Tag selbst mit den gleichen Kohlen und die Differenzen,
welche bei verschiedenen Qualitäten der Steinkohlen erhalten werden,
sind ganz enorm. Ebenso sind die Preise der Steinkohlen nach Localität
und Qualität außerordentlich verschieden.
Wenn beim Wassergase die gleichmäßige Dichtigkeit eine notwen-
dige Bedingung ist, welche man allerdings ohne Schwierigkeiten erfüllt
kann, so ist dagegen die Lage des Platingewebes sehr wandelbar und
in ungeheuren Händen wird die Lichtintensität ebenfalls Variationen
unterliegen.

So wechselt z. B. in Narbonne je nach den angewandten Brennern
der Conflu für die einheitliche Lichtmenge zwischen 23,75; 19,17 und
25,00 Liter. Das Leuchtgas in Bervier aus Marienkolbe brauchte
25,24 Liter für die Lichteinheit und das von Amsterdam aus Newcastle
Kohle nur 15,04 Liter. Ich meine hiefs fand mit einem allerdings
nicht identischen Normallicht für das Gasgemisch CO und H 19,00;
18,50 und 16,18, und für das Leuchtgas in Straßburg mit einem
Brenner welcher zwischen die beiden erstern hineinfällt = 15,79 Liter.

Bei den Versuchen Dr. Berver's ist also das Verhältniß der Mittel
zwischen Wasserstoff und Leuchtgas 22,64 : 20,14 = 1,124 : 1, und bei
den reinigen 17,89 : 15,79 = 1,133 : 1.

Die Fabrikationskosten für das Wassergas = 40,35 Fr. wären also
mit 1,133 zu multipliziren und stellen sich dann auf 45,71 Fr.

Im Allgemeinen werden sich, spezielle Fälle und Localitäten ausge-
nommen, große Differenzen in den Kosten dieser Beleuchtungsarten nicht her-
hausenellen, und eine Differenz von einigen Franken per 1000 Kubikmeter
kommt eigentlich gar nicht in Betracht, wenn man bedenkt, daß die
Zinsen des in der Gasanstalt und in den Leitungsröhren steckenden
Capitales und die allgemeinen Kosten weit mehr betragen als die Fabri-
cationskosten des Gases selbst, welche 4,5 bis 4,7 Centimes per Kubik-
meter ausmachen, während der Confluente 30 Centimes bezahlt.

Die Entscheidungsgründe für die eine oder die andere Beleuch-
tung art müssen daher, nachdem die Fabrikationskosten auf ungefähr
gleiches Niveau gebracht sind, in anderen Punkten gesucht werden.

Dieser Punkt gibt es nun viele, welche zu Gunsten des Gasge-
misches von CO und H anzuführen sind, die aber schon von Dr. Berver
und Vial hervorgehoben wurden und die ich daher hier nicht wieder
aufzählen will.

Ist jedoch auf einen Vor teil aufmerksam machen, welcher dem
Gasgemisch CO und H allein zukommt, daß nämlich die niedrige
Temperatur, auf welche die Retorten zu bringen sind, diese Fabrikation
in sehr kleinen Rauchkästen anzuwenden gestattet, da es ohne zu große
Verluste an Brennstoff ausführbar ist, die Retorten nur zeitweise im
Gange zu erhalten, besonders wenn dieselben klein und für einen täg-
llichen Conflu von wenigen Kubikmetern berechnet sind.

Für kleinere industrielle Etablissements, welche nicht im Bereiche

Der Vorteil der beiprofunden Beleuchtungsart besteht aber nicht nur in dem schönen stetigen Lichte, sondern namentlich auch darin, daß die Verbrennungsprodukte keine Bestandtheile enthalten, welche Gemäße, Möbel, Silberwaren etc. angreifen und benachteiligen, wie es bei dem herkömmlichen Leuchtgas der Fall ist, weshalb bekanntlich die Gasbeleuchtung bisher wenig Eingang in den Wohnungen der Reichen gefunden hat.

Den Vorschlag Vial's betreffend, der durch Spaltung des Wassersstoff aus den Kohlenwassersstoffen und dem Ammoniak, welche die Steinkohlen bei der Destillation liefern, isolirt darstellen will, so läßt sich jetzt aus dem Vorhergehenden eher beurtheilen derselbe ausführbar seyn dürfte. Diese Möglichkeit ist durchaus zugegeben und wahrscheinlich verdient dieses Verfahren sogar den Vorzug in den Ländern wo Holzkohlen teurer, Steinkohlen dagegen billig sind. Immerhin wird aber diese Darstellung von reinem Wasserstoff ausgedehnte und complicirte Apparate erfordern und eine geschickte Leitung, sowie sorgfältige und anhaltende Nebenwachtung, und sich deshalb sowie wegen der erforderlichen hohen Temperatur nicht wie das Wassergas zur Fabrication in kleinem Masse stade eignen.

Durch die gebräuchlichen photometrischen Ver suche sind wir bekanntlich nicht im Stande unsere eigenen Resultate mit denen anderer zu vergleichen und daraus zu controliren, weil es eben kein eigenliches Normallicht gibt, da z. B. selbst Stearinen von verschiedenen Fabricationsarten einer und derelben Fabrik verschieden sind. Ich glaubte ein Mittel gefunden zu haben, ein wirkliches Normallicht darzustellen, indem ich chemisch reinen Wasserstoffgas in einem wohl aequilibrierten Gasometer unter constan tem Manometerdruck ausströmen ließ und das Gas an einem kleinen Platinneb verbrannte; da aber dieses kleine Neß nicht so fein mit dem kleinen Brenner verbunden werden konnte ohne dichtere Drähte anzuwenden, welche die Wärme absorbiren ohne zu leuchten, so fand ich in dieser Anordnung nicht die Constanz, welche ich mir verprägen hatte.

Vollständig gelungen ist mir aber ein Apparat zur Bestimmung des spezifischen Gewichtes der Gase, der den Bunsen'schen Apparate nachgebildet, für den täglichen Gebrauch jedoch praktischer ist.

In der Röhre A A bewegt sich der hölzerne Stift c c, welcher an den kleinen Schwimmer von dünnem Messingsled D befestigt ist. Die Glocke wird nun mitten in ein viel größeres Gefäß eingesetzt, dessen Durchschnitt hinlänglich groß ist, um die in demselben enthaltene Flüssigkeit nicht höher als 1 Centimeter steigen zu lassen, wenn die Bleiglocke mit Gas gesättigt wird. Um diese Füllung zu beweisende, ist die Röhre E E an der Wand des größeren Gefäßes befestigt; ihre obere Mündung wird durch einen Kautschukschlauch mit einer großen Thierblase verbunden, welche man mit dem Gase oder der Luft anfüllt, wo mit man den Apparat functioniren lassen will. Die Flüssigkeit in welcher die Bleiglocke verjent wird, ist eine gefärbte Kochsalzlösung, teils um die Absorption der Gase zu beschränken, teils um eine Sättigung des Gases mit Wasser dampfen zu hindern.

In der Glashöhre A A sind zwei Diamantstriche gemacht, der eine so weit oben, daß das Stäbchen e e noch einen kleinen Weg zurückzulegen hat, ehe der Schwimmer D an der Wölbung der Glocke anstößt, der andere so, daß der Schwimmer von seiner unteren Lage einen kleinen Weg zu machen hat, ehe das Stäbchen an dem Striche ankommt, so daß man Zeit hat nach vollendeter Füllung der Glocke sich mit der Sekundenuhr zur Beobachtung anzustellen.
Die Blase zum Füllen der Bleiglocke faßt ca. 1 1/2 mal so viel Gas als die Glocke; man füllt vorher die Glocke nur halb voll und läßt dann das Gas ausströmen, damit die Nöhe A, A sowie B sich sicher mit dem zu untersuchenden Gas füllen, ehe das zur wirklichen Messung dienende Gas eingeführt wird.

Die Ausfluss-Zeiten werden notirt und zum Quadrate erhoben, woran man das spezifische Gewicht durch den Ausdruck \(\frac{t^2}{b^2} \) bestimmt, worin \(t \) die Zeit bezeichnet, welche das zu untersuchende Gas zum Ausfluss brauchte, und \(b \) diejenige für die Luft. Da die nicht immer gleichbleibende Flüssigkeitsfähre sowie die Temperatur die Ausfluss-Zeiten beeinflussen, so ist stets gleich vor oder gleich nach dem Experimente mit dem Gas auch die Ausfluss-Zeit der Luft zu bestimmen, so daß beide Versuche unter ganz gleichen Umständen gemacht werden.

Bei meinem Apparate braucht die Luft je nach Temperatur und Flüssigkeitsfähre zwischen 160 und 180 Secunden zum Ausfließen; bei langer Zeit geben verschiedene Gase hinlänglich große Differenzen um zu genauen Resultaten zu gelangen.

Diese Bestimmungen des spezifischen Gewichtes, welche, wie man sieht, in wenigen Minuten ausgeführt werden können, sind sehr erwünscht zum Controlliren der Analyse der Gasgemische und können nöthigenfalls sogar die Analyse ersetzen, wenn man weiß, daß die Gasgemische vollkommen frei von Kohlensäure sind oder wenn man sie von derselben mittels Durchleitens durch einen Absorptionsapparat vorher befreit.

Das spez. Gewicht des Wassers ist 0,06927, dasjenige des Kohlensäures 0,96741.

Daher dasjenige eines Gemisches gleicher Raumtheile beider ist 1,03668 = 0,51884.

Meine täglichen Beobachtungen wechseln zwischen 0,44989 und 0,52652, innerhalb welcher Grenzen die Ausströmungsf orm des Gases sich sehr annähernd gleich bleibt.

Strassburg, im April 1869.
CVII.

Verfahren zum Wegthun von Sprengschüssen in mit Dynamit oder mit comprimirter Schießbaumwolle geladenen Bohrlochern.

Aus dem Mechanics' Magazine, April 1869, S. 240.

Mit einer Abbildung.

Der Werth dieser Erfindung und die ausgedehnte Anwendung, welche dieselbe bereits gefunden hat, lässt sich aus der Thatsache erklären, dass eine gewöhnliche Ladung von comprimirter Schießbaumwolle, welche auf den Boden gelegt und mit einem gewöhnlichen Jünder, einem Raketenzünd, entsündet wird, ohne Explosion und verhältnismässig langsam, ohne zerstörende Wirkung abbrannt; während eine derartige Ladung, mit dem oben besprochenen Jünder angebrannt, selbst in einem nicht geschlossenen Raume mit einem lauten, kanonenähnlichen Knall explodirt und zerstörende Wirkungen hervorbringt als Schießbaumwolle, welche

CVIII.

Über J. Gjers' Verfahren zur Stahlfab ration.

Aus Engineering, November 1868, S. 413.

Mit Abbildungen auf Tab. VI.

127 In der letzten Zeit haben Versuche im Laboratorium zu Wörgl gezeigt, daß auch nicht zusammengepreßte Schießbannwolle mit einer Kraft explodiert, welche derjenigen des Nitroglycerins gleichkommt, wenn man die Schießbannwolle auf dieselbe Weise wie Nitroglycerin einhübert, d.h. mittels Ersploßen einer kleinen Quantität Nitratkloserei, in Folge eines Schlags oder Stoßes; man ist. Seite 163 in diesem Bande des polytechnischen Journals (zweites Aprilenth 1869).

Fig. 3 ist ein Verticallschnitt und Fig. 4 ein theilweiser Horizontalschnitt eines kontinuierlichen Stahlstahlhöfens nach Gjers' System. Die aus den Abbildungen nicht ersichtlichen Theile dieses Ofens sind nach dem bekannten Siemens'schen Regenerativen- Systeme konstruirt.

Da die Regeneratoren zwei Reihen bilden, so werden die in den Gasen zu erhaltenen Gase aus diesen durch einen Canal abgeleitet und mit Hilfe des Neverserontiles durch den einen oder den anderen der Regeneratoren hindurchgeleitet; von hier läßt man sie, nachdem sie erhitzt worden, in den Ofen abwechselnd an der rechten und an der linken Seite des Heizraumes a einreten. Dabei treffen sie mit der aus dem anderen Regenerator derseits Reise kommenden erhitzten atmosphärischen Luft zusammen, und verbrennen nun. Die dadurch erzeugten

Homogeneisen immer ähnlicher; deshalb stellt er dieses Product in dem Tiegel stets etwas härter, d. h. kohlenstoffreicher dar, als es schließlich erforderlich ist.

Zur Erzeugung von Homogeneisen zieht er es dagegen vor, den Zuschlag von Eisenstein zu vermehren und weniger Mangan und Kohlenstoff zuzuügen. Mit anderen Worten: zur Darstellung von hartem Stahl wendet er einen Überschuss von Kohlenstoff an, welcher hinreicht, alles Eisenoxyd zu reduciren, das dadurch entstandene Eisen stark zu lösen und es leichtflüssig zu machen; wohingegen er, um Homogeneisen zu erhalten, nur so viel Kohlenstoff anwendet, daß alles Erz reducirt und das erhaltene Eisen nur wenig gefördert wird.

Vor dem Abschmelzen des Stahles oder Homogeneisens aus dem Recipienten b muß man wiederholt Proben ziehen, um sich zu überzeugen, daß das Metall in dem erforderlichen Grade gefördert ist; ist dies nicht der Fall, so muß man eine genügende Menge von Kohle, festeisen oder wiedergefördertem Puddleteisen zuzuschlagen. Hierauf sieht man es aus dem Recipienten in Zainformen ab und gibt dann neue Mengen der Beischickung auf.
CIX.

Ueber Oudemans' Verfahren der direciten Titirrung des Eisens mit unterschweigsaurem Natron; von Carl Balling.

Aus der österreichischen Zeitschrift für Berg- und Hüttenwesen, 1869, Nr. 19.

Die Zeitschrift für analytische Chemie von Fresenius, Jahrgang 1867, enthält S. 129 — 136 ein von Oudemans jun. in Delft angegebenes verbessertes Verfahren der direciten Titirrung des Eisens in Form von Drybd mittels unterschweigsauren Natriums; die Verbesserung dieser Titirrmethode \(^{129}\) besteht in der Anwendung eines Kupferoxydsalzes, welches, der Eisenoxydösung zugefügt, die Reduktion des Eisenoxyds vermittelt und selbst nicht früher zerlegt wird, bevor nicht alles Eisenoxyd zu Drybd reduziert worden ist. Die in der citirten Arbeit angetführten Belege für die Genauigkeit dieser Titirranalyse sind so übereinstimmend, daß sich diese Probe sowohl wegen der Einfachheit des Verfahrens selbst, als auch wegen der Kürze der Zeit, die sie zu ihrer Ausführung bedarf, der Anwendung in der Praxis empfiehlt.

Ich habe aus diesem Grunde vielfache Versuche angestellt und kann die von Oudemans gemachten Angaben bekräftigen; die Probe ist richtig und genau, wenn nicht zu viel des Kupferoxydsalzes hinzugefügt wird; weder freie Säure noch Verdünnung wirken nachteilig, wenn nicht zu viel von ersterer vorhanden ist, und die Gegenwart der Salze der Magnesia- und Eisengruppe sind, wenn von den gefärbten Salzen (Ni, Co) nicht viel in der Lösung enthalten ist, ebenfalls ohne Einfluß auf die Probenresultate.

Ich hand bei den von mir angestellten Versuchen die einzelnen Ueberlösungen von 0,1 — 0,3 im Mittel 0,2 \(\text{R. C.}^{2}\) differirend; da 1 \(\text{R. C.}^{2}\) einer Zehntel-Normallösung des unterschweigsauren Natriums (Na, \(\text{O}^{2} + \text{H O} = 124\)) 0,0056 Gramm Eisen entspricht, so macht diese mittlere Differenz bei den einzelnen Bestimmungen nur 0,0011 Gramm Eisen, bei einer Probe, die von 2 Gramm der zu untersuchenden Probe substanz herrührt, nur 0,055 Procent, und in jener Art ausgeführt, wie sie am Schlusse angegeben werden wird, erst 0,275 Procent aus. \(^{130}\)

Hinsichtlich der Genauigkeit für praktische Zwecke läßt diese Probe also nichts zu wünschen übrig.

130 Weil sich der ursprünglich gemachte Fehler bei der Berechnung multipliziert.
Auch die Menge der zuzufügenden Kupferulfalslösung ist eine bestimmte; dieselbe darf nämlich nur sehr gering sein und ich habe zu diesem Zwecke eine Kupfersulfatlösung von etwa 5 Grm. des Salzes in beinahe 1/4 Liter Wasser am besten gefunden. Von dieser Kupfersulfatlösung werden 2, höchstens 3 Tropfen zugefügt; hat man mehr davon genommen, so wird die zu titrirende Eisenlösung sehr bald trübe, der Verbrauch an Natronulfalslösung wird zu hoch und die Schlussreaktion unbedeutend. Ein kleiner Nebelstand erwächst aber der Probe dadurch, daß die anfangs von den zugefügbten Hydantoinum dunkelroth gefärbte Probesflüssigkeit bei Zusatz der Natronulfalslösung in Folge der fortschreitenden Reduction eine rothgelbe Farbe annimmt, daß die rothgelb gewordene Flüssigkeit bei weiterem Zusatz des Reagens sehr rasch entfärbt wird, und daß in Folge dessen die endliche Entfärbung, das ist der Eintritt der völligen Reduction, sehr leicht übersehen werden kann. Man muß demnach bei Eintritt der rothgelben Farbe der Probelösung sehr behutsam von dem unterschwefligsäuren Natron zutreffen; mäßige Schwefen des Kolbens, in welchem man titriert, befördert die Reduction.

In dieser Hinsicht steht die Probe der Margueritte'schen nach, weil es hier eines Zuwartens nicht bedarf, sondern der Schluss der beendeten Drybation bei derselben augenblicklich angezeigt wird.

Zur Vermeidung dieses Nebelstandes ist es gut, entweder eine schwächere Natronulfalslösung, als ein Zehntel normal, anzuwenden, indem man die erste Probe nach völliger Entfärbung als „überschritten“ ansieht, eine zweite Probe in einem anderen Gefäß vornimmt und vorichtig titriert, die zuerst angestellte Probe wird fast immer einen zu reichlichen Verbrauch an unterschwefligsäurem Natron ausweisen. Selbst dann, wenn man bereits einige Nebung in Beurtheilung der Probe erlangt hat, wird ein wenigstens einmaliges Wiederholen der Probe immer sehr von Nutzen sein.

Da es bei Bestimmung des Eisens in salzsaurer Lösung nach Margueritte ebenfalls eines mehrmaligen Titriers bedarf, so stehen sich beide Proben hinreichend der Schnelligkeit ihrer Ausführung gleich.

Ich habe allerdings in den seltensten Fällen bei 2—3 aufeinander folgenden Titrierungen mit gleichen Mengen Probelösung auch allemaal genau gleiche Verbrauchsmengen an Natronulfalslösung ableiten können, und dieser Fehler wird für die Probe selbst, wie ich Eingangs nachgewiesen habe, sehr unbedeutend; für die Bestimmung des Titer's des Natronulfalses ist dieser Umstand dafür um so wichtiger. Es ist nun am allerbesten, den Titer des unterschwefligsauren Natriums mit Stablösung (ein Zehntel normal) richtig zu stellen (J. Mohr, Lehrbuch der chemisch-
analysischen Titrir-Methode, 1862, S. 232); kann es in dieser Art nicht geschehen, so muß der Titer mit Beobachtung aller Vorsicht auf eine Eisenoxydösung von bekanntem Gehalt an Eisen bestimmt und es darf nicht vergessen werden, daß dieser Titer veränderlich ist und zeitweilig von Neuem festgesetzt werden muß.

Die Probe selbst ist für die Praxis zu empfehlen. Bei Bornabnahme derselben zur Unteruchung der Eisenerze wägt man 2 Gramme des Erzes ab, schüttet mit starker Salzsäure möglichst vollständig auf, verdünnt mit chlorfreiem Kali und locht bis alles freie Chlor entwichen ist; sodann filtrirt man die Lösung, wenn nötig, verdünnt auf 1/2 Liter und pipetirt davon 100 c. c. in einen geräumigen Kolben. Zu der Probelsösung wird nun so viel Nbobanfaltumlösung zugefügt, bis die Flüssigkeit dünste- roth gefärbt erscheint, und hierauf 2—3 Tropfen der kupfertrioxidlösung zugegeben, gut umgeschwenkt und verdünnt; man läßt nun unter zeitweiligem Umschwenken des Kolbens das unterschweifsgaure Natron ansfangs räther zufließen, sobald jedoch die rothgelbe Farbe der Probeflüssigkeit eintritt, setzt man nur sehr vorichtig zu, schwemmt um und wartet einige Sekunden. Schließlich beläßt man die Probe einen schwach rothgelben Stich, welcher nach kurzer Zeit auch verschwindet; die Flüssigkeit bleibt lange ganz klar und wasserhell. Man wiederhole die Probe eins, aber wenn sich größere Differenzen zeigen sollten, mehrmal.

Mittels dieser Probe kann ebenfalls der Gehalt des Erzes an Eisen- oxyd neben Eisenoxydul bestimmt werden, indem man zwei Proben anstellt, und in der einen in der angegebenen Art den gesamten Eisengehalt bestimmt, die andere aber bei Ausschluß der atmosphärischen Luft zur Lösung bringt und darin bloß jenen Eisengehalt ermittelt, der als Eisenoxyd in dem Erze enthalten war.

Pribram, im April 1869.

CX.

Ueber die Zusammensetzung des Heißgus-Porzellans oder Kryolithglases; von C. P. Williams, früherem Professor der analytischen Chemie am polytechnischen Collegium zu Philadelphia.

Aus dem Journal of the Franklin Institute, vol. LVII p. 252; April 1869.

Das sogenannte Heißgus-Porzellan (Hot-cast Porcelain) ist eine eigenthümliche, feste und zähe, mehr oder weniger durchsichtige, milchweisse,

Die zur Fabrication des Heisguß-Porzellans oder Kryolithglases dienenden Rohmaterialien bestehen in Sand, Zinkoxyd und Kryolith (der bekannten Verbindung von Fluor und Aluminium mit Fluor), welche in den gewöhnlichen Glasmacherbäden zusammen geschmolzen werden. Sobald dieser Satz zu ruhigem Flusse gekommen und gelautert worden ist, läßt er sich ganz so wie gewöhnliches Glas verarbeiten.

Dieses Glas besteht im besten Bearbeitungszustande nach der Analyse einer Durchschnittsprobe aus:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Gewichtsprozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kieseläure</td>
<td>63,84</td>
</tr>
<tr>
<td>Thonerde</td>
<td>7,86</td>
</tr>
<tr>
<td>Gipsnitrat</td>
<td>1,50</td>
</tr>
<tr>
<td>Mangandioxid</td>
<td>1,12</td>
</tr>
<tr>
<td>Zinkoxyd</td>
<td>6,99</td>
</tr>
<tr>
<td>Kalt</td>
<td>1,86</td>
</tr>
<tr>
<td>Magnesia</td>
<td>0,25</td>
</tr>
<tr>
<td>Natron</td>
<td>10,51</td>
</tr>
<tr>
<td>Fluor</td>
<td>8,05</td>
</tr>
<tr>
<td>(davon ab Steuerstoff = dem Fluor entsprechend =)</td>
<td>3,39</td>
</tr>
<tr>
<td>Total</td>
<td>98,59</td>
</tr>
</tbody>
</table>

Die bei diesen Analysen befolgte Methode war folgende: Das gepulverte Glas wurde mit kohlenstoffhaltiger Natron geschmolzen, die erhaltene Masse mit Wasser behandelt und nach Fällung der Kieselsäure und der

Unter der Annahme, daß das Fluor in dem Kryolithglass als Kieselfluornatrium (Na F, Si F2) vorhanden ist, gelangen wir zu folgender prozentischer Zusammenfassung dieser Verbindung:

\[
\begin{align*}
\text{Kieselsäure} & : 59,59 \\
\text{Thonerde} & : 7,86 \quad 3,66 \quad 3,66 & : 4,11 = R^2 O_3 \\
\text{Eisenoxyd} & : 1,50 \quad 0,43 \\
\text{Manganoxydul} & : 1,12 \quad 0,25 \\
\text{Zinkoxyd} & : 6,99 \quad 1,38 \\
\text{Kalsilicat} & : 1,86 \quad 0,53 \\
\text{Magnesia} & : 0,25 \quad 0,10 \\
\text{Natron} & : 6,18 \quad 1,59 \\
\text{Natrium} & : 3,25 \\
\text{Silicium} & : 1,98 = 13,28 \text{ Proc. Kieselfluornatrium.}
\end{align*}
\]

\[
\text{Flower} = 8,05 \\
\text{Sauerstoffgehalt} = 31,78
\]

Dieser Zusammenfassung entspricht sehr nahe die Formel:

\[
2 (R^2 O_3, 3 \text{ Si O}_2 + 3 \text{ [RO, 3 Si O}_2]) + \text{ Na F, Si F}_2.
\]

Diese Zahlen würden für 100 Theile des ursprünglichen Sages bei seinem Eintragen in die Häfen folgende annähernde Zusammenziehung ergeben:

67,19 Theile Kieselsäure, 23,84 ... Kryolith und 8,97 ... Zinkoxyd.

Abgesehen von dem schonen weißen Glase, welches in dieser Weise erzeugt wird, hat der Glashändler von der Verwendung des Kryoliths

138 Nach Sauffere findet die Schmelzung bei der Temperatur von 3760 Bedgwood statt.
noch den Vorteil, daß ihm dieses Mineral die Soda verhältnismäßig billig liefert.

Das Heißguß-Porzellan läßt sich durch Metallpyde ebenfo gut färben wie die gewöhnlichen Glasarten; der Effekt der Farbstoffe wird aber durch das schöne Weiß seines Körpers in bedeutendem Grade erhöht. Sowohl das weisse als das farbige Kryolithgläs findet zur Fabrication von Gefäßen für Drogenfässer und Paraffine, zu Lampenfüßen und Lampenförmern, zu Tischauflagen und zur Fußbodenbeleidigung schon jetzt eine sehr ausgedehnte Anwendung.

Zu bemerken ist noch, daß die zur Erzeugung des Kryolithglases benutzten Rohstoffe aus dem Material der Häfen keineswegs stärker einwirken, als die Säfte für die Fabrication der gewöhnlichen Gläser sind. Die in Philadelphia verwendeten Häfen werden aus einem Gemenge von deutschem und Missouri-Thon mit Chamotte oder alten Häfenäthern angegossen.

CXI.

Mittheilungen aus dem Laboratorium für technische Chemie in Braunschweig.

(Fortsetzung von S. 308 des vorhergehenden Heftes.)

II. Abnormes Verhalten von Zuckerfuss.

Beide Zucker waren Raffinade aus derselben Handlung zu denselben Preise und nahe von denselben Anliegen, nur erschienen die zuletzt gefaustte von dichterem schönerem Korn und etwas weisserer Farbe. Da die abnorme Zuckertorte nicht näher bezeichnet werden konnte, so war die Möglichkeit abgeschnitten, den Gegenstand weiter zu verfolgen. Vielleicht sind in Zuckerfabriken beschäftigte Chemiker Gelegenheit, die zu thun und damit ein vielleicht wertvolles Merkmal zur Unterschei- dung verschiedener Sorten raffinirten Zuckers aufzufinden.

III. Sodabereitung aus schwefelsaurem Natron und Eisenoxyd; von Walbeda.

Das Verfahren, Soda aus schwefelsaurem Natron fabrikmäßig durch Schmelzen mit Eisenoxyd und Kohle zu erzeugen, stellt so große Vortheile in Aussicht, daß die praktische Ausführbarkeit in hohem Grade
wünschenswerth erscheint. Schon Stromeyer hat diese Vorteile in seiner Abhandlung über diesen Gegenstand aufgezählt: es wird kein unbrauchbarer Niederschlag erhalten, denn das rücksichtslose Schwefeleisen ist bequem und gut zu verwerthen, der Schwefel zur Schwefelsäurefabri-
cation, das Eisenoxyd dient wiederholt zu demselben Sodaprocess; die Auslaufung ist ungleich leichter und vollkommener als bei dem Leblanc-
schen Verfahren, die Salzen sind frei von Schwefelaurium.

Bei Gelegenheit einer Darstellung von Schmelze aus Sulfat, Eisen-
 oxyd und Kohle, zunächst zu Vorleistungszwecken, wurden einige Beob-
achtungen gemacht, welche zu den aufgezählten Vorteilen noch neue hin-
zuzufügen schienen und deswegen weiter verfolgt wurden.

Es zeigte sich, dass die Vorrichtung von Kopp, worauf 3 At.
 schwefelsaures Natron, 1,7 At. Eisenoxyd und 16 At. Kohlen-
vulver angewendet werden, einen unnötigen Ueberschuss an den beiden
letzten Zutaten enthält. Für die folgenden Veruche wurde die einfachste
Vorrichtung von Stromeyer zu Grunde gelegt, nämlich:

\[\begin{align*}
\text{Schwefels. Natron} & \quad \text{Eisenoxyd} & \quad \text{Kohle} \\
3,0 \text{ At.} & \quad 1,0 \text{ At.} & \quad 8,0 \text{ At.} \\
105 \text{ Gew. Th.} & \quad 40 \text{ Gew. Th.} & \quad 25 \text{ Gew. Th.}
\end{align*}\]

Die Mischung ist leicht schmelzbar, kommt bei guter Rothglübbis
in Fluss, ist ansangs dick und teigig. Sie bläht sich in Folge der
starren Gasentwicklung auf, die sehr lange andauert. Wenn diese zu
Ende geht, sinkt die Masse, wird dünnsüssig und lässt sich gut auf eine
kalte Eisenplatte ausgießen, wo sie sofort erstarrt. Die fertige Schmelze
ist fast schwarz mit einem Stich ins Braungrün und einem schwachen
metallischen Schein an der Oberfläche. Sie verbieht sich an der Luft,
namentlich in einem Strom von feuchter Kohlenfääre ganz wie die
Stromeyer beschrieben hat. An der Luft verwandelt sie sich nach
einiger Zeit in eine matt schwarze, hennruhartige Masse; in einem Strom
von feuchter Kohlenfääre erblitzt sie sich, bläht sich stark auf, erhält
Kantenrisse, zerfällt und verwandelt sich unter Entwicklung von Schwefel-
wascherstoff in eine ähnliche ausgeschlossene mattschwarze Masse. Nur gegen
Wasser verbieht sich die Schmelze wesentlich anders, als Stromeyer mit
der von ihm bargetesten beobachtet zu haben scheint. Mit viel Wasser im
Sieb behandelt, gab nämlich die frische oder in geschlossenen Gefäßen
aufbewahrte Schmelze keine Aufquellung (Emulsion), die sich durch
Kohlenfääre nicht klären läst, sondern unter Hinterlassung eines geringen

33 Annalen der Chemie und Pharmacie Bd. CVII S. 333.
schwarzen Rückstandes eine schwarze grüne unschwer filtrierbare Lösung; durch Einleiten von Kohlensäure wurde diese völlig wasserklar, während sich ein schwarzer Niederschlag von geringem Umfang am Boden absetzte. Die wasserklare Lösung hinterläßt nach dem Eindampfen einen weissen, löslichen, felsigen Rückstand, der stark alkaliisch reagiert, mit Säuren stark aufbrauch, Kleislage nicht schwärzte, aber Schwefelsäure und etwas Eisen enthieilt.

Der in heißem Wasser unlöschliche Rückstand betrug in einem Fall nur 2,79 Proc. der Schmelze und bestand größtenteils aus Kohle.

Ebenso wie gegen Kohlenaure verhält sich die schwarze grüne Lösung der Schmelze gegen Kohlenaures, gegen Chlorwasserstoffsäures Ammoniak, gegen Chlornatrium und gegen Weingeist; alle diese geben eine wasserklare Lösung und den schwarzen Niederschlag. Wird dieser Niederschlag mit destilliertem Wasser gewaschen, so gibt er wieder eine grüne Lösung.

Diesem Verhalten nach könnte es kaum eine einfache Fabrication geben, als Herstellung einer solchen Schmelze, Lösung derselben in warmem Wasser, Fällen mit Kohlensaure, Eindampfen der klaren Lösung zu Soba, während der schwarte Niederschlag, der noch Natrium neben Eisen und Schwefel enthält, seinen Schwefel in den Schwefelsäure-Röstöschen abgebend, wieder zu neuer Schmelze verwendet würde. So verlockend indessen das Verhalten der Schmelze erscheint, so bedeutende Schwierigkeiten bietet die Herstellung derselben: sie greift nämlich die Gefässe aller Art in einer wahrhaft erschreckenden Weise an. Zwei Schmelzen im Gußeisentiegel bei Hölzofenfeuer im Windofen ergaben bei der Analyse durch Aushöhlen mit Chlorwasserstoffsäure:

<table>
<thead>
<tr>
<th>Unlöslicher Rückstand</th>
<th>2,32</th>
<th>4,59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisen</td>
<td>64,73</td>
<td>62,06</td>
</tr>
<tr>
<td>Schwefel als Schwefelwasserstoff</td>
<td>10,59</td>
<td>10,15</td>
</tr>
<tr>
<td>Schwefelsäure</td>
<td>2,49</td>
<td>0,40</td>
</tr>
<tr>
<td>Natron</td>
<td>19,87</td>
<td>22,56</td>
</tr>
<tr>
<td>Total</td>
<td>100,00</td>
<td>99,76</td>
</tr>
</tbody>
</table>

Der gesammte Schwefelgehalt der Schmelze a) betrug 12,62, derjenige der Schmelze b) 10,95. In der Schmelze a) in der Natrongehalt aus der Differenz berechnet, in b) als Chlormetall bestimmt. — Die Mischung woraus diese Schmelzen geschmolzen wurden, enthält ungleich weniger Eisen als das Produkt; die vergleichende Berechnung ergibt nämlich:
<table>
<thead>
<tr>
<th></th>
<th>Gesamter Schwefelgehalt</th>
<th>Natron</th>
<th>Eisen</th>
</tr>
</thead>
<tbody>
<tr>
<td>die Schmelze a)</td>
<td>100 " "</td>
<td>164 " "</td>
<td>513 " "</td>
</tr>
<tr>
<td>" b)</td>
<td>100 " "</td>
<td>202 " "</td>
<td>565 " "</td>
</tr>
</tbody>
</table>

Die schwarze Lösung gab mit kohlensaures Ammoniak einen schwarzen Niederschlag und eine wasserlösliche Lösung; die Analyse von beiden Theilen ergab:

<table>
<thead>
<tr>
<th></th>
<th>0,68</th>
<th>0,65</th>
<th>0,62</th>
<th>77,38</th>
<th>19,51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwefel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eisen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natron</td>
<td>0,62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>schwefsaures Natron</td>
<td>77,38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kohlensaures Natron</td>
<td></td>
<td>19,51</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

98,84

Der körnige Theil von der anhängenden gesloffenen Masse durch
verdünnte Salzsäure befreit, hinterließ einen darin unlöslichen, in mikroskopischen Oktaëdern kristallisierten, magnetischen Körper, Eisenoryb-Drystbul, der seinen eigentlichen Bestand ausmacht. — Die Schmelzung beweist, wie sehr schädlich und den Erfolg umkehrend auch ein be-
schränkter Zutritt von Luft ist.

Die Abhaltung der Luft wäre bei der Ausführung im Großen eine leicht zu befriedigende Forderung, dagegen dürfte die Frage, welches Material zu den Schmelzgefäßen oder deren Auskleidung zu nehmen ist, kaum überwindliche Schwierigkeiten bieten, namentlich da die beiden Hauptstoffe, Gussseisen und Thon, ganz unhalbar sind.

CXII.

über einen dolomiti schen Mergel und dessen Verwendung zur Cementsfabrikation; von L. Gätschenberger.

Seit längerer Zeit wird unweit Heidelberg aus einem dolomiti schen Mergel, welcher dort zu Tage kommt, ein Cement bereitet von folgender Zusammensetzung:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalk</td>
<td>44,22</td>
</tr>
<tr>
<td>Magnesia</td>
<td>17,77</td>
</tr>
<tr>
<td>Eisenoryd</td>
<td>3,07</td>
</tr>
<tr>
<td>Thonerde</td>
<td>5,75</td>
</tr>
<tr>
<td>Manganoryd</td>
<td>2,33</td>
</tr>
<tr>
<td>Kali und Natron</td>
<td>4,72</td>
</tr>
<tr>
<td>Kieselsäure</td>
<td>22,14</td>
</tr>
</tbody>
</table>

Es war mir Gelegenheit geboten, mit dem Mergel, aus welchem der Cement direkt gebrannt wird, ausgedehntere Versuche anzustellen, und bin ich zu dem Resultate gekommen, daß es zwei Wege gibt, um ein Produkt von vorzüglichen hydraulischen Eigenschaften daraus zu gewinnen.

Erstens, man brennt die Steine bei einer Temperatur welche etwas unter 400° C. liegt, so daß nur die Magnesia ihre Kohlen säure abgibt und der Kalk dieselbe gebunden hält.

Zweitens, man brennt die Steine bei einer sehr hohen Temperatur, bis dieselben stark sintern und etwas in Flüs gerathen.

Im ersten Falle ist die Magnesia das wirksame Agens; dieselbe erhär tet, wie mich meine Versuche belehrt haben, unter Wasser wohl mit
kohlenstoffhaltiger Kalk aber nicht mit Ausfall, wenn derselbe in beträchtlicher Menge vorhanden ist. Steigert man nun die Temperatur zu hoch, nicht aber so hoch, daß der Kalk mit Eisenoxyd und Thonerde in Verbindung treten kann, so bildet der nun als Ausfall vorhandene Kalk, in Berührung mit Wasser gebracht, Kalkhydrat; hierdurch wird die Consistenz wesentlich beeinträchtigt und der Cement erhält gewöhnlich Risse.

Im zweiten Falle verliert die Magnesia bei der hohen Temperatur zwar ihre hydraulischen Eigenschaften, spielt aber nun vermöge ihrer Verwandtschaft zur Kieselsäure eine ähnliche Rolle wie der Kalk. Der so erhaltene Cement ist dem erstem sowohl durch rafhes, als vorzügliches Erhärtet weit überlegen.

Es ist sehr wesentlich, diese zwei Punkte im Brennen, bei Verwendung von dolomitischen Kalken ins Auge zu fassen, da man sonst vergeblich nach Gründen sucht, warum man einmal ein gutes, ein anderes Mal ein mittelmäßiges oder ganz unbrauchbares Produkt erhält.

Es mag hier auch noch erwähnt seyn, daß man in dem Verhältnisse von Kalk und Magnesia zur Kieselsäure, Eisenoxyd und Thonerde weiter gehen darf, als bei Cementen welche nur unbeträchtliche Mengen von Magnesia enthalten.

Ein vorzüglicher Cement, welcher bei hoher Temperatur gebrannt wurde, enthieilt auf 100 (SiO₂, R₂O₃) 304 CaO, MgO, wobei Kalk und Magnesia in dem Verhältnisse von 2 : 1 standen, während 100 (SiO₂, R₂O₃) auf 304 CaO schwerlich einen brauchbaren Cement liefern würde.

Miscellen.

Seltshcmierende Liederungen.

esfordert sie weder Del noch irgend eine Schmierie, wie lange sie auch benutzt werden mag; sie ist reinst, bauerhaft und verblüft nicht; reduziert die Reibung auf ein Minimum; hält die Stangen rein und glatt; ist leicht angebracht; schützt vor Zeitverlust und Verwüchungen von Material — aus diesen Grunde allein bringt sie ihre Kosten mehrfach wieder ein. Sie wird in verschiedenen Größen hergestellt, so daß sie in jede Stopfbüchse paßt, von der äußeren Schieberstange bis zur Pumpenrollenstange von 2 Zoll oder mehr Durchmesser. Sie ist stets zum Gebrauche fertig, da man sie nur in Klingen zu schneiden und um die Stange wie gewöhnliche Pakung zu legen hat; aber es läßt sich viel leichter einlegen, da sie verhältnismäßig wenig Druck nötig hat. Aus einer großen Anzahl von Zeugnissen seitens der verschiedensten bedeutenden Firmen, welche alle ihre Zufriedenheit mit der neuen Pakung ausdrücken, geht hervor, daß alle, welche damit Versuche gemacht haben, ihren steten Gebrauch be-stätigt hatten, weil sich herausgestellt hat, daß sie jede andere fasziegende oder gewöhnliche Pakung, welche Del erfordert, wechselweise überbietet, und nach längerem Gebrauch ebenfalls leicht aus der Stopfbüchse entfernt, wie eingeschlagen worden soll. Außerdem ist sie noch bei einer Anzahl Eisenbahnen zur vollsten Zufriedenheit eingeführt worden.

Über den Einfluß des Phosphors auf die Eigenschaften des Schmiede- eisens und Stahles; von W. M. Williams.

Dr. P. H. Paul hat kürzlich auf Grund von Analysen, welche er ausführte, die Anschauung ausgesprochen, daß ein geringer Gehalt an Phosphor im Schmiedeeisen und Stahl nicht so nachteilig sei, als man bisher angenommen hat, und Dr. Miller hat ihm hierzu beigesagt. 385

Wenn das Schmiedeeisen oder der Stahl in Form von Stäben lediglich einer in der Richtung der Länge der Stäbe wirrenden Kraft, welche niemals plötzlich wirksam werden und durchaus nicht von Vibrationen begleitet sein würde, ausgeführt werden

sollte, so würde die Folgerung Paul's, daß ein Gehalt von 0,24 Proc. Phosphor ganz unzulässig sei, und Müller's Bemerkung, daß ein Gehalt von 0,298 Proc. Phosphor im Stahlseifen die Qualität desselben nicht beeinträchtigen, ganz richtig sein; denn Stahlseife würde für diesen Zweck durch einen röthlichen Phosphorgehalt verbessert werden. Es sei aber offenbar, daß die erwähnten Bedingungen praktisch nicht realisiert werden können.

Wenn man die von der Schneide eines Messers, eines Beiles, eines Schwertern, eines Grabstechers oder eines Drehstahles, von den Zähnen einer Säge oder einer Säge zu verrichtende Arbeit, überhaupt die Leistung, welche man von Schneidwerkzeugen verlangt, in Betracht zieht, so muß es einleuchten, daß das Vermögen, einen plötzlichen, vibrierenden und transversalen Stoß zu widerstehen, die Eigenschaft sei, auf welche es hauptsächlich ankomme. Diese Eigenschaft sei es aber gerade, welche der Phosphor zu vernichten strebe. Ein Nebenmaß an gebundenem Kohlenstoff habe eine ähnliche Wirkung, und es sei überhaupt unmöglich, Härite ohne ein Oxyd an Festigkeit zu erlangen; dieses Oxyd sei aber weit größer, wenn die Härite durch Phosphor, als wenn sie in gleichem Grade durch Kohlenstoff herzurücken würde.

Die von Phosphor herzustellende Härite unterscheidet sich von der von Kohlenstoff herzustellenden außerdem durch ihre Unversprödigkeit, d. h. dadurch, daß sie nicht durch Anlassen verringert werden können. Wenn man das Eisen oder den Stahl erhitzte, so verschwinden sie; aber beim Abkühlen stelle sie sich ohne merkliche Veränderung wieder ein. (Chemical News, vol. XIX p. 481; polytechnisches Centralblatt, 1869 S. 550.)

Rötigen, chemischen und physikalischen Inhaltes; von Prof. Dr. Böttger.

1) Über Schwarzfärbung der zu Dachbedeckung dienenden Zinkbleche.

Um Zinkblechen, welche zur Dachbedeckung verwendet werden sollen, eine dauerhafte, zugleich gegen Oxidation schützende Schieferfarbe zu geben, verfahren man auf folgende Weise: Man überführt in einer Porzellanflasche 1 Gewichtsteil sogenannte kupferfarbene (Kupferglühspan) mit Königswasser (einem aus 3 Teilen gewöhnlicher Salzsäure und 1 Theil Salpetersäure bereiteten Säuregemisch) erwarnte so lange, bis unter Aufbraunen und Entwickelung von phosphorsauren Dämpfen die Ausscheidung der kupferfarbene erfolgt ist; jetzt hinauf der grünen Kupferoxidlösung 64 Gewichtsteile Wasser zu und filtrieren. In diese Flüssigkeit stecke man nun das zu färbende geborgene geräumte Zinkblech auf wenige Augenblicke ein, spüle daselbe hinauf oberflächlich mit Wasser ab, lasse es an der freien Luft abtrocknen und tue es dann, gleichfalls nur auf wenige Augenblicke, in eine Flüssigkeit, welche man durch Ausscheiden von 1 Gewichtsteil schwarem Koch und 2 Gewichtsteilen natürlichem Asphait in 12 Gewichtsteilen Benjol oder leichtem Steinsalzenthéol erhält. Nach erfolgtem Trocknen des Harzüberzuges reibe man das Blech, zur Vervollkommnung eines gewissen mattgeschen Glanzes, mit Bannwolle oder baumwollenem Zuge.

Zum hier kurz angedeuteten, in der Praxis bereits bewährten Verfahren der Schwarzfärbung von der Dachbedeckung dienenden Zinkblechen war ich veranlaßt durch die Anfrage eines Industriellen: „wie sich wohl am zweckmäßigsten dem so blühenden Lichtreife neuer Zinkbedachungen möchte vorbeugen lassen?”

2) Über ein neues, außerdentlich empfindliches Reagens auf Alkali, insbesondere auf Ammoniak.

Als ein solches hat sich mir jüngst das sogenannte Alfamin zu erkennen gegeben, und zwar als noch weistürmern, wie der vor einigen Zeit von mir zu demselben Zweck empfohlenen Schwach angesärbte Salzstoff aus den Blättern der hierpflanze von „Colus Verschaffelti.“ 136 Das Alfamin, ein Extrait aus der Alfannenwurzel, welches gegenwärtig von Hirsch in Leipzig fabrikmäßig hergestellt wird, löst man zu

Die mit einer allseits orthoalphother Alkoholinslösung imprägniirten Papiere haben vor den mit dem schwach angelauchten Verbrennungswasser von Coalens gefärbten Papierstreifen auch das noch voraus, dass sie beim Aufbewahren nicht, wie dieselben, brüchig und mürbe werden, sondern unverändert lange, ohne sich im mindersten zu verändern, aufbewahrt werden können.

3) Werthvoller Anfang für Elektroimmachinen.

4) Neue Bereitungsmittel reinen Sauerstoffgases bei gewöhnlicher mittlerer Temperatur.

5) Künstlichen Anfang mit einem goldähnlichen Untergründe zu versehen.

Berufertigung man auf garibolische Weise, mittels einer Kadmiumsuperoxid, blanke Stahlschichten, und überschichtet sie hierauf, gleichfalls unter Mitwirkung einer aus verschiedenen Mengen des Verhältnisses Kohlenstoffe mit einem anderen Arsen, durch Herabzüng einer maßig concentrirten Lösung von Kadmium, trennt sie hierauf vorichtig, wagt sie mit etwas Chlorisamtes, überblendet und füllt sie schließlich in liegenden Eis- oder Braunol, so steht man innerhalb weniger Stunden die Deckflächen versehen sich scheinbar verloren. Es fügt namentlich, meinen Beobachtungen.
tungen zufolge, schon bei einer Temperatur von 1600 °C. eine würtzische Durchbrin\ 6)

gung des Kupfers und Zinkes, respective die Bildung von sogenanntem Lombar statt.

Einfaches Bronzierungsv erfahren.

Meinen Beobachtungen zufolge ist eine nicht zu verdünnte Wasserglaslösung das
geregelte Bindemittel zur Befestigung aller Arten von Bronze pulver auf Holz, Stein-
gut, Porzellan, Bilderrahmen, Spiegelrahmen u. s. w. In dem Ende hat man nur
nötig, das betreffende Gegenstand mittels eines garen Pinsels ganz dünn mit der
Wasserglaslösung zu bestreiichen und unmittelbar darauf das Gute, in einem mit seiner
Gase überzogenen Ofen mit weiter Mündung befindliche Bronze pulver auszusprüchen,
den Ueberhang des Pulvers durch schwaches Klopfen vom Gegenstande zu entfernen,
und ihn hiernach, falls der bronzegefärbte Gegenstand aus Porzellan oder Stein
gut besteht, schwach zu erwärmen. Das Bronze pulver haftet nach dieser Prozedur so fest
auf dem betreffenden Gegenstande, daß dieser selbst eine Rolle mit einem Achatstein
verträgt. Besonders zur Ausbeutung schabbaft gewordenen Bilderrahmens
dürfte dieses einfache Verfahren sich empfehlen.

Bewärmtes Mittel zur Entfernung verschiedener Flecke aus unge-
färbten leinenen und baumwollenen Geweben.

Eine jüngst an mich ergangene Aufforderung von Seiten mehrerer Mitglieder
unseres physischen Vereines war die Veranlassung zur Beredung des in der Nieder-
sicht genannten, schon so vielfach andererseits ventilirten Gegenstandes. — Als das
bewärmte Mittel zur Entfernung der von Rotwein oder Heidelbeerensaft
bewirkenden Flecke aus Leichfachen, Servietten u. dgl. empfiehlt sich, die betreffenden
Stellen mit ein pulverisierter Weinessen dünn zu bestreichen und dann mit rau
der Laufe (unterchiorisauer Natronlösung) zu überschreiben. Zur Entfernung von
Silberflecken (herrührend von Silberpulverlösungen) bewährt sich immer noch am
besten die vorzügliche Anwendung einer warmen konzentrierten Lösung von Cyanatium.
Zur Entfernung von Tintenflecken eine concentrirte käse Lösung von sauren
galvanischen Kali (sogen. Säurerestmittel). Zur Befestigung von (selbst jahrelaut) Nass-
flecken ist nichts geeigneter, als die betreffende betreitene Stelle in eine Flied er heißes,
gesättigte Lösung von Säurerestmittel einzutauen und dann mit recht seinem Inn-
Färb zu bestreichen. Hier durch einen Hauber sieht man alle die hier angeschwitzten
Glatzungen von Flecken, in Folge der Anwendung erwärmter Agentien, von Weißungen
verchwunden. (Aus dem Jahresbericht des physischen Vereines zu Frankfurt a. M.
für 1867—1868, S. 66.)

Neben das galvanische Verhalten des Palladiums; von Professor

J. C. Poggendorff.

In seiner merkwürdigen Arbeit über das Hydrogenium (polytech. Journal Bd.
CXCI S. 389) hat Graham unter Anderem gezeigt, daß das Palladium, wenn es
Bassoffstoff einlangt, sich ausdehnt, und wenn es desselben verliert, sich noch härter
zusammenschließt. Ein Palladiumdraben, der anfangs 609,444 Millimeter maß, verläng-
erte sich durch vollständige Sättigung mit Bassoffstoff um 9,77 Millim., und kam nach
Austreibung des Gases auf 599,444 Millim. zurück, verlängerte sich also um 9,7 Millim.
Wobei Ergebnissen öffnen sich, sobald man gerade seine numerischen Bestimmun-
gen verlangt, in sehr demonstrativer Weise dargethan, wenn man das Palladium auf
elettrolytischem Wege mit Bassoffstoff imprägnirt, und sich dabei einer sehr dünnen
Platte bedient. Ich wandte eine Platte an, welche bei 118,0 Millim. Länge und
28,0 Millim. Breite, nur 0,1 Millim. dick war und 8,0 Millim. entfernt von einer Platins-
platten in verdünnter Schwefelsäure stand.

Verbindet man dieses Plattenpaar mit einer kleinen Grove'schen Batterie von
drei Elementen in der Weise, daß sich das Palladium mit Bassoffstoff beladen muß,
so sinkt man dasselbe schon nach wenigen Minuten sich vom Platin abgießen und ganz
beträchtlich krümmen. Nach ungefähr einer Viertelsekunde hat diese Krümmung ihr
Maximum erreicht. Nun tritt eine entgegengesetzte Krümmung ein, bemerkt welcher
die Platte sich anfangs gerade richtet, dann sich noch mehr dem Platin zu biegt, und
endlich mit demselben in Berührung kommt, wodurch dann der elektrolytische Prozeß seine Gliedhaft erreicht. Der Grund dieser doppeltten Krümmung der Palladiumpfanne ist offenbar einfach der, dass sich zuerst ihre dem Platín zugekehrte Seite und später die andere mit Wasserstoff färbt.

Ist hierdurch die Ausdehnung des Palladiums bei Umnahme von Wasserstoff vorgeht, so lässt sich andererseits die Zusammenlegung des Metalls bei Verdrängung des Gases fassen noch augenfälliger machen. Dazu ist nur erforderlich, dass man die Platte, nachdem sie auf das Maximum ihrer ersten Krümmung gekommen ist, aus der Flüssigkeit nimmt, absättigt, abwässt und über eine Weingeisselsamme bringt. So wie sie hierhinreichend heiss geworden ist, ermittelt sich sich in entgegengesetztem Sinne, ausser-

ordentliche rasch und so stark, dass sie sichtlich aufsrollt erscheint.

Schließlich mag noch bemerkt sein, dass wiewohl es Graham und Bürg nicht geglückt ist, auf rein chemischem Wege ein Palladiumhydrat darzustellen, doch eine solche Verbindung durch den elektrolytischen Prozeß gebildet zu werden scheint; denn die verdünnte Schwefelsäure, in welcher dieser Prozeß vorgenommen wird, färbt sich intensiv braun, ohne sich zu trüben oder etwas abzuscheiden. Eine Lösung von Weinsäure oderコミュニケーション, welche, nach einer vor vielen Jahren von mir gemachten Beobachtung, durch das Tellur eine so schon und tiefe Färbung bekomm, bleibt dagegen mit Palladium weasellar und ungelöst. (Berichte der deutschen Chemischen Gesellschaft zu Berlin, 1869, Nr. 4.)

Anlyse einer Smalte.

Bei der Analyse einer prächtigen, seieren, dem Ultramarin ähnlichen Smalte erhobt Dr. M. D. Corbmaths jun. in Delhi folgende Resultate:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kieselsäure</td>
<td>63,7</td>
</tr>
<tr>
<td>Biocrybd</td>
<td>2,7</td>
</tr>
<tr>
<td>Kobaltcrybd</td>
<td>5,7</td>
</tr>
<tr>
<td>Kali</td>
<td>20,1</td>
</tr>
<tr>
<td>Chäomud</td>
<td>4,0</td>
</tr>
<tr>
<td>Crenybd</td>
<td>1,3</td>
</tr>
<tr>
<td>Wasser</td>
<td>1,7</td>
</tr>
</tbody>
</table>

Von Kobaltcrybd war keine Spur zu finden. (Journal für praktische Chemie, Bd. CVI, S. 55.)

Daher Farbstoff „Besjwin.”

Gefürt tann man mit dieser Lösung werden, ohne jegliche Zufahrt aus Waßer und Seide, in einem Bad aus reinem, wechseln Wasser, das man auf circa 700 Reamur kommen lasst und nach Beibrünn mit obiger Lösung ของคุณ. Een sehr geringer Hinzug von unterschweilglaufem Natron, etwa 1/6 vom Gewicht des angewendenden Farb- stoffes, fann beim Färben der Wolle mit Fröthwor angewendet werden. Sehr satte

Zum Druck aus Wolle kann der Leig, mit Wasser zu einem Brei gut vermischt, mit Schwefelwasser verlegt, direkt benutzt werden; wenn man ihn, wie gewöhnlich, durch ein feines Sieb schlägt; für hellere Töne nimmt man die concentrirte und filtrirte Lösung. AUCH beim Druck kann Zusatz von etwas Chromzinn zur Farbe empfohlen werden.

Zum Färben der Baumwolle dient eine Del- oder Seifenbeize in der Weise, wie sie auch für andere Aniinspuren angewendet wird. Nach vollkommener Restaurierung, von Schönhit und Halbbarkeit befreit, lassen sich erzielen durch folgende Vorbereitung der Baumwolle:

1. Zuerst schmackt man die Baumwolle, trocknet sie und bringt sie hierauf in eine sehr schwache, kalte Lösung von zumaltem Natron. Man vergisst aus und passirt sie dann durch ein mit Schwefelsäure angeleitetes Wasser, worauf in steigendem Wasser gut ausgewaschen wird.

2. Dieser Farbmass kann ferner sowohl in Verbindung mit Zuckmor, als mit wasserlöslichem Hofmanns-Violett geläth und gebraucht werden, und ermöglicht hierdurch die Herstellung sehr interessanter Violetterfarben. Auch Holzfärben können damit annährend werden. (Musterzeitung für Farberei e. k., 1889, Nr. 9.)
Das innere Gefäß wird mit dem zu prüfenden Del gefüllt, indem man dafür sorgt, daß das dazwischen befindliche Sand nicht brechen. Das äußere Gefäß wird mit kaltem oder saft dem Wasser gefüllt. Nachdem das innere Gefäß in das äußere eingesetzt ist, wird der Haken des Tiers durch eine kleine Flasche gewärmt; andererseits wird das Thermometer in das Del eingesteckt, so daß die Flüssigkeit in überschüssiger Menge von der Kälte getrieben wird. Der Apparat wird jetzt in einem großen, kugelförmigen Schirm verfertigt, welcher ihm zu ungefähr zwei Dritteln umgibt und einige Rollen über die beiden Gefäße hervorragt.

Über das Palmumwachs.

Schon seit längerer Zeit werden nicht nur in England und Frankreich, sondern auch in Deutschland die Palmnusse (Elais guineensis) in bedeutenden Quantitäten eingeführt, und davon das sogenannte Palmumwachs genommen, welches besonders zur Seifenfabrikation in großen Mengen verwendet wird. Die Gewinnung des Jutes erfolgte bisher durch Anwendung hydraulischer Preßmaschinen, wobei man die sogenannten „Palmwuchse“ als Anhaftung erhält, die als Seifenmittel vielfach empfohlen wurden und schnell eine wachsende Verbreitung in England und auch in Deutschland fanden.

Die Firma J. H. Heyl und Co's, welche in Melibit bei Berlin (außer an anderen Orten) eine Fabrik besitzt, in welcher schon seit fünf, eher sieben Jahren das Del durch Extraktion mittels Schneidelfeingeschoss gewonnen wird, hat in neuester Zeit begonnen, auch aus den Palmnüssen das Del durch Extraktion dazuzusetzen, wobei ein Mischung von.medium dem Form zurückbleibt, der vor den Palmnüssen nicht nur den Vorzug einer gleichmäßigeren und gleichbleibenden Zusammenlegung besitzt, sondern wegen seiner Form leichter von den Thieren, die es im Tramke, seih, es als Verlustigkeit zu einem anderen Futter aufgenommen werden kann. Zur Verbesserung der Schwiene werden die Mischflande in feinere Form hergestellt. Die vorwiegenden vorteilbaren Proben sind vollkommen geruchslos.

Professor Dr. Schneidereis hat das Palmumwachs analysiert, so dass es die gleichen Zusammenlegung mit, indem wir zum Vergleich eine andere Analysen der Palmumwachse dauernd haben.

<table>
<thead>
<tr>
<th>Palmumwachs: Palmumwachs</th>
<th>Wasser</th>
<th>8,55</th>
<th>10,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rübe</td>
<td>19,56</td>
<td>15,1</td>
<td></td>
</tr>
<tr>
<td>Fett</td>
<td>1,19</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>Rübachfreie Mähstoffe</td>
<td>41,78</td>
<td>41,0</td>
<td></td>
</tr>
<tr>
<td>Holzfasern</td>
<td>20,04</td>
<td>18,0</td>
<td></td>
</tr>
<tr>
<td>Asche</td>
<td>2,98</td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>100,00</td>
<td>100,00</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>

Die Vergrößerung von dem den Palmumwachse in eigentümlicher Form übergangen werden, dem größeren Parteigenen, die besonders zur Zeit des Wachstums von der höchsten Befindlichkeit ist. Das Werk hat aber noch den entscheidenden Vorzug, daß es die flüssig wird, und die Rüben, die in diesen Fasern von den Thieren nur ungenommen werden, wenn
Meetum's pneumatiches System zur Entfernung von Abwasser.

abgig, erachtet, gerechti zu werden. Außerdem kann derjenige durch eine Stellenschraube jederzeit abjustiert werden. Sehr wichtig ist die Form des Stifzes, da von dieser die Möglichkeit der ganzen Operation abhängt.

Der Betrieb der Luftpumpe erfolgt durch eine Locomobile von einem 4 Pferdestärken; die Wagen oder Tender, in die der Inhalt der Behälterung gebracht wird, befiehlt aus einem inrichtigen schmiedeeisernen Kessel von 30—50 Kilo. Inhalt. Bei Beginn der Arbeit, nachdem Locomobile und Tender an Ort und Stelle angebracht sind, wird die Luftpumpe mit dem Tender durch einen Kanalknickhals in Verbindung gebracht, letzterer ebenfalls mit einem biefen für den Durchgang der Luft bestimmten Schlauch mit dem Reservoir, und endlich wird noch zwischen diesen beiden der für den Durchgang der Flüssigkeit bestimmte Schlauch befestigt. Sämtliche Verbindungen sind durch Kragen verstellbar. Die für den Durchgang der Luft bestimmten Kragen zwischen Locomobile, Tender und Reservoir werden geöffnet, so daß durch die Arbeit der Luftpumpe beide zu gleicher Zeit lüfterig gepumpt werden. Ist das Reservoir in der oben beschriebenen Weise gefüllt, so wird der Druckraum zwischen diesem und dem Tender geöffnet und die Luft, die dann aus den Inhalt des Reservoirs einwirken kann, treibt desselben in den Tender. Die aus dem Reservoir und Druckraum ausgepumpten Luft, welche stark mit Gassen verlebt ist, wird von der Luftpumpe unter den Kesselschlauch der Maschine geblasen, so daß diefe verbrannt wird und auf die Lufterzeugung keinen Einfluß ausübt. Durch die Gwalt, womit die feinen und flüssigen Theile aus den Kästen in das Reservoir getrieben werden, sind sie schon in siedendem Wasser so verengt, daß sie nur noch eine flüssige Jauche bilden. An der Kühle, durch welche die Stoffe in den Tender gelegt, ist die untere, nur wenig vom Boden des Reservoirs absteigende, die meistens warm gehalten; durch die unerwärmte Gwalt, womit die flüssigkeiten daran vorbeigeführt werden, werden auch noch die letzten Reste von Papier oder sonstigen scharfen, schweren Abbaufarben derart gerührt, daß sie in der Temperatur, die von dem Tender vermittelt ist, sich lösen. In einer solchen Weise werden die Stoffe in den Tender gebracht, und ein weiterer Transport in Küsten von einer 5 Kilo., umgeführt. (Deutsche Industriezeitung, 1869, Nr. 20.)

Gefässe aus Papiermasche.

Buchdruckerei der J. C. Coelaßchen Buchhandlung in Augsburg.
Über die Einrichtung und Wirkungsweise des neuen Regulators für Turbinen und Wasserräder von Carl A. Specker,
Ingenieur in Wien; von Curator Delabar in St. Gallen.

Mit Abbildungen auf Tab. VII.

Derjene ist in den Figuren 22—24 dargestellt und zwar zeigt Fig. 22 eine Bördelanicht, Fig. 23 eine Seitenansicht (beide in 1/4 wirklicher Größe) und Fig. 24 eine photographische Aufnahme. Darin bezeichnet A die Hauptachse, welche aus den beiden aufeinander Seiten- schilden I und II, wie Fig. 22 und 24 zeigen, die verschiedenen geformt sein können und durch die Stücke III und IV mit einander fest verbunden sind, ruht, und vom Betriebe des hydraulischen Motors aus durch eine Riemenscheibe in Bewegung gesetzt wird. Auf dieser Achse steht das conische Rad b, in ein gleich großes conisches Rad c auf der Welle D eingreifend, welches letzteres wieder das Rad e auf der Welle F antreibt. Auf den Wellen A und F, Nicht hinter den erwähnten conischen Rädern, befinden sich zwei Stirnräder g,g¹, welche sich in verschiedenen Richtungen drehen. Diese zwei Räder greifen in die Stirnräder h,h¹ ein, welche mit den Ausrüstungen oder als Zahnscheiben y,y¹ verbunden sind. Das conische Rad e auf der Welle D bewegt durch
 diese auch das conische Getriebe i, i', welches seinerseits die Pendelachse K antreibt. Die Pendelbüchse m wird durch die bei der Drehung der Achse entstehende Centrifugalkraft der Rügeln l, l' auf- und niedergehoben, jedoch nur innerhalb der Grenzen, welche durch die zwei Stellringe v, v' nach Bedürfnis bestimmt werden. Jehe Auf- oder Abwärtsbewegung der Pendelhülse bedingt auch eine Bewegung des Hebels n mit dem Stützpunkt bei n'. An dem der Pendelachse entsprengeseiten Ende des Hebels hängt die Hülse O lose auf der Welle R. An dieser Hülse sind zwei excentrische Arme p, p angeschraubt; ihre Bewegung erhält sie mittels der Stifte s, s an der Welle R, die durch das conische Getriebe q, q von der Achse D aus angetrieben wird. Durch die an der Hülse O angeschraubten Arme p, p werden die an den Stangen T, T befestigten Arme u, u, der eine nach rechts, der andere nach links geschoben, und diese theilen die Bewegung auch der Gabel Z mit, welche dann den mittleren doppelten Ausrückungsnus x entweder in die Ausrückung y oder in y' eingreifen läßt und dadurch die Welle W entweder nach rechts oder nach links dreht und durch einen an letzter angebrachten Stützenträger die Wasserfalle mehr öffnet oder mehr schließt.

In Folge dieser Einrichtung ist nun die Wirkungsweise des Regulators folgende:

Bei vermehrter Geschwindigkeit der Turbine oder der Wasserräder, welche durch die Niemenscheibe sofort der Welle A des Regulators und durch diese der Pendelachse K desselben mitgetheilt wird, vergrößert sich entsprechend auch die Centrifugalkraft, wodurch die Rügeln l, l sich von der Achse mehr entfernen und damit die Hülse m heben und zwar bis zu dem aus der Achse festschraubten oberen Stellringe v, der den Spielraum des Regulators, den Wasserverhältnissen entsprechend, nach oben begrenzt. Durch die Bewegung der Pendelhülse m nach aufwärts wird auch der damit in Verbindung stehende Hebel n in Bewegung ge- setzt und zwar der jenseits des Stützpunktes n' liegende längere Theil nach abwärts, wodurch die mit dem Hebelarme verbundene Hülse O abwärts geht und mit dem oberen der an ihr befestigten Arme p, p an den oberen der auf der Stange T, T stehenden Arme u, u anstößt, und desselben seitwärts nach links schiebt. Diese Bewegung theilt sich auch der auf der Stange T in deren Mitte angeschraubten Gabel Z mit, wodurch der doppelte Ausrückungsmuff x in den einfachen Muff y' eingreift und die Welle W durch das auf derselben lose stehende Stirnrad h' antreibt. Die Welle W ist durch eine Niemenscheibe oder durch Näder mit der Schütze in Verbindung, so daß die Wasserfall durch die Umdrehung der Welle W das Rad h' geschlossen wird.
Ist im Gegenteil die Bewegung des Getriebes der Turbine oder des Wasserrades zu langsam, so wird die Centrifugalkraft der Kugeln I, des Regulators geringer und in Folge dessen näher sich die Kugeln mehr der Hülsen m und drücken diese abwärts gegen den unteren Stellring v, wodurch der längere Arm des mit der Hülsen m verbundenen Hebel n aufwärts geht. Gleichzeitig wird dann auch die Hülsen q gehoben und durch den ercentrischen Hebel p,p der untere der beiden Arme n,n nach rechts geschoben und mit ihm auch die Gabel Z und der Ausrückungsmuff x, welcher nun in den einfachen Muff y eingreift, angetrieben und dadurch wird endlich mittels der Welle W und des Rades h die Drehung der Schüttensfalle bewirkt.

Der Apparat regulirt auf diese Weise, wie man sieht, die Bewegung innerhalb der ihm gestellten Grenzen ganz sicher und zuverlässig. Da die veränderlichen Stellringe es ermöglichen, den Regulator den verschiedensten verfügbaren Wasserkräften anzupassen, so kann auch die gleiche Construction für die verschiedensten Fälle der Praxis angewendet werden. Dieser Regulator verdient daher in den weitaussten Kreisen bekannt zu werden. Diejenigen Industriellen, welche noch nähere Auskunft über denselben zu erhalten wünschen, beziehen sich direct an den Constructeur, Herrn Carl A. Speck in Wien, zu wenden. 137

CXIV.

137 Unter der Adresse: Maschinenfabrik und Ingenieurbüro r. von Carl A. Speck in Wien, hoher Markt, Galvagnhof.
Theoretisches. — Es sey in jeder der vorstehenden Figuren A eine treibende Niemenscheibe, von welcher angenommen werden mag, daß sie sich mit constanter Geschwindigkeit und mit solcher Umdrehungskraft bewege, daß die Grösse der letzteren an der Peripherie beim normalen Gange P sey; es sey ebenso in jeder der Figuren B eine Niemenscheibe, welche durch die Scheibe A in Umdrehung gesetzt werden soll, und es finde an der Peripherie derselben ein Widerstand statt, welcher bei normalen Gange die Grösse P hat. Der Niemen, welcher in beiden Fällen die Bewegung der Scheibe A an die B zu vermitteln hat, muß eine bestimmte Spannung S haben, und diese drückt sich nach bekannten statischen Gesetzen aus, durch:

$$S = \frac{1}{2} \cdot \frac{e^\mu + 1}{e^\mu - 1} \cdot P,$$

worin e die Basis der natürlichen Logarithmen, μ den Reibungskoeffizient des Niemens auf dem Umfang der Scheiben und α das Bogenmaß des umschlungenen Bogens für die kleinere der Scheiben bezeichnet. Aus dem Ausdruck für S läßt sich auch leicht die größte Spannung, die Spannung des ziehenden Endes, $S_1 = \frac{e^\mu}{e^\mu - 1} \cdot P$ ermitteln, und

Aus der Form des Ausdruckes für S, von dessen Größe die Reibung des Niemens auf den Scheiben abhängig ist, erkennt man leicht, daß er für einen bestimmten Widerstand P abnimmt, wenn der zu gehörige Exponent α α zunimmt; woraus weiter folgt: daß einerseits, beim offenen Niemen, die Reibung auf der kleineren Scheibe immer kleiner als die auf der größeren sein wird, und daß andererseits für jede Art des Niemenbetriebes der Reibungscoefficient möglichst groß zu machen ist, wenn man die Spannung S möglichst klein haben will. Dies ist aber für jeden Niemenbetrieb insofern wünschenswerth, als mit der Spannung die Widerstandarbeit in den Zapfen der Niemenscheiben wächst.

Praktisches. — In der Praxis werden die Niemenscheiben meist aus Gusseisen, zuweilen die kleineren aus Holz hergestellt, und als Treibriemen bedient man sich der Leberriemen (in neuerer Zeit auch der so genannten Gummi- oder, welche aber das hier zu Tagesende ebenfalls Anwendung finden), welche für stärkere Kraftübertragungen 2 bis 3 fach gemacht werden. — Ohne die man nun in der Praxis den Niemen Anfangs eine viel größere Spannung als die theoretisch notwendige gibt, nimmt diese doch sehr bald, wegen der Festigkeit des Niemen ab, wird zur Überwindung des normalen Widerstandes zu klein, und hat zur Folge, daß der Niemen auf der kleineren Scheibe rutscht, somit die Bewegung der Kraftscheibe auf die Laufscheibe nicht mehr kontinuirt übertragen. Ein Gleites wird eintreten, wenn der Arbeitswiderstand nicht konstant bleibt, wenn vielmehr derselbe öfter zunimmt, und wird hier das Rutschen im Allgemeinen immer auf der getriebenen Scheibe stattfinden. Das Rutschen des Niemens ist gleichbedeutend mit dem Hinübergleiten des Niemens über eine der Scheiben, und hat zur Folge: daß einerseits die Bewegung der getriebenen Welle unregelmässig und mit vermindelter Geschwindigkeit erfolgt, andererseits ein Teile der Kraft für die Niemenreibung nutzlos verwendet wird, und endlich noch Betriebsverluste dadurch entstehen, daß mit dem Rutschen des Niemens
oft auch ein Herabfallen desselben (bei horizontalen Scheiben immer) verbunden ist. Die verlorengehende Reibungsarbeit wächst natürlich mit der Geschwindigkeit der Scheiben und dem Widerstande in der getriebenen, und die unregelmäßige Bewegung der getriebenen Scheibe kommt um so mehr in Betracht, je mehr die Arbeit gleichförmige und bestimmte Geschwindigkeit erfordert.

Der Reibungskoeffizient des Leders auf Leder (für die rauben Seiten) ist nun etwa 5mal so groß als der des Leder auf Gusseisen, und man hat deshalb in neuerer Zeit damit begonnen, die Niemen scheiben mit Leder, dessen raube Seite nach außen gewechselt ist, zu bandagiren, wodurch man nach dem Vortreiben erreichen wird:

1) Das bei einer Spannung des Niemens, welche etwa gleich der bisherigen ist, jede Kraftvergeltung durch nutzlose Reibungsarbeiten vermieden wird, und die Uebertragung der Bewegung an die treibende Welle continuirlich geschieht.

2) Das bei einer Spannung des Niemens, welche kleiner als die bisherige ist, und wo ein Nutzen auf die Arbeit einen schädlichen Einfluss nicht hat, die Ausgabe für Beschaffung der Niemen vermindert werden kann. Dies ist besonders wichtig in den Fällen, wo große Kräfte zu übertragen sind und mehrfache Niemen zur Verwendung kommen müssen.

Die Hauptfrage bezüglich der Realisirung des Bandagirens der Niemenscheiben, welche jedem Techniker zunächst aufstrebte würde, wird die sein: kann mit jeder Niemenscheibe eine Federbandage so verbunden werden, daß sie dauernd ein zusammenhängendes Ganze mit der Scheibe bildet? Wir wollen diese Frage durch Darlegung des Verfahrens beantworten, dessen sich die Firma Simon Freund in Berlin zum Bandagiren der Niemenscheiben bedient und welches sich, als Resultat zahlreicher Versuche, nach vielen Erfahrungen vollkommen bewährt hat. Zunächst soll erwähnt, daß nicht der Klebstoff, sondern die Spannung der Bandage dieselbe auf der Scheibe erhält, und das diese nach dem Widerstande zu bemessen ist, welcher in der getriebenen Scheibe hantinbet; daß also auch die Stärke des Bandagenleders mit diesem Widerstande wächst. Das Bandagenlede, ist in eigen tümlicher Weise zu bereit, so zwar, daß es durch lauwarmes Wasser gejogen ein sehr nachgiebiger Körper wird, und diese Eigenschaft beim Trocknen wieder verliert. Als Klebstoff dient eine besondere Composition, welche Höniginsenheit und die Eigenschaft hat, nach dem Trocknen einen sehr harten Körper zu bilden. Das Auffspannen geschieht in folgender Weise: der Klebstoff wird in dünner Lage auf die Niemenscheibe und darauf
die durch Wasser erweiachte Bandage gebracht; dieselbe erhält jedoch 1/4 bis 1/10 weniger Länge als die Peripherie der Niemen scheibe, und das fehlende wird durch Spannen derselben hervorgebracht; hierzu dienen leicht einfache, mit Niemen und Schnallen versehene Niemenpflaster, mittels der man die Bandagen mehr und mehr zusammendrücken kann; die Enden der Niemen werden endlich durch sogenannte Nähriemen zusammengenäht, und die Nadelfäden durch ein schwaches Leder gedreht. Zum Trocknen der Bandagen und zum Erhärten des Klebstoffes sind in trockenen, warmen Räumen etwa 12—18 Stunden erforderlich, in feuchten Räumen aber mehr Zeit, und empfiehlt es sich im letzteren Falle, um Betriebsstörungen zu vermeiden, den Niemenscheiben in anderer Weise Wärme zuzuführen. — An dieser Stelle sei übrigens noch bemerkt, daß das Bandagiren der Niemenscheiben in den meisten Fällen nur Sinn und Wirkung hat, wenn es von zwei zusammenarbeitenden Niemen scheiben bandagirt wird, wie das oben theorethisch Gegebene dies auch leicht erkennen läßt.

Wie man erzieht, ist das Bandagiren keineswegs mit Schwierigkeiten verbunden, und kann von jedem verständlichen Arbeiter leicht ausgeführt werden; deshalb werden auch von der genannten Firma Bandagen mit allem nützlichen Zugehör (Klebstoff, Nährriemen, Niemenpflaster und spezielle Gebrauchsankündigung) nach auswärtis verfertigt, und es ist auch bei Bestellungen nur anzugeben: der Durchmesser und die Breite der Niemenscheiben, die ungefähre Kraft, welche sie übertragen sollen, und ob dieselben in feuchtem oder trockenem Raume arbeiten.

1) Das Farbmühlen-Etablissement von Dung und Jansen in Berlin (Englischer Nr. 15) hat an Arbeitsmaschinen 1 Raspelmaschine, 1 Kollergang, 1 Pulverfirma, 2 kleine Mahlgänge und 1 Schleifstein, zu deren normalen Betriebe 15 Pferdestärken veranschlagt sind, welche der Besitzer, da er diese Kräfthäfe mitholweise entnimmt, bezahlen muß. Diese Kräfthäfe wird dem erwähnten Etablissement auf eine horizontale Welle gegeben, welche einen einfachen Niemen von 9 Zoll Breite und eine Scheibe von 39 Zoll Durchmesser trägt, während diese Scheibe von einer ebenso großen Niemenscheibe getrieben wird, welche auf der Welle der Kräfthäfe liegt. Beide Wellen sollen 100 Umdrehungen per Minute machen. Der Niemen war offenbar zur Bewäl-

3) In der Berliner großen Actienbrodsf. Fabrik arbeiten 12 Mahlgänge, und je drei dieser werden von einer stehenden Welle getrieben, so daß die Nebentragung durch horizontale Niemenscheiben stattfindet, und beim Anhalten eines Mahlganges auch immer zwei andere zum
Stehlen gebracht werden müssen. Da das Nutschen der Niemen auf horizontalen Scheiben fast immer das Herausfallen derfelben zur Folge hat, und dies in dem erwähnten Stahlkristall, namentlich bei neuen Aufschläuften, sehr häufig stattfindet, so ist vorläufigweise das Niemenscheibenpaar eines Mahlganges in jüngster Zeit bandagiirt worden; in Folge dessen ist bis jetzt eine Störung durch Herausfallen des Niemens bei diesem Mahlgang nicht vorgekommen und die Direction beabsichtigt deshalb auch alle anderen verarbeitenden Niemenscheibenpaare bandagiirt zu lassen.

Nach der von uns gewonnenen Ansicht wird also das Bandagiren der Niemenscheiben sehr wohl und besonders in den Fällen zu empfehlen seyn, wo die Arbeit ein continuirliches Drehen der betreffenden Welle verlangt, wo bei horizontalen Scheiben das Herausfallen des Niemens vermieden werden soll, wo bei großen Kräftenübertragungen an Kosten für Niemen gespart und zugleich große Reibungswiderstände vermieden werden sollen, endlich wo vorhandene Niemen, welche bei Anwendung von eisernen Scheiben sich als unbrauchbar erweisen, auch für die Folge noch benützt werden sollen. Natürlich muß das Bandagiren selbst immer mit der gebräuchlichen Sorgfalt bewerthet und gewagt werden, und wir möchten die Firma Simon Freund jun. in Berlin, welche sich auch mit der Fabrication von Treibriemen beschäftigt, dazu empfehlen, weil sie unter Anlaß eines intelligenten Technikers arbeitet.

Berlin, im Mai 1869.

Dr. Rob. Schmidt.
CXV.

Outridge's Entlastungsschieber.

Mit Abbildungen auf Tab. VIII.

Der Ingenieur J. E. Outridge in Newport auf der Insel Wight (England) nahm kürzlich ein Patent aus den in Fig. 12—19 dargestellten Entlastungsschieber, welcher bereits an einigen Locomotiven der Isle of Wight Railway Company mit sehr zufriedenstellenden Resultaten erprobt wurde.

Im Schieberkasten sitzt ein Gehäuse mit Kanälen versehen, welche zu den Dampfkanälen des Zylinders und dem Ausblasrohr führen. Der Vertheilungsschieber geht in diesem Gehäuse auf und ab und leitet den Dampf in entsprechender Weise ein und aus.

Fig. 12 zeigt nach angehobenem Deckel des Schieberkastens den Entlastungsschieber im Grundriß;

Fig. 13 ist ein Längsschnitt durch den Schieberkasten, der Cylinder a ist weggelassen; ebenso in Fig. 14, welche den Querschnitt darstellt.

Fig. 15 endlich ist eine perspectivische Ansicht des Schiebergehäuses e; in dem Längs-und Querschnitt gleitet der Vertheilungsschieber auf und ab; n bezeichnet den Cylinder mit den Dampfkanälen e, f, und dem Ausblasrohr m. Im Schieberkasten b fällt seit das Gehäuse e, dessen Form deutlich aus der Abbildung zu ersehen ist. Die sich gegenüberliegenden Kanäle g, h und i führen entsprechend zu den genannten Dampfkanälen e, f und m des Zylinders a. l bezeichnet das Dampfsauge.

Im Mittelschlitze des Gehäuses e bewegt sich der Schieber d — in der Mitte bei k durchbrochen —, dessen Bewegung von der Schieberstange k erfolgt. In der einen Lage communicirt der Canal f mit h des Gehäuses e; der Dampf hinter dem Kolben gelangt durch die Canäle h und i zum Ablaufrohr m, während frischer Dampf durch den Canal g vor den Kolben eintritt und umgekehrt.

Um auch den Dampfdruck auf die obere Schiebersfläche aufzuheben, steht die Bodenfläche des Schiebers e etwas über dem Schieberschaft.

In Fig. 16 ist der Schieber d perspectivisch dargestellt, und Fig. 17 zeigt den entsprechenden Querschnitt. Wie man sieht, ist dieselbe in diesem Falle aus zwei Hälften zusammengesetzt und dient das Bronze-
band u. dazu, den Dampfzutritt zwischen die Verbindungsfächen zu verhindern.
Eine etwas abgeänderte Gestalt des Gehäuses zeigt Fig. 18 und 19; die Schieberflächen schrägliegend, demzufolge der Verbindungsschieber schieferd, modifiziert wird.

CXVI.
Thomson's Werkzeuge zum Befestigen und Abschneiden der Siederöhren.

Mit Abbildungen auf Tab. VII.

In diesem Journal, Bd. CLXXXVIII S. 16, ist bereits ein weit verbreitetes Werkzeug zum Befestigen der Siederöhren von Dubignon beschrieben; es hat jedoch diesem Rohrausdehnner einige Fehler an, hauptsächlich der, daß man nur dann eine parallele Ausdehnung, eine gleichmäßige Dichtung der in der Lochwand steckenden Siederöhre bewirken kann, wenn der conische Dorn vollständig eingetrieben ist, resp. der zylindrische Theil der zylindrischen Stabsrollen wirkt. Diese Wirkung tritt aber nur für eine bestimmte lichte Weite der Rohre ein; bei engen Rohren wird somit ein ungleichmäßiger Druck an der Verbindungsstelle ausgeübt.

Zwei etwas verziehbliche Anordnungen des neuen Rohrausdehnners sind in Fig. 15—18 dargestellt.

In den zusammengehörigen Figuren 15 und 16 sind a die drei conisch geformten Druckrollen, welche am Ende b in den Ausschnitten C ihre Führung finden.

Wird das Werkzeug in das Rohrende gebracht und die Mutter B auf der Schraube c gedreht, dadurch der Ring A vorwärts gerückt, so
hat dies zur Folge, daß die Rollen a durch das conische Ende des Dornes c nach außen auf die Rohrwand drücken, worauf das ganze Werkzeug gedreht wird, indem man auf den vieredigen Zapfen f ein Bendheisen ansetzt. Nach genügender Ausdehnung des Rohres löst man die Schraube B, die Rollen a können nachgeben und das Werkzeug kann herausgezogen werden.

Die Anordnung in Fig. 17 und 18 unterscheidet sich wenig von der beschriebenen; die conischen Stahlrollen a werden bei d durch einen elastischen Stahlring gehalten, welcher in den Hals am oberen Ende der selben sich einlegt.

ähnliche Werkzeuge construirte Thompson für das Abschneiden von Rohren, zum Herausziehen der Spannringe oder kurz abgeschnittener Rohrstücke, ohne die Löcher zu erweitern.

Einen Rohrenabschneider zeigen Fig. 19 u. 20. Die Schneide scheibe a sitzt auf einer Achse an dem Gleichstück b, welches durch eine Stange bei c angehängt ist. Im Unterteil sind die drei Leitrollen d angebracht und im Centrum eine conische Führung, so daß beim Drehen der Schraubenmutter e das Gleichstück b niedergeht und die Messerscheibe d in das Metall der abzuschneidenden Rohre gedreht wird. Steckt man auf das quadratische Ende g ein Bendeisen und dreht das Instrument um, so genügen zwei bis drei Umbrechungen, um gewöhnliche Kesselrohre in einen zusammenlaufenden Schnitt zu trennen.

Das Werkzeug zum Ausziehen der Spannringe G oder auch kurz abgeschnittener Rohren aus den Löchern der Rohrwand B ist in Fig. 21 abgebildet.

\[\text{Mit freundlichen Grüßen,}
\text{F. J.}\]
CXVII.

Vorwärmer von Wasser in Hartford, Amerika.

Nach dem Scientific American, Februar 1869, S. 101

Mit einer Abbildung auf Tab. VIII.

Wasser- & Vorwärmer ist im Durchschnitt in Fig. 20 dargestellt.

A ist ein gußeiserner Kessel, in welchen das kalte Wasser durch die Rohre B, mit dem Abstellbahn H verschen, zugeleitet wird. Das Ende c dieser Rohre ist auf der oberen Seite siebentündig durchbohrt, so daß das Wasser in kleinen Tropfen anstritt, gegen die darüber befindliche ausgebauchte Platte E anprallt und in zahllosen Tropfen zurückgeworfen wird. Durch die Rohre D tritt der Ausbläsdampf von der Maschine ein und kommt mit dem seinverheideten Wasser in Berührung, erwärmt es und kondensiert sich zum größten Theil; etwa nicht kondensierter Dampf tritt bei E in's Freie.

G ist ein Wassertankglas; I ist die Ableitungsröhre, durch welche das vorgewärmte Wasser mit Hülse einer Pumpe in den Dampfkessel gelangt.

N, N bezeichnet den niedersten Wasserstand, bei welchem die Mündung der mit der Rohre I communicirenden Luftrohre J über dem Wasserspiegel liegt, in Folge dessen kein Wasser ausgespült wird, somit die auf der Oberfläche schwimmenden Unreinigkeiten nie in den Kessel gelangen werden.

Durch K wird zeitweilig Wasser abgelassen, um die niedergeblagten Erbsalze auszuwaschen; befoh des größeren Reinigung des Vorwärmer öffnet man den Selbsdruck bei L.

Ueberschüssiges Wasser tritt durch die Dejnung bei P ab.

CXVIII.

Verbesserte Drehbank.

Mit Abbildungen auf Tab. VIII.

Die Abänderung dieser Drehbank, welche in manchen Fällen von Nutzen sein wird, besteht darin, daß dem Drehstahl während der rotirenden Bewegung der Spindel, resp. des Arbeitsstückes, eine bestimmte
hin- und hergehende Bewegung, senkrecht auf die Spindelachse, ertheilt werden kann.

Die Grösse der Bewegung des Drehstahles, die Zahl der Hübe, die Gleichförmigkeit oder Ungleichförmigkeit der Bewegung hängen ab von der Art des diese Bewegungübertragung vermittelnden Räderwerkes, von der Grösse der Excentricität ze.

Diese Anordnung kann an jeder gewöhnlichen Drehbank angebracht werden; die geänderte Drehbank dient wieder zum Runddrehen, wenn die eigen tümliche Bewegung des Drehstahles unterbleibt.

Fig. 9 ist die vordere Ansicht die er Drehbank; Fig. 10 ein Schnitt durch den Support; Fig. 11 ein Detail der Rädereinlagerung.

Das Mittelgleitstück B des Supportes (Fig. 10) ist mit dem Bügel E in Verbindung, in welchen der eccentrisch auf der Scheibe F (Fig. 9) sitzende Bolzen D eingreift und bei der Drehung der Scheibe eine hin- und hergehende Bewegung des Schlittens B, resp. des Drehmeißels bedingen wird.

Die Bewegung der auf der Welle G sitzenden Scheibe erfolgt von der Spindel aus; aus dieser fällt fest das Rad L, welches entweder direct mit dem Getriebe K auf der Welle G eingreift, oder die Bewegung durch das Transportrad M überträgt.

Je nach der Form und der Grösse der eingreifenden Näder, je nach dem Abstand des stellbaren eccentrischen Bolzens D wird die hin- und hergehende Bewegung des Drehmeißels, somit die Gesalt des auf der Spindel ausgetüfterten Gegenstandes verschiedene seyn.

Die Welle G findet ihre Lagerung in den Theilen J und H. Je nach der Grösse der Näder hat die Welle einen verschiedenen Abstand von der Spindelachse. Demzufolge ist das Lager H auf der Supportplatte A stellbar. Das Lagerstück J und dessen Verbindung mit der Voroberdecke ist aus Fig. 11 ohne nähere Erläuterung erkenntlich. Der Arm N zur Aufnahme der Drehachse des Transportrades M kann entsprechend geneigt werden und wird schließlich durch die Scheibe e festgestellt.

Damit der Support mit der Drehung der Leitspindel S sich längs der Drehbank vorschieben kann, ohne dass die selbstthätige hin- und hergehende Bewegung des Drehstahles unterbrochen wird, fällt das Rad K mit Feder und Ruth auf der Welle G, welche Ruth auf die ganze Länge verselben durchgeht.

Stellt man den Bolzen D in den Mittelpunkt der Scheibe F, so unterbleibt natürlich die selbstthätige Verschiebung des Drehmeißels und die Drehbank arbeitet wie gewöhnlich.

J. J.
Die in Fig. 5—8 in 1/2 natürlicher Größe dargestellte Handbohrmaschine zeichnet sich aus:

1) durch die eigenthümliche Anordnung, durch welche der Bohrer allmählich in dem Bohrloch vorschreitet oder nach Belieben eingehalten werden kann;

2) durch eine Einrichtung, welche dazu dient, die Tiefe des Bohrloches zu regeln und welche zugleich die abwärts gegebene Bewegung des Bohrers selbsttätig unterbricht, wenn die gewünschte Tiefe erreicht ist;

3) durch die Möglichkeit einer leichten Änderung der Geschwindigkeit des Niederganges des Bohrers, je nachdem er in verschiedenen Metallen gleich schnell gedreht wird.

Fig. 5 stellt die vorbereite Ansicht, Fig. 6 den entsprechenden Vertikal schnitt und Fig. 7 und 8 Details von Morcrettes Bohrmaschine dar.

Das Gerät A ist aus einem Stück gegossen und enthält die Lager für die Bohrstange b, für die Befle v mit dem Schwungrad V, sowie für die Antriebswelle a, welche durch die Handkurvel M in Bewegung gelegt wird. An der Antriebswelle sitzt das Regelsrad m, welches in das Doppelregelsrad N eingreift; letzteres ist auf der horizontalen Welle N² (Fig. 6) ausgeführt, von welcher aus die drehende Bewegung einerseits auf die Schwungradwelle v durch das Regelsrad n, andererseits auf die Bohrstange b vermittelt der Regelsräder E und E² erfolgt. Letzteres sitzt wie gewöhnlich mit Feber und Nutz an der Bohrstange b.

Die vertical verstellende Bewegung des Bohrers geschieht folgendermaßen: Auf der Bohrstange ist die mit Schraubenwindungen verbundene Hüls B aufgeschohen und in geeigneter Weise gegen eine Längverschiebung gesichert. Sie erhält jedoch nach Maßgabe des Niederganges des Bohrers eine drehende Bewegung von dem fest auftastenden Stab c, welches in eine Reise von drei Getrieben c⁴ eingreift. An der Achse des letzteren sitzt oben das Sperr- oder Sternrad s (Fig. 6), welches so oft gedreht wird, als die von der Rückwand des Nades E vorspringenden Stifte t an einen Zahn des Nades s anstoßen und dasselbe weiter verschieben, demzufolge c⁴, s und endlich die Hüls B gedreht wird.
In Fig. 8 sind vier der bezeichneten Stifte f, aber nur zwei derselben vorstehend, also zur Thätigkeit kommend angebracht. Im Ganzen lassen sich jedoch acht Stifte in die Schlüsse einlegen und mit Hilfe der Stellmuttern c feststellen.

Ferner umgibt die hohe Schraubenpindel B die Mutter E', welche jedoch nur auf einem Theil des Umfanges mit Muttergewinben versehen ist, wie die in Fig. 7 sichtbar gemacht ist. Die Mutter sitzt im Bronzestück D beart, daß sie bei ihrer bescheidlichen Spiralfeder stets das Muttergewinde aus dem Schraubengewinde auf B auszuräumen strebt; in einem zwischen Fall wird der Niedergang des Bohrers unterbleiben.

Der vordere Ansatz der Mutter E' steht vor einem schief ausge schnittenen Gleitriegel x; je nachdem nun dieser mittels der Schraube y festgesetzt ist, wird der Eingriff von E' und B hergestellt oder ausgelöst, indem für den ersten Fall die Federkraft von r ausgehoben, für den zweiten dagegen wirksam gemacht wird. Bemerkbar muß noch werden, daß x und y mit dem Stift D nach abwärts gehen. Der Querbügel D steht nun durch die zwei senkrechten Stangen h, h mit dem Querbügel H, H in Berührung, in dessen Mitte die Stellschraube i sich befindet. Da diese auf die Bohrstange b drückt, so wird dieselbe mit dem Bohrer nach abwärts gehen, wenn die Mutter E' im Eingriffe mit B, also mit dem Querbügel D nach abwärts verschoben. Den Aufgang der Bohrstange bewirkt nach Auslösung der Mutter E' das mit der Bohrstange durch die Hebel g und G verbundene Gegengewicht K, welches im Gebäude A' ein geflossen ist.

Die selbsttätige Unterbrechung der Längsverschiebung des Bohrers erfolgt dadurch, daß die Schraube y beim Niedergang endlich an den Baden o' anschläft und dadurch den Riegel x in jene Lage gelangen läßt, wobei der Eingriff der Mutter E' aufgehoben wird. Dieser Baden o' läßt sich mittels der Flügelschraube o in einer Nuth o der Leiste o je nach der Tiefe des Bohrloches feststellen. Die Leiste o ist an dem Bronzerahmen U angebracht.

Es wird diese Anordnung namentlich dann von Werth sein, wenn verchiedene weite Bohrungen verschieden tief in einer Achse bewerkstelligt werden sollen.

Zur Feststellung des zu bohrenden Gegenstandes dient der ertichtlich gemachte Parallelschraubstock E'. B. B.
Mühlsteinschärfmaschine von F. Golay in Aten (Canton Waadt); beschrieben vom Civilingenieur Hermann Fischer in Hannover.

Aus den Mitteilungen des hannoverschen Gewerbevereines, 1869 S. 3.

Mit Abbildungen auf Tab. VII.

Eine der besten, aber gleichzeitig in anderer Hinsicht unangenehmsten Eigenschaften der französischen Mühlsteine, ist deren große Härte. Sie lassen sich nicht mit denselben Werkzeugen behandeln, welche für früher allein gebrauchlichen weicheren Sand- und Lava-Steine ausgerichtet. Der beste Stahl, von der geschicktesten Hand gehärtert, genügt nur, die Härte der französischen Steine einigermaßen zu überwinden.

Vielfache Bemühungen wurden gemacht, das Geschäft des Schärfens zu einem, keine besondere Geschicklichkeit fordernden, umwandeln, aber
dem Schärfers während seiner Arbeit Bequemlichkeiten zu gewähren. Man befestigte die Handhabe der Pile an einer horizontal liegenden Welle, welche sich — entweder in ihren Lager, oder mit diesen — sicher verschließen ließ, und zwar innerhalb leicht zu marternder Grenzen, und brachte gleichzeitig, Unterstützung für den Arm des Arbeiters an (Lavoisier, Newton), oder man befestigte die Pile an den Füssen einer Reihe von Stampfen, die durch eine Welle feststellende Daumen gehoben wurden, und vermöge ihres Gewichtes die Pile gegen den Stein stießen (Heinrichs).

Die mit diesen Maschinen errungenen Vorteile waren aber nicht so bedeutend, daß sie im Stande gewesen wären, sich dauernd einzubürgern, die dem Arbeiter gebotenen Bequemlichkeiten konnten sich nicht messen mit dem Widerwillen gegen Neuerungen.

Mit Hilfe der besten Stahlscheiben schärfen zwei tüchtige Schärfers im Durchschnitt ein Paar Steine während eines Tages. Es seien sich dem nach die Kosten für ein einmaliges Schärfen im Durchschnitt zusammen mit dem Tagelohn zweier Schärfers, aus dem Verlust, der durch Unterbrechung des Betriebes während eines Tages erwächst, und aus den Kosten für Anschaffung und Reparatur der Stahlscheiben (ungefähr 1 Ttlr. für jede Schärfung eines Steinpaares).

Man sieht, daß die Summe dieser Kosten im Laufe eines Jahres zu einem erheblichen Betrage anlaufen.

Das Werkzeug der Golav'schen Schärfmaschinen ist der graue sogenannte amorphe Diamant, der erheblich billiger ist, als der wasserklare, zum Schmuck bestimmte.
Derselbe wird zwischen zwei kreisrunde Stahlscheiben b, b, Fig. 11, eingekeilt, indem letztere mittelst Schraubchen β mit einander verbunden werden. Der Stift α bestimmt die gegen seitige Lage der Scheiben b, b zu einander.

Der Diamant α kann mit Hilfe dieser Fassung mit der Achse ε verbunden werden, indem die Fassung — die beiden Scheiben b, b — auf die Welle ε gescho ben und dort von den Muttern δ festgehalten wird. In einem geschilderten Rahmen A, Fig. 11 (auch Fig. 1, 2, 4, 5 und 6), dessen Eigenschaften später ausführlicher besprochen werden sollen, befinden sich Stahlschrauben ε, ε und Stahlsäulen d, d, in deren Endflächen geeignete Grübchen sich befinden zur Aufnahme der Spitzen γ, γ des Arbeitswellens ε. Nachdem das Schraubchen μ (Fig. 11) gelöst worden ist, läßt sich der zugehörige Zapfen d leicht in seiner Achseinrichtung verschieben, so weit die Feder e (Fig. 11 und 6) dieses zuläßt. Man über sieht sofort, wie unter Benutzung dieser Eigenschaft des Zapfens d den Spitzen γ, γ die gewünschte Spannung zwischen d und e gegeben werden kann. Einige Uebung läßt sofort erkennen, um wie viel sich die Feder e (nach vorherigem Lösen des Schraubchens μ) zurückzubiegen haben muß, um den gewünschten Grad von Spannung an γ, γ herzuleiten. Mit Hilfe der Gegenmutter von e, sowie des Schraubchens μ, werden hierauf die Lagerungen des Wellens ε unwirksam festgestellt.

Wird das Wellen ε hinreichend nahe einer Steinfläche, um seine Achse gedreht, so wird der, zahnartig die Scheiben b, b übertragende Diamant α gegen die Steinfläche holen. So lange diese Umdrehung des Wellens ε eine langsame ist, bringt das erwähnte Ausstoßen des Diamantes fast gar keine Wirkung hervor, indem der Widerstand der Steinfläche, gegen das Eindringen des Diamantes, vollständig auf das Wellen ε und die Spitzen γ, γ übertragen wird. Wellen, Spitzen und deren Lager, sowie nachgänglich der Rahmen A, werden sich biegen, da sie nicht kräftig genug sind, um dem Drucke, der dem Widerstande der Steinfläche entspricht, widerstehen zu können. Anders ist es, sobald das Wellen ε sich sehr rasch dreht. Ab dann währt die Berührung zwischen Diamant und Stein nur eine so kurze Zeit, daß das Wellen ε, die Spitzen γ, γ u. s. w. keine Zeit bekommen, sich zu biegen. 138 Un terstützt wird die Wirkung des Diamantes auf den Stein durch die Art

138 Die Figuren 11 und 12 sind in natürlicher Größe gezeichnet.
des Austritts deselben. In Fig. 12 bezeichnet der Pfeil I die Drehrichtung des Diamantes, B die (durchschnittene) Steinflächen, und der Pfeil II die Richtung der fortwährenden Bewegung des Arbeitswellens. Man sieht, daß der Diamant, nachdem derfelbe bei a gegen den Stein gestoßen hat, ein gewisses (in Fig. 12 punktiertes) Quantum Steinmasse herausreißt. Würde der Diamant (unter Beibehaltung derselben fortwährenden Bewegungsrichtung II) die entgegengesetzte Drehrichtung haben, so würde derfelbe das betreffende Steinquantum zertrümmern müssen, wozu eine erheblich größere Kraft erforderlich sein, oder die Wirkung vermindert werden würde.

Auch schon beschriebene Art ist das Arbeitswellen c in dem Rahmen A gelagert. Wie namentlich aus der Darstellung des Rahmens A in Fig. 6 zu sehen ist, ist derfelbe eingerichtet, das Arbeitswellen an zwei verschiedenen Orten aufzunehmen. Genau in der Mitte zwischen diesen beiden Orten befinden sich Schraubchen s, s (Fig. 6, 5 und 4), deren Spitzen in Grüben der Anschläge η, η (Fig. 4 und 5) greifen, und die durch Gegenmuttern festgestellt werden können. Der Rahmen A kann somit um die Spitzen der Schraubchen s, s schwingen.

Die genannten Anschläge η, η sind mit dem Supporttheil C (Fig. 4 und 5) zusammengesessen. Dieser Supporttheil trägt fernere vier Anschläge, welche die Muttern der Schraubchen g, g enthalten. Werden nun die Schraubchen g, g auf der rechten Seite (der Fig. 4) zurückschraubt, so ist die linke Seite des Rahmens A sich der Steinfläche B nähern, die rechte Seite aber von der Steinfläche entfernen, und umgekehrt. In einer dieser in
Frage kommenden Seiten des Rahmens A ist aber das Arbeitswellchen gelagert; dasselbe wird sich also mit der betreffenden Rahmendästzige der Steinflache nähern, oder sich von derselben entfernen, je nachdem die Schraubenhg. g. g. g. gefühlt werden.

Während des Arbeitens des Diamantens wird von demselben sein gebördelte Steinmaffe fortgeschleudert. Dieser Sand könnte den Spilen γ, γ des Arbeitswellchens c (Fig. 11) verhängnisvoll werden, wenn nicht durch Anbringung der Lappen ω, ω diese Spilen geschützt würden.

Der schon genannte Supporttheil C schiebt sich auf dem Supporttheil D (Fig. 5, auch Fig. 2). Die Supportrosebuche h (Fig. 2), deren Mutter an D befestigt ist, trägt an ihrem äußeren Ende ein Jahrmarkt i (Fig. 4, 5 u. 1) mit 40 Zähnen, in deren Lüden eine Klinte σ greift, die ihrerseits sich um einen Stift am Hebel k dreht. Eine Fed erdruckt diese Klinte σ immer gegen das Rädchen i, wodurch σ veranlasst wird (bei der in Fig. 4 angenommenen Lage) bei Drehung des Hebels k, in der Richtung gegen die Sonne, das Rädchen i mitzunehmen, während σ, bei der Drehung von k mit der Sonne, über die Zähne von i hinweggleitet. Der Sperrdege σ ist in bekannter Weise in der Nähe seines Drehpunktes so eingerichtet, dass er, sobald er auf die andere Seite von k (in der Ebene der Fig. 4) gedreht wird, auch während der Drehung von k in der Richtung mit der Sonne, das Rädchen i fortsetzt, während der entgegengesetzten Drehrichtung von k dagegen über die Zähne von i hinweggleitet.

Durch die Drehung von i wird auch die Supportrosebuche h bewegt, sie verschiebt in Folge dessen den Supporttheil C gegen den Supportheil D, b. h. sie bewirkt die Bewegung des Arbeitswellchens c in der Richtung seiner Länge.

In Fig. 4 und 5 bemerkt man zwei Stifte ξ und ξ. Legterer sitzt fest in dem Supportheil C, ersterer dagegen ist nur durch eine, mit einem Handgriff versehene Mutter λ an den mit C festverbundenen Bogen ξ festgemacht. Nach Lösung der Mutter λ kann der Stift ξ in dem Schlag des Bogens ξ verschoben werden. Ramentlich aus Fig. 5 ist nun zu sehen, dass die genannten Stifte durch die Drehebenen des Hebels k hervorragen; legterer muss daher, wenn er weit genug gedreht wird, gegen die Stifte ξ und ξ stoßen. Durch Verstellen von ξ kann somit die Größe des Bogens, welchen k während seiner Drehung zurücklegt, begrenzt werden. Da aber die Drehung der Supportrosebuche h von der Größe des genannten Drehebogens abhängt, so ist es möglich, durch Verstellung von ξ die Größe der Bewegung von C gegen D, bei jeder Bewegung des Hebels k festzustellen.
Der bereits genannte Supportbeil D ist mit dem Schlitten E ver-
schraubt, welcher sich auf dem Prisma des Armes F (Fig. 5, 1 und 2)
schieben lässt. Der Schlitten E enthält mehrere mit Gewinde versehene
Löcher, die zur Aufnahme der Kopfschraube m (Fig. 1 und 2) dienen.
Unter Vermittlung dieser Schraube m, der Zugsänge n und des Hebels o
mit Hüse, ist der Handhebel p mit dem Schlitten E in Verbindung
gebracht. In Folge einer Bewegung von p muß sich daher der Schlitten E
nebst dem angezugschten Supportbeil D u. f. w. in der Richtung des
Armes F, also winkelrecht zur Arbeitswelle c, verschieben.

Es bleibt nur noch eine Bewegung des Arbeitswellec's zu beschreiben
übri, nämlich die in einer zu ihr geneigten Ebene, und zwar abwärts
odern aufwärts gerichtet. Dieselbe könnte hervorgebracht werden durch
Combination der horizontalen Verschiebung, in der Richtung der Arbeits-
welle, und der verticalen Verschiebung durch die Schrauben g, g. Allein
diese kombinierte Bewegung würde nur schwierig correct hervorbringen
sein. Der Constructeur der Maschine hat daher zur Hervorbringung
der geneigten Bewegung, einen besonderen Apparat angebracht, der in
Fig. 7 abgebildet ist. Soll die Schrämmaschine in Stellungen vertreten, so
werde der in den Figuren 1, 2, 4 und 5 gezeichnete Schlitten E, nebst
Support D und C, vom Arm F entfernt, und an dessen Stelle der
in Fig. 7 gezeichnete Schlitten E nebst Zubehör angebracht. Der Sup-
portbeil D ist auch hier an den Schieber E geschraubt; seine untere
Bahn liegt aber nicht parallel zu seiner oberen Bahn, bez. zur Arbeits-
welle, sondern um so viel geneigt gegen dieselbe, wie der zu bearbeitende
Stellungenboden gegen die Steinbahn geneigt sein soll. Um ebenso viel
geneigt ist der Rücken des Supportbeiles C, so daß die Linie ff wieber
parallel mit der oberen Seite von D liegt. Wenn nun erwähnt wird,
 daß die Linie ff und überall und in allen sichtlichen Bezeichnungen gleichbedeu-
tend sind mit den gleichnamigen in anderen Figuren (mit der Aus-
ahn für die Form von C und D), so wird man ohne Weiteres finden,
in welcher Weise die Rahmen A (Fig. 4, 5, 6 und 11) mit den Aus-
äßen n, n, der Fig. 7 in Verbindung gebracht werden muß, und dessen
Lage mittels der Schrauben g, g (Fig. 7) regulirt werden kann. Die
Bereitung der Supportbeile C und D (Fig. 7) gegen einander ist identi-
fisch mit der oben an Fig. 4 und 5 beschriebenen. Der Bequemlichkeit
des Zeichners halber sind in Fig. 7 das Zahnradchen und der Hebel k
nebst Zubehör weggelassen.

Ein Unterschied in der Befestigung des Stückes D an E, welcher
zwischen der, in den Figuren 1—5 dargestellten, gegenüber der, in
Fig. 7 gezeichneten Supporteinrichtung bestehst, wird später erwähnt werden.

Es wird jetzt zunächst zu erläutern sein, in welcher Weise der Arm F gegenüber der Steinbahn zu befestigen, und in welcher Weise diesem Arm seine Richtung, gegenüber den Luftrollen oder Balken der Steinschärfe zu geben ist.

Zwei Schrauben Q, q verbinden den Arm F fest mit dem Lappen r des jenannnten Excentrics K, welches sich um den Zapfen s (Fig. 3) dreht. An dem, dem Lappen r entgegengesetzten Ende des Excentrics K befindet sich eine Schraube t mit Flügelmuttern, durch welche das Excentric auf das Gesell H der Maschine festgeschraubt werden kann. Man sieht aus Fig. 2, dass für die Schraube t in dem Gesell H ein langer, bogenförmiger Schlitz ausgepart ist, in welchem sich t, wenn gelöst, bewegen kann. Es kann daher, indem das Excentric K sich um s (Fig. 3) dreht, bzw. die Schraube t ihre Lage in dem genannten Schlitz verändert, der Arm F eine sehr verschiedene Reibung gegen eine, durch die Mitte L der Maschine gelegte Radiallinie annimmt.

In den Enden der drei Arme des Geselles H befinden sich Stellschrauben v, v, die sich auf die Plättchen N, N stützen. Mit Hilfe dieser Stellschrauben wird das Gesell H parallel zu der Bahn des Steinbegriftes eingespielt.

Der Arm F findet, außer den in der Nähe der Schraube s und der Schraube t befindlichen, noch einen Stützpunkt auf dem Platten P. Ein Arm O (Fig. 2 und 5) ist an F so angeschraubt, dass das Miss für den vorbeipassirenden Schlitten E nebst Zubehör bleibt. Im Saum des Armes O ist ein Gewinde eingeschnitten, passend, das obere Ende der Schraube w aufzunehmen. Durch Drehung der Schraube w wird dem Arm O die entsprechende Lage gegeben, so dass das Gewicht des Schlitten E mit Zubehör den Arm F nicht niederbiegen kann.

Die Umbruch der Arbeitswelle C soll in der Regel von der zum Betriebe der Mühle vorhandenen Elementarkräfte aus bewirkt werden. Wie später erörtert wird, muss die gesamte Maschine um die Achse des Mühlensteines sich drehen. Es ist deshalb nötig, dass der Antrieb in der Mitte der Maschine sich befindet. Die Antriebswelle S (Fig. 1) ist daher auf das obere Ende einer, aus der Maschinenmitte hervorragenden Stange V, in ein dort befindliches Spurlager gelegt. Ein zweites Lager der Welle S ist an irgend einem passenden Orte des Mühlenraumes befestigt. Die Welle S trägt die Schmutzrolle R. Von R aus läuft die Betriebsfahne x, x über zwei Zeitrollen z, z (Fig. 1)
und 2) und erhält durch letztere die nötige Richtung, um auf das Arbeitswollen c wirken zu können.

Wie oben näher beschrieben worden ist, sichet sich E nebst Zubehör längs des Armes F. Es würde deshalb, wenn sich z, z um feste Zapfen dreht, die Schnur x, x bisweilen zu sehr, bisweilen zu wenig gepannelt zeigen, wörend mit Hälfte des Handhebels p die Verschiebung von E längs des Armes F vorgenommen wird. Um dieses zu verhüten, um vielmehr der Schnur x, x immer die gleiche und richtige Spannung zu geben, sind die Zapfen der Nollen z, z an das eine Ende des Hebels u befestigt, dessen anderes Ende ein Gegengewichte trägt und dessen Stillpunkt y in dem, um V drehbaren Arme T sich befindet. Der Arm T mußte um die Stange V drehbar angeordnet werden, weil ja F je nach Umständen um (Fig. 3) gedreht wird, also das Arbeitswollen eine sehr verschiedene Lage, gegenüber dem Geißel H der Maschine einnehmen kann. Ein zweites Lager der Betriebsschelle s, welches, wie schon erwähnt, an irgend einem passenden Orte der Mühle angebracht werden muß, kann aus einem durchbohrten Bretchen bestehen. In diesen Mühlen wird man es vorziehen, statt eines solchen primitiven, ein Lager anzulegen, welches in Form und Abmessungen mit der Maschine harmonirt. In der Bischofsmühle in Hilbesheim wird das Lager zum Schärfen des Läuferstines an die Decke des Mühraumes geschräubt, das Lager aber für das Schärfen des Bodenstines, an den unteren Theil des betreffenden Aufsättichetzes. Dort dient die Maschine zum Schärfen von 9 Paar Steinen; es müssen daher an 9 verschiedenen Orten Lager zum Schärfen der Läuf er, an 9 verschiedenen Orten Lager zum Schärfen der Bodenstine angebracht werden.

Beauftragt, für die betreffende Einrichtung die nötigen Anordnungen zu treffen, ließ ich über jedes Orte, wo ein Läufer behufs des Schärfens niedergelegt werden sollte, ein Plättchen b (Fig. 8 u. 9) mittels Holzschrauben befestigen, welches Plättchen mit zwei festigenden Schrauben d, d ausgerüstet ist. Auf sämtliche Plättchen paßt ein und derselbe Lagerarm e (Fig. 8, 9 und 10). Die am unteren Ende desselben befindliche Gabel trägt zwei, durch Gegenmuttern festzulegende Schrauben g, g, die das eigentliche Lager m zwischen ihren Spitzen festhalten, jedoch so, daß m um die Spitzen von g, g schwingen kann.

Nachdem nun die Schärmachine auf den Stein gesetzt ist, wird das Lager e an seinem Plaße befestigt, und der Stein nöthigenfalls um Etwas verrückt, so daß die Maschinenmitte unter die Lagermitte zu stehen kommt. Das obere Ende von s kann nun bequem von unten in das Lager m gesetzt werden, da sich dieses um das Erforderliche drehen kann. Für
das Schären der Bodensteine habe ich in der genannten Mühle ein ähnliches Lager angewendet.

Bebu’s Centrurung der Maschine über dem Steine befinden sich in dem Mittelteil des Gestelles H Stellschrauben \(n, r \) (Fig. 2, und punktiert Fig. 3), die, wenn der Bodenstein geschräbt wird, gegen die Mühlspindel leicht angeschräbt werden. Bebuis Gebrauches der Maschine auf dem Läuferstein muß man zunächst einen äußeren hervorragenden Zapfen, als welchen sich die Mühlspindel dem Bodenstein gegenüber präsentiert, schaffen. Den neueren Maschinen führt jhr. G. la s einen lachsformigen Theil W bei, dessen Halssisch in einer Holzscheibe Z dreht, welche im Auge des Läufers mit Hilfe der, zur Aufnahme der Hauenzapfen liegenden Vertiefungen befestigt ist. Das dichtere, in Fig. 3 obere Ende von W wird zwischen die Schrauben \(s, s \) festgeklemmt. In beiden Fällen — wenn die Schrauben \(t; t \) den Kopf der Mühlspindel leicht berühren, oder wenn das Zwischenstück W eingehaltest ist — läßt sich die Maschine um ihre verticale Achse drehen, ohne ihre Lage gegenüber dem Mittelpunkte des Steines zu verändern.

Nachdem die Eigenschaften der abgebildeten Theile erläutert sind, wird es den Lesern leicht werden, der Beschreibung des eigentlichen Arbeitsschreifes zu folgen.

Zunächst überzeugt man sich nachdem die Maschine an ihrem Ort gebracht ist, ob der Arm F genau parallel mit der Bahn des Steines sich bewegt. Ist die Steinbahn genau eben, so ist es leicht, entweder mit Hilfe der Wasserwaage, oder mit Hilfe eines Sektiersfellers die genannte Untersuchung vorauszunehmen. Im anderen Falle muß man sich dazu bequemen, eine aus verschiedenen Richtungen zusammengelegte Nichte- platte zu benutzen. Diese Untersuchung ist nicht bei jedesmaligem Schärfe erforderlich, wenn man dafür sorgt, daß an den Stellschrauben v, v, v nicht muthwillig gedreht wird. Man legt dann den Stein so, daß die drei Punkte, auf denen die Platten N, N, N ruhen, in einer und desselben horizontalen Ebene liegen, markirt sich diese Punkte, indem man um die Platten N, N einen kräftigen Weisheitsfisch herumführt, setzt das Wellchen S in das obere Halblager und setzt es in das Spurlager der Stange V, bringt die Schraube zum Betrieb von S an, und legt die Schnur x, x um R und das Arbeitswellchen e, indem man gleichzeitig den Arm T so stellt, daß die Rollen z, z die Schnur x, x richtig auf das Arbeitswellen führen.

Das Excentric K ist mit Hilfe der Schraube t festgekellt, die Schraube w wird leicht angezogen und selbstverständlich dafür gesorgt, daß die Schrauben \(n, r \) ihrem Zweck entsprechend wirken. Nun erläßt
der Arbeiter den oberen Theil des Handscheibens p mit der rechten Hand, schiebt mit Hilfe des dritten den Schieber e einige Male längs des Armens F und stellt gleichzeitig mit der linken Hand an den Schrauben g, g so lange, bis der Diamant „greift.“ Hierauf erfaßt die linke Hand den Hebel k, bewegt ihn bis zu einem der Stifte r oder s und drückt dann den Hebel p nieder, erhebt ihn aber sofort wieder, dreht abermals das Sperrädchen c mit Hilfe von k und s. Auf diese Weise wird ein Theil des äußeren Ringes des Steines auf eine Breite gegeben, die gleich ist dem Auszuge des SUPPORTES C, D. Sobald sich C gegen D nicht mehr verschieben läßt, dreht man die gemachte Maschine um 1/8 Kreis, so daß die Platten N, N, N auf die Orte ihrer Vorgänger zu liegen kommen, und arbeitet mit der Maschine wie vorhin, nur läßt man den Supporttheil C den Weg rückwärts machen, zu welchem Ende die Klinke g umgeklappt worden ist.

Auf gleiche Weise verfährt man mit dem letzten Dritttheil des Steines.

Es befinden sich nun schon 6 Orte der Steinbahn in genau gleicher horizontaler Ebene, nämlich die drei Orte, auf denen sich die Platten N, N, N befanden, und die drei so eben bearbeiteten Flächen. Durch Verstellung des Ecentrics K und Wiederholung des angegebenen Verfahrens, wird dem Diamant ein weiteres Arbeitsfeld gegeben, bis endlich der gemachte äußere Fünffach des Steines, vielleicht bis zur Mitte des Halbmessers, vollkommen eben hergestellt worden ist.

Der zunächst dem Mittelpunkte des Steines befindliche Theil der Bahn wird nicht eben gemacht; dort wird vielmehr eine kegelförmige Fläche (der sogenannte „Schlüssel“), deren Spitze nach unten gerichtet ist, ausgearbeitet.

Zu dem Ende wird die äußere der Schrauben q gelöst, nöthigenfalls herausgenommen, und dem Arme F mit Hilfe der Schraube w die erforderliche Neigung gegeben. Das Arbeitstheil wird in die, der Maschinenmitte zugerichtete Seite des Rahmens A gelegt, und das Schrauben m in das äußere Geviinde des Schiebers E getrieben, so daß das Arbeitstheil in unmittelbarer Nähe des Steinauges gebracht werden kann. Zur Erhaltung einer möglichst gleichförmigen Spannung der Schnur x, x ist die Schraube y, der Stempel des Hebels U, in das, der Maschinenmitte näherliegende Loch des Armens T zu stecken. Es folgt nun das Ausarbeiten des „Schlüsses“ auf die Breite eines Supportauszuges, hierauf forttritt der Maschine w, j, w., bis der „Schlüssel“ auf dem ganzen Umfange des Steines vollendet ist.

Das Einen des Steines und Ausarbeiten des Schlüsses findet nicht
bei jedesmaligem Scharfem des Steines statt. Gewöhnlich nimmt man — nachdem ein einmaliges, vollständiges Bearbeiten hattgesunden hat — bei jedesmaligem Scharfem drei Felder vor, so daß nach viermaligem Scharfen die zuerst bearbeiteten Felder wieder geehret u. s. w. werden.

Einer der wichtigsten Theile des Scharfens ist das „Ausschlagen der Sprengschläge.“ Es werden zarte, nebeneinander liegende, Millen in die „Balken“ eingearbeitet, welche dem Steine die nötige gleichförmige Nahtigkeit geben. Die Herstellung dieser Millen bietet bei Handarbeit die größten Schwierigkeiten, und wird in Folge dessen von Seiten der Maschine, gegenüber der Handarbeit in höchster Vollkommenheit bewirkt. Man stellt den Arm F der Maschine genau parallel den Balken der Scharfe (Fig. 2.), gibt dem Hebel k durch Verstellen des Stiftes 3 einen größeren Spielraum, bringt übrigens die Schraube m, das Arbeitswellen c und den Stützpunkt y des Hebels U in dieselbe Lage, wie die war, welche diese Theile während des Ebnens hatten. Hierauf bearbeitet man so viele „Balken,“ als mit dem Auszuge des Supportes V zu erreichen sind, dreht die Maschine über das folgende „Feld“ der Scharfe, versahrt dort ebenso, und so weiter, bis auch das letzte des „Feldes“ in derselben Ausdehnung bearbeitet worden ist. Hierauf dreht man das Arbeitswellen c um, so daß dieselbe Spitze, welche bisher in d gelagert war, nach e kommt, und dieselbe, welche in e sich drehte, nach f verlegt wird. Hierdurch gewinnt man den nötigen Spielraum, um auch die Reste der „Felder“ scharfen zu können.

Der geschätzte Scharfer war bisher nicht im Stande, mehr als 20 Sprengschläge auf einen Zoll Breite anzubringen; die Gołapf'sche Scharfmaschine legt auf die Breite von 25 Millim. — wenn es gewünscht wird — 25 Sprengschläge neben einander. Dieses Resultat erklärt sich aus folgendem. Die Pinde wirkt, indem sie durch Ausschlagen auf den Stein die betreffenden Stellen der Steinhärte abetzügelt. Angesichts der sehr geringen Elasticität des Materials, und Angesichts der That-sache, daß zweifellos schon nach dem fünften Stöße der Schneidwinkel der Pinde ein ziemlich stumpfer geworden ist, ist es nicht zu ändern, daß die seitlichen Rändern der Sprengschläge eine starke Neigung gegen die Verticale erhalten. Nach Beobachtungen mit der Loupe schränkt die Neigung auf 60 bis 70°, so daß also der Winkel, unter welchem die genannten Flächen (dieselben vollkommen eben gedacht) zusammenfließen, circa 120° bis 140° mißt. Der betreffende Kantenwinkel bei der Maschinenerarbeit mißt aber nur circa 90 bis 100°. Bei derartigen Tiefen des Sprengschläge muß derartige daher, durch Picken hergestellt, eine günstigere obere Weite haben, als wenn er durch die Gołapf'sche Maschine
ausgearbeitet worden ist. Gewöhnliche Steinschräfer vermögen außerdem die Sprengschläge nicht gleichmäßig genug herzustellen, es variiren nicht allein die Tiefen, sondern auch die Breiten der Sprengschläge, wechselnd bei gewöhnlicher Handarbeit die Zahl der Sprengschläge auf einen Rollenbreite nur 16 wird.

Befehls Bearbeitung der Luftrillenboden entfernt man, wie schon weiter oben bemerkt, den Schieber E, nebst Zubehör der Figuren 1, 2, 3, 4 und 5, und erzielt desselben durch den Schieber E, nebst Zubehör der Fig. 7. Da die Supportsteile C und D der Fig. 7 eine größere Höhe einnehmen, wie die der Fig. 1 bis 5 einschließlich, so müssen auch die Platten N, N, N und P durch gleichformige, höhere Platten ersetzt werden.

Der Auszug des Supportes C, D wird hier nur für die Breite einer Luftrille benutzt. Befehls einer größeren Verschiebung des Supportes, winkelrecht zum Arm F, welche Verschiebung notwendig ist, um alle Luftrillen jedes Feldes erreichen zu können, greifen die Muttergurben u. n. Fig. 7 in Schilde des Supportsteiles D. Nachdem man die Schrauben u. n. gelöst hat, löst sich der Supportsteil D, Fig. 7, rechtwinklig gegen E verschieben. Die hierdurch gebotene Beweglichkeit würde aber noch nicht genügen, um sämtliche Luftrillen der Felder erreichen zu können; man muß vielmehr zu diesem Ende außerdem den schon oben erwähnten Kunstgriff des Umkehrens der Arbeitswelle c benutzen.

Man stellt nun die Maschine zum Bearbeiten einer Luftrille ein, und benutzt diese Einstellung für dieselbe Luftrille sämtlicher Felder, worauf die folgende Luftrille vorgenommen wird u. s. w.

Auch das Ausarbeiten der Luftrillen ist nicht bei jedesmaligem Schärfen nothwendig. Da das Vorrichten der Maschine beßer des Luftrillen-Ausarbeitens, mehr oder weniger umständlich ist, so besorgt man dieses Geschäft nur dann, wenn es nöthig geworden ist.

Selbstverständlich werden die Diamanten für die einzelnen Arbeiten ausgewählt. Die dienen, rundlichen verwendet man besonders zum Öffnen und Ausarbeiten des „Schlucks;“ die dünneren, splitterartigen zur Herstellung der „Sprengschläge.“

Zum Schluß will ich noch einige Bemerkungen aus der jeder Maschine beigelegten Instruktion anführen. Es sind dies die folgenden:

„Bevor die Maschine aufgestellt wird, hat man dafür zu sorgen, daß der Stein und die Löcher der Platten N, N, N und P recht rein sind. Die Schrauben w darf nie so sehr gespannt sein, als die Schrauben v, v, v, da leichter das Gewicht der ganzen Maschine zu tragen haben. Das Arbeitswellechen muß möglichst leicht umlaufen, jedoch ohne zwischen den
Spitzen zu spielen. Alles muß mit gutem Anschmieren getan werden (die durch einen kleinen Kreis angebierte Leuchtflamme am Arm O, Fig. 5, dient als Schmierbehälter). Die Scheiben, welche den Diamanten halten, müssen von Zeit zu Zeit nachgeschnitten, und die Schrauben, Fig. 11, nachgezogen werden, sobald der Diamant eine Lockerung zeigt. Die ganze Betriebszeit von x x wird mit Wachs getan. Die Maschine ist in jeder Beziehung sauber zu halten. Zeigen die Supportfehler (1) und Flächen, ob dieselben liegenden Flächen mit Hilfe der zugehörigen Schrauben nachzuvorrichtung.

Der Preis der Maschine stellt sich, einschließlich Holz und Fracht, auf 265 Thlr. wenn mit der Einrichtung zum Ausarbeiten der Arbeiten ausgerüftet, auf 216 Thlr. wenn ohne diese Vorrichtung.

Die Resultate der Maschine sind, so weit sie mir bis jetzt bekannt geworden, folgende: Ein tüchtiger Arbeiter ist im Stande täglich zwei Paar Steine zu fertigen. Der Aufwand an Diamanten repräsentiert im Durchschnitt noch nicht die Summe von 10 Groschen für die Schärung jedes Steinspaares.

Bergleicht man diese Schärfung mit dem, was oben über die Schärfung der Hand gelagert wurde, so sieht man, daß bei letzterer:
1) der Zeitaufwand doppelt so groß;
2) die Arbeitsgelder fast viermal so groß;
3) der Aufwand an Werkzeug (hier Stahl, dort Diamant) dreimal so groß ist als bei der Maschinen- schärfung.

Hierzu kommt noch der Vorteil einer schöneren Schärfung und einer größeren Unabhängigkeit von den Arbeiten, so daß der Anschaffungspreis, selbst für Mühlen mit nur zwei bis drei Gängen nicht zu hoch sein dürfte.

CXXI.

Amerikanischer Röhrenbrunnen.

Mit Abbildungen.

und damit in verschiedenen Theilen des Landes Versuche angestellt worden, welche in vielen Fällen ein günstiges Resultat ergeben haben.

In einem Falle jedoch, in unmittelbarer Nähe des Bodenjee’s, hat der Brunnen, nachdem er eingeraumt war, zwar ebenfalls Wasser geliefert, daselbe führte jedoch fortwährend seinen Sand mit sich, welcher alls bald die Rohre verstopfte und den Brunnen unbrauchbar machte.

Durch einen neuerdings in dem Musterlager der Centralstelle aus England eingetroffenen Apparat soll nun auch diesem Unbelehen abgeholfen und somit die Anwendbarkeit dieser Brunnen auch für solche Terrains geprüft werden, wo jener seine Sand in den wassergeführenden Schichten vorkommt.

Dieser Apparat ist in Fig. 1 in der Außform und in Fig. 2 im Querschnitt abgebildet, und stimmt nach seinem Neujieren im Wesentlichen mit dem unteren Theile des gewöhnlichen Rohrenbrunnens überein; er besteht aus einer kurzen, mit vielen Löchern durchbohrten, an einem Ende geschlossenen, mit einer Stahlgewebe versehenen eisernen Rohre, auf welche mittels eines Verschlagungs-Russes die anderen Röhren aufgeschraubt werden. Der Unterschied besteht von der bisherigen unteren Röhre besteht nur darin, daß sie einen größeren Durchmesser als die übrigen Röhren hat und nur 3 Füβ lang ist. Zur Verhütung des Eindringens des Sandes steht nun aber in dieser Röhre eine zweite meistengieße, ebenfalls vielfach durchbohrte Rohre, von der Seite der anderen Röhren, und zwischen dieser und der äußeren Röhre ist so viel Spielraum, daß über das engere Rohr ein Neuberg (Strumpf) von einem Pferdehaargewebe (Strept) von einem Pferdehaargewebe gesteckt werden kann, welcher das Eindringen des Sandes in das innere Rohr verhindert, dabei aber als Haarsieb doch den Durchgang des Wassers ermöglicht. (Württembergisches Gewerbeblatt, 1869, Nr. 21.)
CXXII.

E. Cohn's Katarakt-Waschtopf; von Dr. O. Buchner
in Gießen.

Mit einer Abbildung.

In Amerika ist dieser Waschtopf schon längere Zeit im Gebrauch und von den Hoflieferanten Cohn nicht nur in Deutschland eingeführt, sondern auch wesentlich verbessert worden. Er ist aus sehr starkem ver- sinnerten Eisenblech gestaltet und zum Einbängen in die Einschnürungen oder zum Aufstellen auf die Herdplatte geeignet. Im Innern steht sich auf die Boden ein Blechring auf, der einen Siebboden trägt und zugleich zwei fast bis zum unteren Boden reichende, oben gebogene Wieschühren. Dieser Teil kann weggenommen und nach dem Gebrauch sorgfältig getrocknet werden, um Kopfbildung zu verhüten.

Durch den zwischen den beiden Böden entwickelten Dampf wird das kochende Wasser in den Rohren emporgetrieben und ergießt sich nun in Strömen über die Wäsche, durchbringt dieselbe und gelangt wieder auf den Boden des Topfes, um auf's Neue emporgetrieben zu werden. Nur muß man dafür sorgen, daß das Wasser dauernd im Kochen bleibt, auch soll der Deckel nicht unnötig vom Topfe abgenommen werden.

Nach Verlauf einer Stunde ist die Wäsche vollkommen rein und bedarf nur des sofortigen einmaligen Nachwaschens, um den gelösten Schmutz ohne alle Mühe vollständig zu beseitigen. Hieraus folgt das übliche Spiel der Wäsche in kaltem Wasser, sowie das Anrügen der selben.

Will man mit dem Waschen gleichzeitig das Bleichen verbinden, so mischt man dem Wasser im Topfe einen Chlorsalpeterpulver mit Borax bei, der hierdurch erzielte Erfolg ist ein überraschend schöner. Flanelle und andere dicke, wollen Stoffe dürfen nur, nachdem das Wasser bereits heiß geworden in den Topf hineingegossen werden, und werden später gleichfalls in heißem Wasser nachgewaschen; farbige Stoffe bringen man für sich gefondert und nicht gleichzeitig mit weiser Wäsche in den Dampftopf hinein, sind die Farben aber unächt, so kann der Katafalt-Waschtöpf überhaupt nicht in Anwendung gebracht werden.

Herr Cohn hält seinen Waschtöpf in sechs verschiedenen Größen vorräthig:
Lepan's Verbleien von Eisendraht.

Nr. 0 enth. ca. 1 Eimer Wasser, verzinkt. Eisenblech 3 tfl. 20fg., v. Kupfer 6tfl. ca. 9 Zoll
Nr. 1 „ 2 „ „ „ „ 5 „ „ „ „ 10 „ „ „ „ 11 „
Nr. 2 „ 3 „ „ „ „ 6 „ „ „ „ 12 „ „ „ „ 12½ „
Nr. 3 „ 3½ „ „ „ „ 7 „ „ „ „ 14 „ „ „ „ 14 „
Nr. 4 „ 4 „ „ „ „ 8 „ „ „ „ 17 „ „ „ „ 16 „
Nr. 5 „ 5 „ „ „ „ 10 „ „ „ „ 22 „ „ „ „ 18 „

(Ein Eimer enthält circa 12 preuß. Quart.)

Dampfwaschtopfe von größerem Inhalt werden auf Münch gleichfalls geliefert, doch ist zu berücksichtigen, daß der Katarakt-Waschtöpfe nur am Boden und nicht wie der bisherige Waschtopf ganz mit Wasser gefüllt wird, daß also bei gleichem Eimerinhalt im ersten nicht nur das Wasser weit rascher in's Kochen kommt, sondern auch für eine doppelt so große Menge Wäsche Raum vorhanden ist, als im letzteren. Ein Katarakt-Waschtöpfe von drei Eimer Inhalt würde demnach einen Waschtopf von 5 bis 6 Eimer Inhalt vollständig ersetzen.

CXXXIII.

Lepan's Verbleien von Eisendraht.

Nach Armengaud's Génie industriel, April 1869, S. 199.

Mit Abbildungen auf Tab. VII.

Schon lange überrascht man eiserne Gegenstände mit einer schützenden Hülle, um ihre Dauerhaftigkeit zu erhöhen. T. Lepan, Fabrikant in Lille, überrascht nun Eisendraht mit einer Bleihülle, in einer Artattering, welche der Wesenheit nach in Fig. 13 und 14 dargestellt ist.

C bezeichnet einen Zylinder, in welchen der hohle Kolben P das (geschmolzene) Blei eindrückt. Der Eisendraht FF geht durch die Deffnung C dieses Kolbens und passirt sodann die Höhling der Nörhe T, welche den Zweck hat, das flüssige Blei vom Draht abzublasen.

Die Nörhe T ist an den ausgehöhlten Ring A angebracht; in der Seitenansicht Fig. 14 findet man die vier Canäle a, durch welche der Raum L mit dem Cylinderraum communicirt. Weiterhin ist das Mund

Die Wirkung der Bleipreße ist folgende: Das im Zylinder enthaltene Blei wird durch die bezeichneten Canäle a in den Raum L und weiter durch die zulaufende Bohrung in B getrieben und legt sich an der Austrittsstelle erstarrend, in Folge der Contraction um so inniger an den (vorher natürlich gescheuerten) mit der entsprechenden Geschwindigkeit durchgehenden Eisenbaut an, der weiterhin auf eine Drähte zu aufgewickelt oder sonst abgeleitet wird.

Die Dicke der Bleihülle hängt von der Dicke des Drahtes in B ab, welcher Theil somit, wenn nöthig, ausgewechselt werden kann.

Lepan stellte im Jahre 1867 außer verschiedenen Zinn- und Bleibändern auch einen (wie oben beschrieben) mit Blei überzogenen Eisenbaut von 21 Meter Länge aus.

Solche Drähte dürften namentlich für unterirdische Telegraphenleitungen geeignet sein, da sie vor Drybation sicher geschützt sind.

3. 3.

CXXIV.

Ueber Carré's verbesserte Daniell'sche Säule und dessen neuen Regulator für das elektrische Kohlenlicht; Bericht von Jamin.

Mit Abbildungen auf Tab. VIII.

Der durch seine sinnsreichen Apparate zur Eisenerzeugung wohl bekannte Civilingenieur F. Carré in Paris (148, boulevard Richard-Lenoir) hat der Société d'Encouragement die von ihm modifizierte Daniell'sche Säule und seinen neuen Regulator für das elektrische Kohlenlicht zur Begutachtung vorgelegt.

1. Das Carré'sche Element.

Diese Säule ist nicht neu; sie ist dieselbe, welche Becquerel (Bayer) im Jahre 1829 erfand, die in England adoptirt wurde und welche man gewöhnlich, aber mit Unrecht, Daniell'sche Säule nennt.
Carré hat in derselben wesentliche Verbesserungen eingeführt, indem er sie in folgender Weise konstruirte:

In der Mitte befindet sich ein cylindrisches Gehäuse, welches durch verticale Tannenholzstäbe gebildet ist; es enthält die Kupferzitrit-Kristalle und dient einem zweiten äußeren Gehäuse, das aus dünnen Kupferdrähten angestiftt ist, zur Unterstützung. Diese Drähte bilden den positiven Pol; sie dienen so lange als der auf ihrer Oberfläche entstehende Kupfer- niederabschlag ihre Zwischenräume nicht ausfüllt hat. Die beiden Gehäuse befinden sich in dem porösen Gefäße (Diaphragma). Um letzteres billiger herzustellen und die Leitungsfähigkeit desselben zu erhöhen, verfestigt es Carré aus Albuminpapier, welches in Dampf bei der Temperatur von 230° C. erhitzt und dann mit Gummiack geseift wurde, so daß es einen Cylinder bildet, dessen Basis eine Porzellanschale ist. Da ein solches Diaphragma leicht zerbrechlich ist, so verfeinert man es mit einem System von Bindfäden, welche die poröse Zelle mit dem anderen was sie enthält zu heben gestatten, falls man die Säule auseinandernehmen und reinigen will.

Als Bunsen, indem er das Platin durch Kobol erzeugte, das Groves'sche Element ökonomisch gemacht hatte, wurden die früher bekannten Säulen wegen ihrer relativ schwachen Wirkung fast allgemein aufgegeben. Das Bunsen'sche Element hat aber auch seine Nebenstände; es erfordert concentrirte Säuren und entwickelt scharfe Dämpfe, so daß die Orte, wo eine Anzahl solcher Elemente thätig ist, unbewohnbar bleiben. Trotz der Amalgamierung wird der Zinkylinder oft sehr schnell zerfressen und daher zur weiteren Verwendung unbrauchbar. Nach einigen Stunden ist die Säule unhäfig, weil die Salpetersäure sich verbunnt hat; man muß daher die Säure durch frische concentrirte ersetzen.

Die Daniell'sche Säule hat keinen dieser Nebenstände; sie erfordert gar keine Säure, ist geruchslos und entwickelt nichts; das Zink wird

40 Eine Notiz über das Carré'sche Element wurde im polysteth. Journal Bd. CLXXXVIII S. 400 mitgeteilt.
Carré's verbesserte Daniell'sche Säule

Diese Säule hat jedoch den Nachtheil, daß ihre elektromotorische Kraft gleich 3 ist, während die des Bunsen'schen Elementes gleich 5 ist. Ist aber diesem Umstände eine so große Wichtigkeit beizulegen, wie man bisher geglühnt hat? Die elektromotorische Kraft kann man allerdings nicht ändern; es ist aber sehr leicht, den Widerstand eines Elementes zu vermindern, indem man, wie es auch Carré gethan hat, seine Oberfläche vergrößert.

 Nehmen wir nun an, daß 5 Daniell'sche Elemente denselben Widerstand haben wie 3 Bunsen'sche, so werden sie dieselben zu allen Zwecken vollständig erscheinen, weil sie dieselbe elektromotorische Kraft und den denselben Widerstand haben. Selbst wenn man sie soweit vergrößert, daß dieser Widerstand geringer als jener der 3 Bunsen'schen Elemente wird, so werden sie im Ganzen denselben vorzüglichen feyn; im Allgemeinen wird eine Säule von n Daniell'schen Elementen mehr werth feyn, als eine von \(\frac{3n}{5} \) Bunsen'schen. Allerdings werden die Auslagen für Zink im Verhältnis von 5 : 3 größer, aber die für Säure werden erpart, weil das schwefelsaure Kupferoxyd gar keine Kosten verursacht. Im Ganzen liegen die Vortheile in jeder Hinsicht, mit alleiniger Ausnahme der Anzahl der Elemente, auf Seite der Daniell'schen Batterie.

Carré stellte eine Batterie von 60 Elementen dem Laboratorium der Sorbonne zur Verfügung und ich habe dieselbe zu allen meinen Versuchen mit dem elektrischen Licht benutzt.

2. Der Carré'sche Kohlenlicht-Regulator.

Bezüglich der Gleichförmigkeit des elektrischen Kohlenlichtes lassen jetzt der Regulator von Serrin und der von Foucault nichts mehr
zu wünschen übrig; der Apparat von Carré ist jedoch einfacher.

Denken wir uns einen Elektromagnet durch zwei parallele horizontale Cylinder gebildet, deren Pole A und B sind. Fig. 1 und 2. Zwischen ihnen befindet sich, parallel zu ihrer Richtung, eine Lamelle von gehärtetem Stahle C,D, in C festgehalten, in D beweglich, so daß sie sich drehen und als Feder wirken kann. Andererseits ist sie fest verbunden mit dem Contacte EF; dieser ist es, welcher sie drehet, und die Torision strebt sie in ihre vorige Lage zurückzubringen.

Dieser Contact, welcher in einer senkrechten Ebene angebracht ist, besteht aus einem Quersstück von weichem Eisen GH, welches mit zwei eisernen Bogenstücken GE und HF verbunden ist. Die Pole A und B, ziehen E und F an, aber auch und hauptsächlich die Enden des Quersstückes HG, so daß das Quersstück sich A und B gegenüber zu stellen strebt. Die Bögen HF und GE sind keineswegs kreisförmig; sie sind Theile von Spiralen, welche aus experimentalem Wege gefunden wurden, derartig gekrümmt, daß die Anziehungskraft von der ersten bis zur letzten Stellung zunimmt, jedoch weniger rasch als die Reaction der Stahlsäule. Für eine gegebene Kraft des Magneten bleibt das Quersstück GH in einer schiefen Lage stehen; wenn diese Kraft zu oder abnimmt, so ändert sich die Neigung von GH. Diese einseitige Veränderung gesattelt Winkelbewegungen von 60° für wenig beträchtliche Veränderungen in der Stromstärke zu erhalten.

An diesen Contacte ist ein verticales Stäbchen befestigt, dessen oberes Ende sich bedeutend hebt oder senkt, und welches durch geeignete Bewegungsübertragungen die Kohlenstücke einander nähert oder von einander entfernt.

Der Vorteil dieses neuen Apparates besteht darin, daß er viel billiger als die bisher angewandten ist.

Präparierte Kohle für das elektrische Licht. Die Gas-kehlen (Rotortenkehlen), welche man gewöhnlich anwendet, haben den Nebelstand, mit einem unangenehmen Riechen abzubrennen. Es gelang Carré, diesen Nebelstand vorerst zu vermindern, indem er die Kohlen in Salzlösungen löchen ließ; das Glutfeuer halte dauernd dieses Gas räuchig, daselbe hütte die Borsäure, und da diese außerdem eine Art

Solche Kohlen brennen ohne alles Geräusch ab und leuchten bedeutend lebhafter als die bisherigen. Die besten sind aber dieselben, welchen man Spuren von pulverisirtem Antimon, oder von reducirtem Eisen, oder von Zinn zugesetzt hat; sie geben einen enormen Lichtbogen, und die Lichtmenge, welche in meinem Laboratorium gemessen wurde, war im Verhältniss von 1 zu 1,68 vergrössert.

Beschreibung der Abbildungen der Carré'schen Säule.

Fig. 3, verticaler Durchschnitt der Säule; Fig. 4, Aufriß desselben; Fig. 4a, horizontaler Durchschnitt nach der Linie I, II der Fig. 3; Fig. 4b, Ansicht von Osten.

A amalgamirter Zinkcylinder.

B cylindrisches Diaphragma von Bergamentpapier oder von Eiweißpapier.

B¹ Boden (Schale) aus gebranntem Thon, auf welchen der Papiercylinder mit Gummilad geleimt ist.

C cylindrisches Gebäude, aus verticalen Tannenhölzstäben gebildet, welche auf einem hölzernen Boden ruhen, der an seinem Umfang mit Vorstümpfen versehen ist; diese Stäbe sind oben durch eine kupferne Krone D verbunden, deren oberer Rand gezahnt ist.

Kupferdrähte von regelmässig 0,8 Millimeter Stärke, welche zwischen den Zähnen der Krone D und den Vorstümpfen am Boden des Gebäudes C gezogen sind, bilden um dieses Gebäude ein leitendes Reh, auf welchem sich das reducirte Kupfer ablagert.

E ringsförmige Scheibe, welche die kupferne Krone D bedeckt.

F gelbeerte Schnur zum Zusammenhalten des Ganzen; sie ist durch die Einschnitte am Thonboden B¹ und an der Scheibe E gezogen.

Man gibt Kupferchlorid; Kristalle in das Gebäude C, so daß sie dasselbe auf seine ganze Höhe füllen, daher die Lösung stets überall gefäuligt bleibt.

G ist ein Kreuzständer, welcher den Thonboden B¹, sowie den
Becquerel, über elektrochemische Jugtemachung der Silber-, Blei- und Kupfererze. 471

Zinkzylinder A trägt; sein Zweck ist, den zu Boden sinkenden Kupferschlammm aufzunehmen und das papierne Diaphragma gegen Befrustung zu sichern.

H ist das äußere Gefäß, welches den Apparat umhüllt und den Schlamm aufnimmt.

J. W.

CXXV.

Über die Jugtemachung der Silber-, Blei- und Kupfererze auf elektrochemischem Wege; von Becquerel.

Aus den Comptes rendus, t. LXVIII. p. 482; März 1869.

Ich erlaube mir hiermit, der (französischen) Akademie über die von 1835 bis 1840 von mir abgeführten Versuche zur Jugtemachung der Silber-, Blei- und Kupfererze auf elektrochemischem Wege nochmals Mittheilungen zu machen.

Das allgemeine Princip desselben besteht in der Anwendung galvanischer Ketten, welche aus Zink, Eisen oder Blei in Verbindung mit Kupfer oder gut ausgeglühter Kohle zusammengesetzt sind; die Blätter des nicht oxydiren Metall oder die nichtmetallischen leitenden Substanzen werden mit der silberhaltigen Lösung der in geeig- neter Weise auf- und vorbereiteten Erze in unmittelbare Communication gelegt, das oxydiren Metall hingegen kommt in poröse Diaphragmen aus Segeltuch oder ungegöterter Thierhaut, welche nur mit Salzwasser gefüllt sind und in die Erzlösung tauchen, alsdann in metal- lische Verbindung mit den ersteren gelegt werden.

Die Metalle, welche in dem zu seinem Webe verwandelten Erze enthalten sind, werden nach den Methoden die in dem von mir gemeinschaftlich mit C. C. Becquerel in drei Bänden herausgegebenen Traité d'Electricité et de Magnétisme, Paris 1855 beschrieben sind. 143

143 Räumlich in der ausführlichen Abhandlung, welche dieses Werke (t. II p. 276 bis 446) über die elektrochemische Jugtemachung der Silber-, Blei- und Kupfererze...
Bequereg, über Zügtemachung der Silber-, Blei- und Kupiererze

durch chlorirt oder sulfarsätirt. Das präparierte Erz kommt in große, gesättigte Kochsalzlösung enthaltende Baffins, welche mit einem durch einen Motor getriebenen Mühlaparate versehen sind; die löschlichen Metallsäfte gehen hier in Lösung.

Nachdem der ungelöst gebliebene Rückstand des Erzes sich abgesetzt hat, wird die Flüssigkeit in andere Behälter abgelassen, in denen die oben erwähnten Elemente sich bilden. Auf diese Weise wurden 20,000 Kilogramm Erze, die aus Mexiko, Peru, Chili, Sibirien, Freiberg, Marken und von verschiedenen Orten Frankreichs nach Paris gesendet worden waren, mit Erfolg zugutegebracht.

Es war dies das erste Mal, daß in großem Maßstabe construitere Batterien mit konstantem Strom, bei denen die beiden Flüssigkeiten durch ein poröses Diaphragma getrennt sind und deren Princip ich im Jahre 1829 der Académie mitgeteilt hatte (Annales de Chimie et de Physique, 2. série, t. XL p. 19), zur Anwendung kamen.

Indem wir mehrere dieser Elemente zu einer Batterie verbanden, konnten wir die zur Reduction der Metalle erforderliche Zeit abkürzen. Ich habe in dem vorhin erwähnten Werke die Bezeichnung einer Silberbatterie mitgeteilt, in welcher es möglich war, 900 Kubikmeter, der das Chlorosilber in Lösung enthalten den gesättigten Kochsalzlösung auf einmal zu behandeln, so daß binnen 24 Stunden 500 Kilogramm Silber gewonnen werden konnten. Die Erfahrung hat gezeigt, daß sich auch kupfer- und bleifaltige Silbererze aus elektrochemischem Wege ohne Schwierigkeit zügtemachen lassen, sobald das Sulfat zu billigen Preise zu beziehen und genug Holz zum Abbrüsten der Erze vorhanden ist, falls die Chloration auf nafem Wege nicht ausgeführt werden kann.

Gleichzeitig gab ich ein Mittel zur Trennung des Silbers vom Bleie im Bleiglanze an, eine Art von Kupellation auf nafem Wege.

Dr. Sainte-Claire Duport, welcher lange Zeit an der Spitze der Assiniransalter der mexikanischen Regierung stand, ein durchaus competenter Richter in dieser Sache, spricht sich in seinem Werke „über die Production von Edelmetallen in Mexico“ bezüglich des elektrochemischen Verfahrens in nachfolgender Weise aus:

„Welche Folgen würde das gängliche Fehlen des Quecksilbers haben, wenn das Almadener Werk, sei es wegen Zuliehsgegen der Banne, oder Ausgehens zu großer nicht zu bewältigender Wassermassen, oder endlich Abgebaufolgs allerbaumwürigen

Erzmittel (Ereignisse, welche zwar wenig wahrscheinlich, aber immerhin möglich sind), einen Zinnoder mehr liefern könnte?“

„Die Produktion metallischen Quecksilbers wurde dann auf die Gruben Kärntens beschränkt und für den Verkauf bei weitem nicht hinreichend sein; es müßte daher eine Preiserniedrigung entstehen, welche einem absoluten Mangel an jenem Metalle so ziemlich gleichkam mitteilen. Was würde dann aus der Silbergewinnung in Mexico werden?“

Dr. Dupont war im Begriffe, das elektrochemische Verfahren in Mexico einzuführen, als er durch Familienangelegenheiten nach Frankreich zurückgerufen wurde, wo er seit dieser Zeit geblieben ist.

Bei diesem Verfahren funktionieren galvanische Apparate mit Zinn, Eisen oder Blei und Salzwasser, ohne Mitwirkung einer Säure; auch ist dabei die Anwendung von Quecksilber ausgeschlossen.

In der Eingangs erwähnten Mittheilung vom Jahre 1838 brachte ich ein anderes Verfahren in Vorschlag, dem nachstehendes Princip zu Grunde liegt:

Zunächst werden die Erze einer vorbereitenden Behandlung mittels verschiedener Prozesse unterworfen, welche von ihrer Beschaffenheit und den im Lande verfügbaren chemischen Producten abhängen; hierauf leitet man in die auf gewünschte Weise vorbereitete und mit Kochsalz gestartete Erzmasse einen elektrischen Strom, durch welchen das Silber dem betreffenden (aus nicht oxydierbaren Körpern bestehenden) Pole zugeführt und so in Form von Pulver, von Krystallen oder von Blättchen erhalten wird.

Die genannten erinnern zunächst an alle von mir zur Lösung dieser Frage gemachten Anstrengungen und sprechen sich über dieselben sehr anerkennend aus; dann beschreiben sie die von ihnen eingeführten Verbesserungen, welche mir, obwohl ich davon nur eine unvollkommene
Kenntnis habe, rationell zu sein scheinen. Diese Verbesserungen be- stehen in Folgendem: Zunächst haben sie das erste Versäubern, von dem ich oben sprach, ganz aufgegeben; sie halten sich an die zweite Methode und haben derelbst, wie ich glaube, eine für die praktische Benutzung geeignete Form gegeben; dieselbe bezweckt die Extraktion nicht blos des Silbers, sondern auch des Goldes. Die Batterie wird mit dem Erz selbst, wahrscheinlich nachdem dasselbe mit Chlornatriumlösung durch- feuchtet worden (worüber sie sich nicht näher aus sprechen) in Verbin- dung gebracht; das Erz wird vorher in seines Mehls verwandelt und mit Substanzen (die sie nicht angeben) versetzt, durch welche es zersetzt wird. Nachdem Platten von amalgamirten Kupfer und zweifelssohne auch Platten von einem oxydibaren Metalle in das teigartige Gemenge eingesetzt und nachdem die ersteren mit dem negativen und die letzteren mit dem positiven Pole der Batterie verbunden worden sind, wird diese Masse in eine kontinuierliche Drehbewegung versetzt, worauf das Silberfall unter dem Einfluss der Batterie und des amalgamirten Kupfers durch den Strom zerlegt wird. Neben die zugefügten chemischen Agentien sagen sie nichts; sie bemerken in dieser Hinsicht am Schlusse ihres Berichtes:

„Was die chemischen Reaktionen betrifft, welche notwendigerweise stattfinden müssen, damit die Edelmetalle an den negativen Pol geführt werden können, so sind dieselben zahlreich und kompliziert, und obgleich wir die Formeln für dieselben schon seit längerer Zeit aufgestellt haben, so glauben wir doch mit der Veröffentlichung derelbst warten zu müssen, bis sie der französischen Akademie der Wissenschaften vor- gelegt und von unseren großen Meistern anerkannt worden sind.“

Es war mein Wunsch, inzwischen die Aufmerksamkeit des hütten- männischen Publikums auf diese für die Silbereextraktion sehr wichtige Frage zu lenken.
CXXVI.

Die Erzeugung von glänzenden Platinüberzügen auf Glas, Porzellan, Steingut und dergleichen; von Prof. Dr. Böttger. 144

Zur Erzeugung eines Platinstrahles ist jetzt nur erforderlich, die Masse mittelst eines sauren, weichen Pinsels auf die betreffenden, aus Porzellan, Steingut oder Glas bestehenden Gegenstände ganz gleichförmig und in möglichst dünner Schicht aufzutragen. In je dünnerer Schicht nämlich die Masse auf die Gegenstände mit dem Pinsel aufgetragen wird, um desto glänzender fällt nachher auch der Platinüberzug aus. Sind die Gegenstände endlich regelrecht und ganz dann mit der Wirtersmase überzogen, dann hat man nur nötig, sie einige Minuten lang, entweder in einer Wuffel, oder mit Vorricht über der Flamme eines Brunnenlichtgasgebläses, einer ganz schwachen, kaum sichtbaren Rosglühschne auszuleuchten. Die Gegenstände kommen dabei, ohne irgend einer Nachhilfe zu bedürfen (falls nur die genannte Temperatur

nicht überschritten wurde), mit einem unvergleichlich schönen, silberglänzenden Lüster direct aus dem Brande.

Nach der hier von mir in der ungenünglichen Weise mitgeteilten Methode, Glas u. s. w. mit einer dünnen silberglänzenden Schicht Platin zu bekleiden, wird es jetzt den in der Anfertigung optischer Gläser bekannten industriellen nicht mehr schwer fallen, mit Platin bekleidete Hohlspiegel aller Art, sowohl kleinere für Mikroskope, wie solche von größeren Dimensionen für astronomische Zwecke herzustellen.
CXXVII.

Über die Erlangung einer schönen Patina auf Bronzen in großen Städten.

Aus Böggendorff’s Annalen der Physik, 1869, Bd. CXXXVI S. 480.

Zu fast allen großen Städten, besonders in solchen, wo Kohlen als Brennmaterial dienen, hat man die Erfahrung gemacht, daß auf öffentlichen Plätzen aufgestellte Bronzen, statt sich mit einer Patina zu bekleiden, ein schmutziges, dunkles, dem Gusseisen ähnliches Ansehen erhalten. Der Münch, diesem Nebelstände zu begegnen, hat den hiesigen Verein zur Beförderung des Gewerbefleißes in Preußen veranlaßt, vergleichende Versuche anstellen zu lassen, um wo möglich eine Abhilfe zu finden.

Um andere Einflüsse bei der Annahme der Patina kennen zu lernen, wurde eine Anzahl von Büsten aus Bronze an einer Stelle in der Stadt aufgestellt, wo besonders ungünstige Exhalationen stattfinden, und wo verschiedene, ganz in der Nähe befindliche Bronze-Statuen, ohne eine
Spur von Patina aufgegeben, das oben erwähnte unangenehme, schwarze Neßere angenommen haben.

Die erste und die zuletzt genannte Büste sind seit 1864 aufgestellt und auf die angegebene Weise behandelt, die dritte und vierte seit Anfang 1866. Es hat sich an ihnen die erwähnte Voransicht von der Wirkung des Fettes auf das unzweifelhafteste bestätigt.

Man kann hiernach als sicher ansehen, daß, wenn man eine öffentlisch aufgestellte Bronze monatlich, nachdem sie gereinigt worden, mit Del abreibt, sie eine schöne Patina annehmen wird.

In wie weit dieses Abreiben, das bei größeren Monumenten so häufig schwer auszuführen ist, sich wird beschränken lassen, darüber sollen fortgesetzte Versuche entscheiden, die durch die Büste, welche nur zwei Mal jährlich mit Del behandelt wird, bereits eingeleitet sind. Außerdem hat der Verein noch zwei neue durch chemische Mittel künstlich patinierte Bronzen ausstellen lassen, um zu erfahren, wie diese sich bei ähnlicher Behandlung bewähren.

Wodurch das Del bei der Bildung der Patina wirkt, ist nicht mit
Sicherheit anzugeben. So viel haben die Versuche gezeigt, daß jeder Überehschuß an Del zu vermeiden ist, und daß man das aufgebrachte so gleich mit einem Lappen soweit als möglich wieder entfernen muß. Bleibt überschüssiges Del zurück, so färbt sich darin Staub fest, und die Bronze erhält ein schlechtes Aussehen. Daß die zurückbleibende geringe Menge von Del eine chemische Verbindung mit der Drühschicht der Bronze eingeht, ist nicht anzunehmen, besonders da sich Knochenöl so gut wie Olivenöl bei diesen Versuchen bewährt hat. Wahrscheinlich wirkt die dünne Schicht des Deles nur dadurch, daß sie das Anhaften von Feuchtigkeit hindert, durch die sich leicht Staub beseitigt, der Gase und Dämpfe absorbiert, und in dem häufig Vegetationen sich bilden. Allein in welcher Weise es auch wirken mag, soviel haben die erwähnten Versuche ergeben, daß das fett weSENTLICH zur Bildung der Patina beiträgt.

Voraussichtlich wird es sich auch noch in anderer Beziehung bewähren. Man hat nämlich die wenig erfreuliche Beobachtung gemacht, daß mit einer schönen Patina bedeckte Bronzen an den Stellen, wo sich Wasserläufe auf ihnen bilden, eine weisse, undurchsichtige, freibartige Oberfläche annehmen, die im Laufe der Zeit mehr und mehr durch das Wasser fortgepült wird. Eine richtige Behandlung mit Del wird ohne Zweifel gegen die Bildung dieser freibartigen Stellen schützen, doch können darüber nur lang fortgepulte Versuche entscheiden.

Jedenfalls berechtigt die Anwendung des Deles zu der Hoffnung, daß man dort auch in größeren Städten wird schön patinierte öffentliche Bronzedarmmäuler erhalten können. Sie werden da wo Kohlen das ausschließliche Brennmaterial bilden, nicht hellgrün, sondern dunkel, vielleicht sogar schwarz erscheinen, allein sie werden die übrigen schönen Eigenschaften der Patina, die eigenthümlich durchscheinende Beschaffenheit der Oberfläche besitzen.

CXXVIII.

Neber Herstellung einer dauerhaften schwarzen Patina auf Zink; von Ph. Neumann.

Das Zink hat sich troz vielfacher eigenthümlicher Schwierigkeiten rasch in Kunst und Gewerbe eingeführt, und ist die specielle Zinfabrikemie imwischen zu einer selbstständigen technischen Branche herangebildet, die den verwandten Industriezweigen bereits eine erfolgreiche Concurrenz macht.

So glücklich man nun auch in diesen Befreiungen gewesen ist, wodurch es ermöglicht wurde, das Zink als Material für den Kunstguss, Statuen, architektonische Verzierungen u. s. w. in großer Ausdehnung anzuwenden, so hat eine, allerdings viel weniger umfangreiche, anderweitige Verwendung dieses Metalls sich bisher einer genügenden Lösung sehr hartnäckig widergesetzt, nämlich diejenige als Erzeugnismaterial für die sog. schwarzen brannten Messinggegenstände. Namentlich an manchen optischen und physikalischen Instrumenten findet man bekanntlich eine, nicht nur im äußeren Ansehen sehr gefällige, sondern auch für den Zweck geradezu erforderliche matte Schärzung der betreffenden Bestandtheile. In vielen Fällen wendet man diese schwarze Patina auch an wegen des sehr gefälligen Eindruckes den dieselbe, ähnlich dem Niello (falschlich so genannten dyrbitren Silber) in Verbindung mit hochpolirten Bestanbteilen des Gegenstandes hervorbringt; in anderen nützt man darin wesentlich die leuchtend birende Eigenschaft direkt aus, wie bei optischen Instrumenten.

Es sind mir mehrere namhafte Etablissements bekannt, welche sich mit der Einführung des Zinkes, z. B. als Material für Mikroskoppatina und Aehnliches befasst haben; wohl alle diese Versuche sind indes wieder aufgegeben worden, weil kein zweckentsprechender Nutzen für das Zink vorlag. Dadurch wurde ich veranlaßt, mich mit der Lösung dieser Aufgabe, welche mir von Seiten der Vorhanden mehrerer beratiger Institute als eine sehr wünschenswerte bezeichnet wurde, eingehender zu befassen.

Wie wenig für diesen Zweck ein Zinn so genügen würde, vermag der Sachverständige leicht einzusehen; es handelt sich hierbei vielmehr um einen fest anhaftenden, mit der Metalloberfläche gleichsam verwachsenen,
wirklich patinaartigen Überzug, wie man ihn aus Messing durch Eintauchen in eine Lösung von salpetersaurem Kupferoxyd und nachheriges Erhitzen bis zur Verjüngung des Kupferoxyds hervorbringt, welcher, obgleich nur eine dünne Schicht bildend, neben der man vollkommene Deckkraft beansprucht, derartig solid feyn und der Metallschicht fest adhäriren muß, daß eine mechanische Entfernung desselben ohne Berücksichtigung der Metallschicht selbst unmöglich wird.

Es ist, wie der ausübende Praktiker am besten weiß, schon keine leichte Sache, einen derartigen für das Kennerauge wirklich tabellös erscheinenden Überzug aus Messing hervorzubringen, und gehört dazu sowohl eine eigentümliche Gewandtheit im Arbeiten, als die richtige Beschaffenheit der dafür dienenden Kupferlösung. Selbst erfahrene Arbeiter versäumen oft viel Zeit und bringen lange keine vollkommene Patina zu Stande, wenn dafür benützte Flüssigkeit einmal in Unordnung kommt, in Verdünnung, Säuremengen oder Reinheit eine Veränderung erleidet, oder ihnen ein anders zusammengesetztes Messing unter die Hände gelangt. Daraus erklärt sich auch die große Vielzahl von Vorschriften für die Herstellung einer qualifizierten Schwärzunglüssigkeit, die in den verschiedenen Werkstätten curriert. Meistens ist dieser Kupferlösung noch eine gewisse Menge salpetersaures Silberoxyd zugefügt, wodurch ein tieferer Schwarz der Patina bedingt wird; ja in manchen Vorschriften scheint man selbst einen Goldzusatz nicht, um seinen Zweck nur möglichst vollkommen zu erreichen.

Ahnlich verhält es sich mit farbigen Patinaen aus Messing, dem Bronzireich, deren Herstellung ebenfalls, wo etwas Vorzügliches verlangt wird, eine der schwierigsten Aufgaben in den Werkstätten bilde.

Es ist hieraus ersichtlich, daß die Herstellung patinaartiger Überzüge auf Metall ebenso viel mehr Sachkenntnis und Kunsftigkeit gegenüber dem einfachen Lackiren erfordert als die Überzüge selbst, ihrer Natur nach, vollendeter sind.

Es gibt zwar eine vortreffliche, von Böttger 145 eingeführte schwarze

Nach Pettenkofer 150 könnte man mit der, wesentlich aus einer Auslösung von Grünpan bestehenden Tinte für Zink neue Tintdächer schwarzem.

Dullo 151 hat für die Herstellung eines dauerhaften schwarzen Anstriches auf Zinkflächen eine mit Salsäure stark angefärbte weingeistige Lösung von Antimonchlorür empfohlen. Auch hier wird also das Metall im reinverhältnissen lockerer Zusammensetzung niedergerissen, wodurch die matt-schwarze Farbe bedingt wird.

Dieser Umstand scheint mir gerade die Unbrauchbarkeit beider Verfahren für eigentliche Patina-Erzeugung auf größeren Flächen zu

419 Revue horticole, October 1832.
420 A. a. D.
421 Chemisches Centralblatt, 1866 S. 671; polytech. Journal Bd. CLXXV S. 323.
begründen; eine Ausscheidung des beabsichtigten Niberguges in rein metallischem Zustande kann sich für unseren Zweck nicht eignen, indem ein derartiger Nibergzug bei entsprechender Dichte und inniger Verbindung mit dem unterliegenden Zink nichtordentlich mit metallischem Glänze zur Erscheinung kommen müßte (wie bei dem auf galbanisiertem Wege bronzierten Zink), und umgekehrt wird eine matte, pulversförmige Ausscheidung des metallischen Niberguges des erforderlichen Zusammenhanges entbehren.

Es können sich folglich für Patina auf Zink nur Substanzen eignen, welche die reduzierenden Einwirkung dieses Metalles besser oder vollständig widerstehen. Auf solche war daher weSENTLICH mein Augenmerk bei der Bearbeitung dieser Aufgabe gerichtet. Unter den zahlreichen Körpern, welche von diesem Gesichtspunkte aus für unseren Zweck mehr oder weniger Erfolg verprenzten konnten und die ich nach dieser Richtung prüfte, zeichnete sich salpetraures Manganoxydul vor allen durch ein von mir kaum erwartetes glänzendes Resultat aus.

Was nun die Technik des Patinirens mit Mangannitrat betrifft, so ist diese ziemlich dieselbe wie beim Schwarzbrennen des Messings mittels salpetrauren Superoxyd und erfordert auch im Allgemeinen dieselbe Fertigkeit und Aufmerksamkeit wie jene; gleichwohl dürfte es, wie mich häufige vergleichende Versuche lehrten, leichter sein, mit dem Mangansalz...
auf Zink zufriedenstellende Resultate zu erhalten, als beim gewöhnlichen Schwarzbrunnen des Messings.

Selbstverständlich kann das Auftragen der Manganlösung auf das Arbeitsstück sowohl durch Eintauchen als mit dem Pinsel z. gesehene, nur muß darin mögliche Gleichmäßigkeit der Flüssigkeitsbedeckung erreicht werden. Man läßt nun langsam über Kohlenfeuer, bei kleineren Gegenständen über der Weingeißler Gasflamme eintrocknen und erhitzt alsdann gleichmäßig noch so weit, daß die ganze mit Mangansalz überzogene Fläche eine tief- und rein schwarzene Farbe annimmt. Auch hier ist, wie beim gewöhnlichen Verfahren für Messing, ein wiederholtes Behandeln in der selben Weise erforderlich, wobei man das Arbeitsstück jedesmal auf mechanischem Wege, durch Bürsten, Bohnchen u. s. w. zuvor von dem nicht fest haftenden Dryde säubert. Hat nach der letzten Waschung der Gegenstand die braunbrüche gleichmäßige, kernschwarze Farbe, so trocknet man ihn nochmals über dem Feuer ab, und reibt ihn mit möglichst wenig Leinölfränt in, wie dieses ja beim Schwarzbrunnen des Messings auch geschieht und welches für die B triechung auf das Auge eine wesentliche Bedeutung hat.

Man erhält das salpetersaure Manganoxydul leicht durch Auflösen von tolsenfraurem Manganoxydul in verdünnter Salpetersäure bis zur Neutralisation. Dampft man die so erhaltene Lösung vorichtig ein, so hinterbleibt schließlich eine syropische Flüssigkeit, welche nach dem Erkalten zu einer compacten, an der Luft zerfließenden Krystallmasse gesiebt. Durch Eindunsten im luftleeren Raume bei gewöhnlicher Temperatur über Schwefelsäure gelingt es besser ausgebildete Krystalle dieses Salzes zu erhalten, welche erst dann den schon früher von Millon angegebenen Wasserergehalt finden liegen, nämlich:

<table>
<thead>
<tr>
<th>MnO</th>
<th>25,5</th>
<th>24,74</th>
<th>24,52</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₃</td>
<td>54</td>
<td>37,63</td>
<td>—</td>
</tr>
<tr>
<td>6HO</td>
<td>54</td>
<td>37,03</td>
<td>—</td>
</tr>
<tr>
<td>143,5</td>
<td>100,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bei längerem Verweilen unter der Luftpumpe oder in höherer Temperatur verwittern die Krystalle und geben noch mehr Wasser aus.

Um nun den Verdünungsgrad der Lösung dieses Salzes zu ermitteln, welcher sich am besten für die Erzeugung der schwarzten Patina auf Zink eignet, stelle ich mir zuerst eine solche Flüssigkeit stark koncent-

Handwörterbuch der Chemie, Bd. VII S. 161.

Die Herstellung der Flüssigkeit für die technische Praxis dünkte sich wegen der Zersetzlichkeit des salpetrauren Manganoxydul's jedoch leichter nach dem spezifischen Gewichte der Lösung ausführen, und ich habe dieses daher für den obigen geeignetsten Concentrationsgrad bestimmt und bei 14° R. zu 1,125 gefunden.

Bezüglich der Frage, wie oft man das Anbringen der Schwärzungsfüssigkeit und das Abbrinnen zu wiederholen habe, bemerkt ich noch, daß ich bei dem angegebenen Verdyßungsgeschwind mit einer sieben- bis achtmaligen Wiederholung stets eine selbst sehr strenge Anforderungen genügende Patinierung erhielt, und wurde mir dabei die angenehme Beugung, auch von Seiten einiger ausübenden Praktiker ein beifälliges Urtheil zu erwerben.

Über den Umfang der praktischen Anwendbarkeit dieser Patinierung will ich keine Conjecturen machen; ich möchte jedoch das mitgeteilte Verfahren, dessen Verwendung für die Zwecke, welche die Veranlassung meiner Arbeit waren, mir gesichert erscheint, auch der allgemeinen Zinnindustrie an's Herz legen, da Versuche mit kleineren Rundgegenständen ein sehr zufriedenstellendes Resultat ergaben, und bin im Interesse dieser Frage gern bereit, diefenigen Praktifer, welche geneigt sind sich mit der selben zu beschäftigen, mit dem betreffenden Material (lediglich gegen Vergütung der Auslagen) zu versehren.

München, im Reischauer'schen Laboratorium, Mai 1869.

Der Verfasser hat uns Proben seiner Patinierung des Zinkes überlassen (auch einen gescraften Kunstgegenstand von Zinkguß, welcher bereits durch mehrere Werksstätten und viele Hände gegangen ist, ohne Abnutzung zu zeigen), denen wir unseren ganzen Beifall soll, welche seine Angaben hinsichtlich der Eigenschaften des neuen Verfahrens vollkommen bestätigen; wir können daher sein Verfahren, welches ohne Vergleich leichter ausführbar ist als das Schwarzbrennen des Messings, den Praktifern zur Anwendung bestens empfehlen.

Die Redaction d. p. J.

CXXIX.

Über die Berührung der Eisenoxydsalze; von H. Debray.

Aus den Comptes rendus, t. LXVIII p. 913; April 1869.

Erhitzt man eine bis beinahe zur Färblosigkeit verdünnte Lösung von neutralem Eisenchlorid, so beginnt dieselbe, sobald sie die Temperatur von 70° C. erreicht hat, sich stark zu färben und nimmt die für die basischen Eisenoxydsalze charakteristische Farbung an. Diese Umwandlung rührt nicht von dem Freiwerden einer gewissen Menge Chlorwasserstoffsaure her, weil sie in geschlossenen Gefäßen erfolgt und die Flüssigkeit nach dem Erkalten neben ihrer früheren sauren Reaction dieselben angenommenen Farbe behält.

Die chemischen Eigenschaften dieses Eisenaftes zeigen sich nun gänzlich verändert; während die Lösung ursprünglich mit Kaliumeisenspanirt einen intensiv blauen Niederschlag von Berlinerblau lieferte, gibt die gefärbte

Erfüllt man eine verdünnte Eisenchloridlösung im Wasserbad auf 100° C., indem man das verdunstende Wasser durch neues ersetzt, so verwandelt sich die Lösliche Eisenoryd nach und nach in die von Péan de Saint-Gilles entdeckte isomere Modifikation desselben. Indem dieser Chemiker auf eine Lösung von essigsaurer Eisenoryd längere Zeit hindurch Wärme einwirken ließ, erhielt er bemerkenswerterweise metallics Dryp, welches in verdünnten Mineralsäuren, wie in den meisten Salzlösungen unlöslich ist und mit Wasser eine bei durchgehendem Licht flüchtige, bei auffallendem aber trübe Flüssigkeit gibt. Einige Jahre später zeigte Scheurer-Reffner, daß sich dieses Dryp auch durch Berührung von salpetersaurer Eisenoryd erhalten läßt. Aus meinen Versuchen ergibt sich, daß die Entstehung der von Péan entdeckten Modifikation des Eisenorydes unter diesen verschiedenen Verhältnissen von einer und derselben Ursache herrührt. Die erste Wirkung der Wärme auf die Eisen-
falte mit einbalschiger Säure besteht darin, daß sie dieselben in Säure
und in Dryd spaltet, welche nur dann getrennt bleiben, wenn die Säure
verbündet ist; darauf wird das löschliche Dryd in das von P. e.
Saint-Gilles so genannte „Metasещioryd“ umgewandelt, welches
von Graham’s colloidalm Eisenoryd durch seinen Hydratzustand und
mehrere seiner Eigenschaften verschieden ist. Lösungen zweibalschiger Salze,
wie die des Schwefelsäure-salzes, geben, der Einwirkung der Wärme unter-
zogen, nur balsche Salze.

Bewerkstelligt man, wie der Senarmont es gethan hat, die Ver-
setzung des Chlorids in verbundener Lösung durch eine Temperatur von
250 bis 300°, bei welcher das colloide Dryd und das Metasещioryd
nicht mehr bestehen können, indem nothwendiger Weise die Trennung der
Säure und des Drydes stattfindet, weil dazu schon eine Wärme von 70°
genügt, so ist das mehr oder weniger langsamer sichende Dryd wasser-
freies kryoglittirtes Dryd, also Eisenglut. Zur Erklärung des Vorgangs
ein Senarmont’s Versuch ist es dennach nicht nöthig, den Einfluß
des Druckes zu hülsen zu nehmen, welcher in dem zu dem Experiment
angewendeten verschlossenen Glasrohre durch den Dampf des stark erhitzten
Wassers oder durch die entwichene Chlorwasserstoffäure ausgeübt wurde.

Die vorstehenden besprochenen Thatsachen, welche offenbar zu
der an Beispielen so sehr zahlreichen Kategorie der Dissociations-
(zer-
fallungs-) Erscheinungen gehören, gestatten einige von den Eigenthüm-
lichkeiten zu erklären, welche die Eisenorydalsze zeigen. Ich will nur
drei Beispiele anführen.

Das Eisen läßt sich vom Mangan nach einer bekannten Methode
trennen, indem man zunächst die Metalle in Chlorür verwandelt, dann
dies Eisen auf die höchste Drydationsstufe bringt und nach unvollständiger
Sättigung der überflüssigen Säure mit Eisenlauge dem Natrium die liebend
heise Flüssigkeit mit essigsäurem Natrium im Ueberschusse versetzt, hier-
durch wird nur das Eisen aus der sauren Lösung gefällt. Die Theorie
derer Reaction scheint mir sehr einfach zu seyn. Das essigsäure Eisen-
oryd, welches in dem Gemisch der Chloride und des essigsäuren Natriums
tenfind, spaltet sich beim Kochen in Essigsäure und in colloidalen Dryd,
welches in einer viel Chloronatrium und essigsäures Natrium enthaltenden
Flüssigkeit unlöslich ist. Wäscht man dieses Dryd mit kaltem destillirtem
Wasser rasch aus, so geht ein großer Theil desselben wieder in Lösung.
Dieser Nebelzustand läßt sich leicht vermeiden, wenn man aufstatt reinem
Wassers zum Auswaschen eine verbundene Lösung von Chlorammonium
nimmt; auch kann man auffälliglich flüchtige Reagentien in die die
Chloride enthaltende Flüssigkeit bringen, wie essigsäures Ammoniak, wel-
Über Verfluss der Fette im Zustande der Emulsion.

ches dieselbe Wirkung hervorbringt wie das essigsäure Natron, weil das colloidale Eisenoxyd in dem Ammoniaksalze, selbst in Gegenwart einer großen Menge Essigsäure, unlöslich ist. Die Trennung des Eisenoxydes vom Manganoxydul nach dieser Methode ist so vollständig als möglich; behufs einer genauen Bägung des Eisenoxydes ist es jedoch vorzuziehen, das essigsäure Ammoniak einer gleichfalls heißen Lösung von salpetersaurem Eisenoxyd und Manganoxydul hinzuzufügen und das gefällte Eisen-

oxyd mit einer heißen verdünnten Lösung von salpetersaurem Ammoniak auszuwaschen. Man vermeidet auf diese Weise den durch die Einwirkung des Ammoniaksalzes auf das Eisenoxyd beim Glühen desselben veran-

lästigen Eisenverlust.

Man bereitet gegenwärtig (nach Véchamp's Methode) das Anillin mit Nitrobenzol, Eisen und einer Quantität Essigsäure, welche weit ge-

ringer ist, als die Menge des gebildeten Eisenoxydes entspricht; in der That wird nämlich das essigsäure Eisenoxyd, da es bei der verhält-
nismäßig hohen Temperatur der Reaction nur geringe Stabilität besitzt, in unlösliches Eisenoxyd und in Säure zersetzt, welche leichter wieder auf das Metall wirken kann; es muß sich allerdings eine gewisse Menge essigsäure Anillin bilden, wenn aber dieses Salz bei der Temperatur des Berührtes auch nur in geringem Grade zum Zerfallen disponirt ist, so muß nothwendig eine kleine Säuremenge zur Beendigung der Reaction genügen.

CXXX.

Mittheilungen aus dem Laboratorium für technische Chemie in Braunschweig.

(Erster von S. 481 des vorhergehenden Heftes.)

IV. Verfluss der Fette im Zustande der Emulsion.

In einer früheren Abhandlung über die Verfluss der Fette im Zustande der Emulsion (état globulaire von Mége-Mouriès) ist dar-

gehan worden, daß die damit verbundene, äußerst seine Ertheilung die Verfluss durch Laugen außerordentlich erleichtert; sowie daß emulsierte Fette sich in der Kälte und zwar weit rascher verfliessen, als nicht emulsierte.

nach dem gewöhnlichen Verfahren im Sieden. Die Verfehlung der
Fette durch Emulsion ist von ganz ähnlicher Wirkung, wie das Pulverisiren
seiner Körper. Es war noch zu ermitteln, ob die Ver-
fehlung auch vollständig erfolge.

Durch Digestion in der Kalte aus emulsierten Fetten entstandene
Seife wird in Gestalt eines Luchens erhalten, der sich an der Oberfläche
der Flüssigkeit abscheidet. Bei der Unlöslichkeit der Seife in der über-
schüssigen Lauge ist dieser Luchten bald vollständig hart und spröde, bald
weich, bald mehr, bald weniger wasserhaltig, je nach der Stärke der an-
gewendeten Lauge.

In der Regel gaben diese Seifentuchen nach mehrmaligem Abspülen
mit bestilliertem Wasser und Ablöszen darin bei der Siebhydrat, keine
klare, sondern eine mäßig trübe Seifenslösung. Es genügte jedoch ein
Zugaben von wenigen Tropfen Lauge zu der siedenden Flüssigkeit, um sie
vollständig durchzufällen zu machen. Zuweilen war die Lösung völlig klar.

Um die Menge des bei der kalten Digestion aufgenommenen Natrates
dazu bestimmen, wählte man den Talg als das am schwersten verfehlbare
Fett. Der nach weiter unten zu beschreibende Weise emulsierte Talg
durch Umschütteln gemischt und zwei Tage lang stehen gelassen; es bil-
dete sich, wie beschrieben, ein feister harter Seifentuch. Nachdem der
Tuch durchbrochen worden, leitete man anhaltend Kohlensäure durch die
Flüssigkeit bis zur vollkommenen Sättigung der überschüssigen Lauge, so
ß die entstandene Lösung von Kohlensäurem Natron vorsichtig und so weit
als möglich ab. Durch Behandeln des Rückstandes mit starkem Weingeist
in der Wärme löste sich die Seife und konnte von dem Rest des köhlens-
säurem Natrons durch Filtration getrennt werden.

Die abfiltrirte Seifenslösung verdampft und mit verdünnter Schwefel-
säure verfestigt, gab 11 Proc. wasserfreies Natron, also einen Betrag, der
nicht wesentlich von dem der gewöhnlichen Seifen abweicht. Bei der Aus-
führung im Großen hätte man den Seifentuch nach Entfernung der
überschüssigen Lauge lochend aufzulösen, aber ohne ihn vorher abzuatmen.
Man erhält dann von selbst eine klare Seifenslösung, die man nach den
herkömmlichen Regeln der Kunst zu behandeln und in die Form zu
bringen hat.

Zur Verwandlung des Fettes in Emulsion sind fahrlässige Mittel,
Gummi jedenfalls lästig, kostspielig an sich und durch Aufwand an mecha-
nischer Kraft, und für die Anwendung auch dadurch ungeeignet, daß sie
nach der Verfehlung in der überschüssigen Lauge verbleiben, welche doch
wieder benutzt werden muß. Weit zweckmäßiger zum Emulsiiren des Fettes
ist Seife, weitaus am bequemsten und vorteilhaftesten aber die zum Verfeisen dienende Aeglauge. Sie hat in der That die Häufigkeit Fett in den Hauptsäch des Emulsion überzuführen in einem überraschenden Grade. Wenn man in ein mit eingeriebenem Stöpsel verschlossenes Glas einige Tropfen Aeglauge gießt, das eingegossene wieder auslaufen läßt und einmal mit etwas Wasser nachfüllt, so emulsiert ein solches Glas die eingegossenen Fette ausfs kräftigste. Sieht man nämlich eine beliebige Menge Del ein mit etwa ebenso viel Wasser, so genügt faß ein einmaliges Ausschütteln, um das Ganze in eine weisse Milch zu verwandeln. Ist nach kurzem Schütteln der Inhalt des Gefäßes homogen, so läßt sich die entstandene Emulsion beliebig mit Wasser verdünnen und scheidet sich selbst nach einigen Tagen nicht ab. Die emulsiirende Eigenschaft der Lauge beruht nur auf der augenscheinlich beginnenden Bildung von Seife. Deshalb ist es erforderlich sehr reines oder destillirtes Wasser zu nehmen, denn auf Jupag von Kochsalz, Säuren u. s. f. scheidet sich die Emulsion sofort in eine schielende Flüssigkeit und in weisse Flocken, die als dicser Nahn an die Oberflache treten. Talg, Schmalz, seife Fette überhaupt können selbstverständlich nicht bei gewöhnlicher Temperatur emulsiert werden, sondern erfordern Erwärmen des Gefäßes und Wassers bis zur Verflüssigung des Fettes. Um größere Mengen Fett zu emulsiiren, genbt man dem Wasser vor dem Ausschütteln ein wenig Lauge zu, bitte sich aber vor einem Neberschuh, der das Fett sogleich an die Oberfläche treibt.

Die Theorie des Butterns.

Lieg wheel durch Schütteln zerstört und emulsiert; die festen Fettkugelchen von emulsiertem Ligg bei gewöhnlicher Temperatur werden durch Schütteln vereinigt.

Durch die Bewegung der Flüssigkeit im Buttersatz, so nahm man weiter an, werden die Hüllen zerrissen, die Fettkugelchen bloßgelegt und in die Möglichkeit versetzt, sich zu vereinigen. Die Vereinigung enthält sich die Fettkugelchen ist aber um nichts verständlicher als die Vereinigung von Fettkugelchen, welche von vornherein keine Hüllen besitzen. Wenn man auch das Zerreißen der Hülle etwa zwischen Neule und Mörserwand begreift, so ist doch nicht einzusehen, wie dies bei mikroskopischen Kugelchen von 0,0012 bis 0,0018 Linien Durchmesser in einer nach allen Seiten ausweichenden Flüssigkeit geschehen kann. Warum findet das Buttern nicht wenigstens teilweise schon beim Melken, warum nicht im Enter des Trab laufenden Thieres statt? Warum überhaupt nicht bei höherer Temperatur, warum nur in der Kälte?

Der Vorgang beim Buttern scheint doch wohl einfach darauf hinzuzeigen, daß der Rahmen die Fettkugelchen in einem, nicht mehr in flüssigem Zustande enthält, Tropfen von flüssigem Fett werden in der
mechanisch bewegten Erzschlägen so lange zerrissen, bis sie dem mechani-
sischen Angriff nicht mehr hinreichend Oberfläche bieten, bis die Cohäson
der Fettthellungen diesem Angriff das Gleichgewicht hält, d. h. bis das Fett
in mikroskopische Tröpfchen zertheilt ist. Flugelchen von flüssigem Fett wer-
den in der bewegten Flüssigkeit beim Zusammensloß aneinander haften
und in diesem Zustand verbrennen, weil sie dem mechanischen Angriff eben
durch ihre Starke gewachsen sind.

V. Portugiesischer Graphit; von Knublauch.

Von Porto ist vor einiger Zeit eine Probe von Graphit eingelaufen, welche angeblich aus einer neuen, nicht näher bezeichneten Fund-
grube in Portugal stammt.

Die Probe war in Form eines etwa zollstarken Prisma's geschnitten,
aus einer sehr gleichförmigen, feinförmigen Masse, welche weder blätterige,
noch schieferige Absonderungen zeigte und für das Auge keine fremd-
antigen Einfälle zu erkennen gaben. Bei ihrem sehr mäßigen Glanz
glich sie ganz den künstlichen Massen, wie solche aus Graphit und Thon
in den Bleiverhütungsstätten angefertigt werden.

Dieser Graphit, im Wasserbad getrocknet, verlor bei beginnender
Glühung einen weiteren Anteil Wasser und hinterließ nach der Ein-
schmelzung einen reinlichen graubraunen Rückstand von unverbrennlcher
Substanz.

1) 1,917 Grm. Graphit verloren bei 100° C, getrocknet 0,060 Grm.
Wasser; ebenso gaben 0,898 Grm. Graphit 0,044 Grm. Wasser.

2) 1,149 Grm. bei 100° C, getrocknet Graphit verloren bei mäßi-
gem Glühen unter der Verbrennungstemperatur 0,044 Grm. Wasser.

3) 1,224 Grm. bei 120—150° scharf getrockneter Graphit verloren
ebenso 0,051 Grm. Wasser.

Die Verbrennung nach Art der organischen Analyse mit kupfereydischer
und Sauerstoffgas gab folgende Resultate:

4) 0,1860 Grm. ungetrockneter Graphit: 0,264 Grm. Kohlensäure
und 0,019 Grm. Wasser; ferner 0,0945 Grm. Asche.

5) 0,2375 Grm. ebenso: 0,372 Grm. Kohlensäure, 0,015 Wasser
und 0,1205 Asche.

6) 0,4145 Grm. ebenso: 0,640 Kohlensäure, 0,031 Wasser und
0,2115 Asche.

7) 0,249 Grm. ebenso: 0,405 Kohlensäure.

In reinem Sauerstoffgas in dem Platindrähtchen verbrannt gaben:

8) 0,234 Grm. ungetrockneter Graphit, 0,335 Grm. Kohlensäure,
0,028 Wasser und 0,118 Asche.
Endlich auf nassem Wege mit doppelt-chromsauren Kali oxydiert, gaben:

9) 0,266 Grm. ungetrockneter Graphit 0,422 Grm. Kohlensaure.
Daraus berechnet sich der chemische Bestand des neuen Graphites wie folgt:

Wasserverlust durch Trocknen bei 100° C.: nach 1) 3,13 und 4,89 Proc.
Ferner in der ungetrockneten Substanz:

<table>
<thead>
<tr>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser, hygroskopisch u. gebunden</td>
<td>10,21</td>
<td>6,31</td>
<td>7,47</td>
<td>---</td>
<td>9,83</td>
</tr>
<tr>
<td>Kohlenstoff</td>
<td>38,71</td>
<td>42,72</td>
<td>42,12</td>
<td>44,33</td>
<td>39,04</td>
</tr>
<tr>
<td>Asche</td>
<td>50,31</td>
<td>50,74</td>
<td>51,02</td>
<td>---</td>
<td>50,42</td>
</tr>
</tbody>
</table>

99,73 | 99,77 | 100,61 | --- | 99,29 |

Durch Einäscherung unter der Musse in einer Platinschale würde erhalten:

Diese beiden letzten Bestimmungen sind etwas zu hoch, weil der Bedeckung der Tigel mit der Platinschale ungeachtet nicht verhindert werden konnte, das etwas Asche von außen zutraf. Der bei 100° C. getrocknete Graphit befehlt daher im Mittel aus:

gebundenem Wasser | 3,96 |
Kohlensaure | 42,69 |
unverbrennlicher Substanz | 53,35 |

100,00

Die unverbrennliche Substanz ergab bei der Analyse Eisenoxyd mit Thonerde (ersteres überwiegender) 79,50 Proc., 19,14 Kieselerde und 1,36 Kalk in 100 Grm. Th.
Über die Verfehlbarkeit des Schwefelkohlenstoffes in der Hitze; von W. Stein.

Aus dem polytechnischen Centralblatt, 1889 S. 392.

Specifisches Gewicht bei + 17° C. 1,2684.
Siedepunkt 46,5° C.

Die Schwefelbestimmung war nach Carinus auf die Weise ausgeführt worden, daß man den in Glaskugeln eingeschlossenen Schwefelkohlenstoff mit doppelt-dichromsaurem Kali und Salpetersäure von 1,4 specifischem Gewicht in zugehörmiger Röhre auf 160 bis 170° C. erhitzte.

1) 0,1093 Schwefelkohlenstoff lieferte 0,670 schwefelsauren Barst, entsprechend 84,18 Proc. Schwefel.
2) 0,1102 Schwefelkohlenstoff lieferte 0,6755 schwefelsauren Barst, entsprechend 84,17 Proc. Schwefel.

Von diesem Schwefelkohlenstoff, welcher, wie aus dem Angeführten ersichtlich ist, vollkommen rein war, wurde nun

1) der Dampf durch eine mit Weißeren Porzellantücher benetzte höhmische Röhre geleitet, bis die Luft verdrängt war, diese alsdann mittels Bunsen’scher Brenner zum angehenden Nuthglühen erhitzt.

...

2) Der vorhergehende Versuch wurde wiederholt, die Röhre jedoch in einem Verbrennungsrosen mit Kohlen bis zur Heißrothglut erhitzt, was sie erweichte. Diesmal war die Oberfläche der Porzellanrohren mit Kohlenstoff bedeckt, und sowohl in der Verbindungsrohre, als in dem Destillat war Schwefel vorhanden.

Der vorliegende Versuch zeigt, dass der Schwefelkohlenstoff in Gegenwart von glühenden Kohlen nicht zerstört wird, oder, was wahrscheinlicher ist, sich immer wieder neu bildet. Bedingung ist dabei allerdings, dass der ganze glühende Raum, durch welchen der Dampf passt, mit Kohlen gefüllt ist. Wenn nämlich die Darstellung von Schwefelaluminium unter Verwendung von Kohlenstoffen, wie Frey es beschreibt, ausgeführt wurde, so fand die Zersetzung zwar an der Stelle des Schiffhahns nur unbedeutend statt, denn das gebildete Schwefelaluminium enthielt nur wenig freien Kohlenstoff; im übrigen Theile der Röhre aber wurde der Schwefelkohlenstoff zerlegt, denn in der Verbindungsrohre und im Destillat war reichlich Schwefel enthalten.
Für die Praxis der Schwefelkohlenstoffbereitung dürften die vorstehenden Beobachtungen insofern einiges Interesse haben, als sich daraus ergibt, daß Verluste an Schwefelkohlenstoff entstehen, wenn der Apparat nicht fortwährend mit Kohlen gefüllt erhalten wird.

CXXXII.

Über den Materialverbrauch bei der Belichtung mit verschiedenen Leuchtstoffen; von Dr. Erwin Willigk, Privatdocent an der Hochschule zu Prag.

Der Untersuchung wurden Talgkerzen, Stearinkerzen, Paraffinkerzen, Wachszerzen, Petroleum und Müblöf unterzogen.

Für Ermittelung des Verbrauches bei Kerzen wurden solche von verschiedenen Fabriken bezogen und um richtige Durchschnittszahlen zu erhalten, von jeder Kerzensorte mindestens fünf Stücke (aus jedem Packet) untersucht.

Die Kerzen wurden vor dem Versuche angezündet und so lange gebrannt bis der gewöhnlich am oberen Ende befindliche Conus herabgebrannt war, nach dem Auslöschen jede Kerze für sich samt dem Leuchter genau gewogen und das Gewicht sowie die Zeit des Anzündens bemerkt. Nach einigen Stunden Brenndauer, während welcher die Kerzen wo nötig geputzt wurden, wurden sie ausgelscht und nach Bemerkung der Zeit abermals gewogen. Der Gewichtsverlust wurde auf eine Stunde Brenndauer berechnet.

Um zu ermitteln, ob und welchen Einfluss etwa der Schmelzpunkt des Kerzenmaterialis auf den Verbrauch übt, wurde derfelbe für jede Kerzensorte bestimmt; diese Bestimmung wurde in folgender Weise vorgenommen:

Eine entsprechende Menge des von der betreffenden Kerze entnommenen Materials wurde in ein dünnwandiges, 15 Millimeter weites und 10 Centimeter hohes Glas gebracht, in welchem mittels eines Rautflüs-

Dingler's volgt. Journal Bd. CXIII. S. 6

33

I. Talgkerzen. — Dieselben wurden von drei Fabriken u. a. sub A von Hofub in Prag, sub B von F. Fischer in Wien und sub C von Müller in Karolinenthal bezogen und bei den Versuchen folgende Werte (in Durchschnittszahlen) erhalten:

<table>
<thead>
<tr>
<th>Schmelzpunkt</th>
<th>Verbrauch</th>
</tr>
</thead>
<tbody>
<tr>
<td>48,5° C.</td>
<td>7,10 Grm.</td>
</tr>
<tr>
<td>50,0°</td>
<td>7,34</td>
</tr>
<tr>
<td>48,0°</td>
<td>7,25</td>
</tr>
<tr>
<td>49,0°</td>
<td>7,82</td>
</tr>
<tr>
<td>49,5°</td>
<td>7,98</td>
</tr>
<tr>
<td>49,5°</td>
<td>8,31</td>
</tr>
<tr>
<td>49,5°</td>
<td>8,61</td>
</tr>
<tr>
<td>49,5°</td>
<td>8,00</td>
</tr>
<tr>
<td>47,5°</td>
<td>6,79</td>
</tr>
<tr>
<td>49,5°</td>
<td>8,30</td>
</tr>
<tr>
<td>49,5°</td>
<td>7,25</td>
</tr>
<tr>
<td>52,0°</td>
<td>7,80</td>
</tr>
<tr>
<td>49,5°</td>
<td>9,80</td>
</tr>
</tbody>
</table>

Die beiden letzteren Sorten mit sogenanntem Argand'schen Dochte. Die bei den untersuchten Kerzen so ziemlich übereinstimmenden Schmelzpunkte geben im Allgemeinen keinen Anhaltspunkt bezüglich des so abweichenden Verbrauches an Material und es ist die, bisweilen sehr deutlich wahrnehmbare Verschiedenheit des Dochtes bei derelben Kerzengattung ein so wesentlicher Factor bezüglich des Verbrauches, daß die durch die geringen Schmelzpunktsdifferenzen etwa bedingten Verschiedenheiten im Verbrauche nicht bemerkbar werden. Wo jedoch, wie bei den Talgkerzen, mit sogenanntem Argand'schen Dochte eine größere Gleich-
förmigkeit des letzteren herrscht, zeigt sich doch (B u. C Achter) bei höherem Schmelzpunkt ein geringerer Verbrauch.

Nimmt man aus obigen Werten bei gleichen Kerzengattungen der verschiedenen Bezugsquellen Durchschnittsgraben, so verbrauchen per Stunde:

16er mit gebrechtem Docht 7,23 Grm.
12er " " " " 8,00 "
10er " " " " 8,12 "
8er " " " " 7,77 "
8er mit Argandel'schem Docht 8,80 "

Um zu ermitteln, ob eine Differenz im Verbrauche bei Talgkerzen eintritt wenn bießen nicht gepüft werden, wurden einige Kerzen, deren Verbrauch bei forgängigem Bießen bereits ermittelt war, nochmals angenähret und ohne die Döcke zu schneiden gebrannt. Es confirmirten im Mittel aus drei Versuchen:

B 16er gepüft 7,37 Grm.; ungepüft 7,19 Grm.
C 8er " 7,32 " " 7,67 "

II. Stearinerze. — Es wurden: A Stearinerzen von Bagemann in Wien; B Apolloserzen aus Wien und C Stearinerzen von Müller in Karolinenthal bei Prag in der angegebenen Weise geprüft und folgende Werte erhalten:

<table>
<thead>
<tr>
<th>Schmelzpunkt</th>
<th>Verbrauch</th>
<th>Verbrauch in Prozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, 6 St. auf ein Halbfund</td>
<td>55,39 T. 9,26 Grm.</td>
<td>19,20</td>
</tr>
<tr>
<td>B, 6 " " Pfund B. Gew.</td>
<td>53,5 9,66 "</td>
<td>17,45</td>
</tr>
<tr>
<td>C, 6 " " Zellpfund</td>
<td>55,0 9,16 "</td>
<td>18,91</td>
</tr>
<tr>
<td>A, 8 " " "</td>
<td>55,0 9,40 "</td>
<td>19,41</td>
</tr>
<tr>
<td>B, 8 " " Pfund B. Gew.</td>
<td>54,0 9,35 "</td>
<td>16,89</td>
</tr>
<tr>
<td>C, 8 " " Zellpfund</td>
<td>55,0 9,12 "</td>
<td>18,83</td>
</tr>
</tbody>
</table>

III. Paraffinzerze. — Von diesen wurden: A Petroleum- Paraffinzerzen von Dingler in Mährisch-Usrank und B berlei Kerzen von Berl in Aufig geprüft. Es ergaben:

<table>
<thead>
<tr>
<th>Schmelzpunkt</th>
<th>Verbrauch</th>
<th>Verbrauch in Prozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, 6 St. auf ein Halbfund</td>
<td>57,89 T. 6,30 Grm.</td>
<td>13,08</td>
</tr>
<tr>
<td>B, 6 " " "</td>
<td>53,0 7,45 "</td>
<td>15,36</td>
</tr>
<tr>
<td>A, 8 " " "</td>
<td>57,0 7,06 "</td>
<td>14,56</td>
</tr>
<tr>
<td>B, 8 " " "</td>
<td>49,5 7,21 "</td>
<td>14,88</td>
</tr>
</tbody>
</table>

gemacht. Zum Versuche wurden A die besten hier gebräuchlichen Tafelkerzen (angeblich mit 10 Proc. Zusatz), sechs und acht auf ein Zollpfund, und B Kerzen aus reinem Wachs, vier auf ein Zollpfund, länger jedoch genau von der Dicke der Sechser der vorigen verwendet und folgende Zahlen erhalten:

<table>
<thead>
<tr>
<th>Schmelzpunkt</th>
<th>Verbrauch</th>
<th>Verbrauch in Procenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 6er</td>
<td>59,00 C.</td>
<td>8,22 Grm.</td>
</tr>
<tr>
<td>A 8er</td>
<td>60,0</td>
<td>7,65</td>
</tr>
<tr>
<td>B –</td>
<td>62,5</td>
<td>6,93</td>
</tr>
</tbody>
</table>

Auch bei den Stearin- und Paraffinkerzen gibt die Schmelzpunkt keine Erklärung für den verschiedenen Verbrauch des Materiales; wenn auch bei den 6er Paraffinkerzen (B) bei niedrigerem Schmelzpunkt ein größerer Verbrauch erscheint, so steht doch der aufsallend niedrige Schmelzpunkt der 8er B mit demselben in keinem gleichen Verhältnisse. Nur bei Nachtskerzen stellt sich deutlich bei höherem Schmelzpunkte ein geringer Verbrauch heraus.

Wenn die angeführten Versuche auch zureichende Anhaltspunkte für das praktische Verhalten bieten, so haben sie doch in wissenschaftlicher Beziehung zu einem nur negativen Resultate geführt und ergeben, daß eine Ermittelung des Verbrauches und der verschiedenen darauf Einfluß nehmenden Verhältnisse erst dann mit wissenschaftlicher Schärfe möglich wird, wenn die Verbrauchsdifferenzen bestehenden Kerzenmateriales bei gleichem Dichte und verschiedenem Kondensdurchschnitt und umgekehrt, genauern gesucht werden. Mit Versuchen in dieser Richtung bin ich eben beschäftigt und hoffe die Resultate bald vorlegen zu können.

Die zweite Sorte B war opalisierend, schwach gelb, das Vol. Gew. derselben = 0,7979, der Siedepunkt bei 176,5° C., entflammar bei 45° C.

Eine dritte Sorte, bestehend aus den Resten von A, die etwa acht Monate in den Lampen gebrannt hatten, besaß ein Vol. Gew. von 0,8084, war erst bei 74° C. entflammar, der Siedepunkt bei 185° C.; sie war jedoch als Beleuchtungsmaterial nicht verwendbar, weil schon nach halbstündigem Brennen die Dochte so verruhten, daß die Flamme samt und der Docht geschnitten werden mußte. Der Verbrauch stellte sich während der kurzen Zeit, in welcher die Flamme gleiche Höhe und Licht-
intensität bewahrte, wesentlich geringer (10 : 11,22) als bei Petroleum A heraus.

Allerdings fallen beim Untertauchen des brennenden Dochtles in das Petroleum im Verhältnis zu der beprochenen Methode die Entflammungstemperaturen niederer aus, allein es scheint mir dies eben praktisch zu sein, indem Gefahr bei Verwendung des Petroleums doch wesentlich dann vorhanden ist, wenn es bei gewöhnlicher oder (wie in Lampen) wenig erhöhter Temperatur mit einem brennenden Körper in unmittelbare Berührung kommt.

Petroleumsorten so oft wiederholt bis mindestens drei gut übereinstimmende Berthe erhalten wurden.

Es wurde Petroleum A in folgenden hier gebräuchlichen Lampen, die von Ditmar in Wien bezogen wurden, geprüft.

a. Lampe mit Argand'schem Dachte von 1,5 Cent. Durchmesser; Flammenhöhe = 4 Cent.; Verbrauch per Stunde 31,05 Grm.
b. Lampe mit Argand'schem Dachte von 1,1 Cent. Durchmesser; Flammenhöhe = 3 Cent.; Verbrauch per Stunde 23,77 Grm.
c. Lampe mit flachem Dachte von 2,3 Cent. Breite; Flammenhöhe = 3 Cent.; Verbrauch per Stunde 25,74 Grm.
d. Lampe mit flachem Dachte von 1,6 Cent. Breite; Flammenhöhe = 2,5 Cent.; Verbrauch per Stunde 22,47 Grm.
e. Lampe mit flachem Dachte von 1,3 Cent. Breite; Flammenhöhe = 2,5 Cent.; Verbrauch per Stunde 18,59 Grm.
f. Lampe mit flachem Dachte von 0,8 Cent. Breite; Flammenhöhe = 2,0 Cent.; Verbrauch per Stunde 13,85 Grm.

Unter den gebräuchlichen Petroleumlampen sind nach meiner Erfahrung jene mit Argand'schem Dachte vorzuziehen, weil

1) ein Springen des Cylinders sehr selten vorkommt;
2) man die Flamme zwischen viel weiteren Grenzen als dies bei
Lampen mit flachem Dochte möglich ist, höher oder niedriger stellen fann, ohne daβ Petroleumeruch wahrnehmbar wird, und

3) die Lampen mit Argand'schem Dochte bei gleicher Conjunction ein weifseres und intensiveres Licht geben. So wurde beispielsweise:

Rübl. — Es war mir bei Bestimmung des Verbrauches an Brennöl, Versuche welche anderweitig schon vielfach angestellt wurden, wentsentlich um den Verbrauch in jenen Lampen zu thun, die ich zur Be-

stimmung der Lichtstärke benutze.

Es wurden völlig reine, sogenannte Federlampen mit neuen Dochten verwendet, das gereinigte, flare und stark glänzende Rübl. sowie die Lampen aus der Riederlage von Ditmar in Prag bezogen.

Lampe: Doctor's Meister Flammenhöhe Consumption per Stunde
A 2 Centim. 3 Centim. 35,89 Grm.
B 1,5 Centim. 3 Centim. 29,26 "
C 1,0 Centim. 2,5 Centim. 24,49 "

Versuchweise wurde in Lampe A ein zwar flares, aber alles, stark ausgeblichnete und dickflüssiges Oel gebrannt; der Verbrauch war bei

3 Cent. Flammenhöhe im Mittel von drei Versuchen 24,28 Grm. per Stunde, daher um 11,61 Grm. geringer als bei frischem Oel, jedoch die Lichtintensität auch wesentlich geringer.

Nach diesen Versuchen stellen sich bei den gegenwärtigen Preisen der Beleuchtungsmaterialien in Prag die Kosten einer Stunde Brenndauer folgenderweise heraus:

Talgkerzen, 8er. Argand'scher Dochter... 0,754 fr. 6. W.
8er. gebreht ... 0,617 "
10er ... 0,619 "
12er ... 0,612 "
16er ... 0,575 "
Stearinkerzen von Müller 6er ... 1,140 "
8er... 1,130 "
Wagemann 6er ... 1,370 "
8er... 1,400 "
CXXXIII.

Über ein einfaches Verfahren, den prozentischen Wassergehalt der verschiedenen Stärkemehlsorten zu bestimmen; von Dr. C. Scheibler in Berlin.

Auf der diesjährigen General-Versammlung der Stärke- und Stärkekucker-Fabrikanten zu Berlin wurde darauf hingewiesen, wie wichtig es sei, ein einfaches Verfahren zu besitzen, um rasch und mit ausreichender Genauigkeit den Wassergehalt im Stärkemehl bestimmen zu können, da wegen der Größe desselben in der Regel zwischen Produzenten und Käufern Streitigkeiten entstanden. Ich äußerte bei dieser Gelegenheit die Vermutung, daß es gelingen müßte, die Menge des in einem gegebenen Stärkemehl enthaltenen Wassers aus der Dichtigkeitsänderung zu erschließen, welche Alkohol von einer bestimmten Stärke erleidet, wenn er mit einer gewissen Menge wasserhaltigen Stärkemehls genügende Zeit in Berüh-
Scheiber, über Bestimmung des Wassergehaltes im Stärkemehl. 505

rung gewesen feh, daß das Stärkemehl außer ganz unwesentlichen Spuren von Fett an starken Alkohol nichts Anderes als Wasser abgeben könne, und ich verprüchte, diese Vermuthung, welche vorausichtlich zu einem einfachen, keine chemischen Kenntnisse erfordern den Prüfungsverfahren führen dürfte, einer experimentellen Untersuchung zu unterwerfen.

Diese Untersuchung hat nun in der That die Richtigkeit meiner Voraussetzung bestätigt und gezeigt, daß sich der Wassergehalt eines Stärkemehls in kürzester Zeit und mit einer praktischen Anforderung durchaus genügend Genauigkeit mittels Alkohol bestimmen läßt. Im Nachstehenden werde ich zunächst über die Versuche, welche zur Begründung des Verfahrens ausgeführt wurden, und dann über die Untersuchungsweise selbst berichten.

Zu den fundamentalen Versuchen, welche auf meine Veranlassung Herrn Dr. Best aus Ospheus in meinem Laboratorium mit großer Sorgfalt ausführte, wurde Alkohol von 90 Proc. Tralles oder dem spezifischen Gewichte = 0,8339 bei 12 1/9 Grad Neumur verwendet, da sich ein solcher als genügend stark erwies und leicht aus künstlichem, hochprocentigem Spiritus durch geringen Wassergehalt hergestellt werden kann. Ne 100 Rubificent. = 83,39 Gramm desselben wurden in einer trockenen, mittels Stöpsels verschließbaren Flasche mit dem halben Gewichte, 83,39 / 2 = 41,7 Grammen verschiedener Stärkemehlproben, deren Wassergehalte vorher durch genaue Auszüglungsversuche ermittelt waren, zusammengebracht und unter häufigem Umschütteln 1/4 bis 1 Stunde in Berührung gelassen. (Dies wiederholte Versuche erwiesen, genügt ein solcher Zeitraum, um eine vollständige Aufnahme des Wassers des Stärkemehls durch den Alkohol herbeizuführen.) Nachdem wurde der Alkohol abfiltrirt, auf die Normal-Temperatur gebracht und sein spezifisches Gewicht mittels einer seiner Waage mit Senkkörper nach Mohr'schem Princip ermittelt.

In vorbeischriebener Weise wurden 11 Stärkemehlproben von sehr differierenden Gehalten an Wasser geprüft; besondere Versuche haben ge-
zeigt, dass Stärkemehl verschiedener Abstammung (Weizen-, Kartoffel-, Mais-Stärke) sich gegen Alkohol völlig gleich verhalten. Die Resultate sind folgende:

<table>
<thead>
<tr>
<th>Specificisches Gewicht des Alkohols</th>
<th>Wassergehalt der Stärke</th>
<th>nach der Tabelle berechnet</th>
<th>Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,8233</td>
<td>0,00</td>
<td>0,87</td>
<td>+ 0,87</td>
</tr>
<tr>
<td>0,8230</td>
<td>0,59</td>
<td>0,50</td>
<td>- 0,09</td>
</tr>
<tr>
<td>0,8265</td>
<td>3,00</td>
<td>3,22</td>
<td>+ 0,22</td>
</tr>
<tr>
<td>0,8344</td>
<td>10,86</td>
<td>11,81</td>
<td>+ 0,95</td>
</tr>
<tr>
<td>0,8342</td>
<td>11,05</td>
<td>11,63</td>
<td>+ 0,58</td>
</tr>
<tr>
<td>0,8335</td>
<td>11,52</td>
<td>11,00</td>
<td>- 0,52</td>
</tr>
<tr>
<td>0,8405</td>
<td>16,46</td>
<td>17,00</td>
<td>+ 0,54</td>
</tr>
<tr>
<td>0,8403</td>
<td>17,36</td>
<td>16,81</td>
<td>- 0,55</td>
</tr>
<tr>
<td>0,8441</td>
<td>20,77</td>
<td>20,80</td>
<td>+ 0,03</td>
</tr>
<tr>
<td>0,8580</td>
<td>36,18</td>
<td>36,13</td>
<td>- 0,05</td>
</tr>
<tr>
<td>0,8705</td>
<td>52,32</td>
<td>52,30</td>
<td>+ 0,02</td>
</tr>
</tbody>
</table>

Mittlerer Fehler: + 0,18

Diese Zusammenstellung enthält in der ersten Column die gefundenen spezifischen Gewichte der von den Stärkeproben abfiltrirten alkoholischen Flüssigkeiten, in der zweiten die analytisch, also direct gefundenen Wassergehalte dieser Stärkeproben nach Prozenten, in der dritten die aus den spezifischen Gewichten der Alkoholaußenzüge, in weiter unten angegebener Weise indirect berechneten Wassergehalte und in der letzten Column die Differenzen dieser directen und indirecten Wasserversuchungen.

Um aus den spezifischen Gewichten der Alkoholaußenzüge die prozentischen Wassergehalte der Stärkeproben abzuleiten, wurden die ersteren sowie die zugehörigen directen Wasserbestimmungen auf ein Coordinatensystem übertragen und aus den dabei sich ergebenden Punkten eine mittlere Curve konstruirt, nach welcher dann die berechneten Wassergehalte durch graphische Interpolation sich ergaben. Eine solche mittlere Curve repräsentirt annähernd dieselben Punkte, die für die directen Versuchsergebnisse sich ergeben würden, wenn man dieselben nach der Methode der kleinsten Quadrate von den wahrscheinlichen Fehlern berechnet hätte und die aus einer solchen Curve abgeleiteten Werthe verdienen daher größeres Vertrauen als die directen Wasserbestimmungen. Den Differenzen in obiger Versuchstablelle zufolge betragen die Abweichungen zwischen den wirklich gefundenen und den theoretisch berechneten Wassergehalten (mit Ausnahme zweier größeren) meist + 0,5 Proc.; doch darf
Scheibler, über Bestimmung des Wassergehaltes im Stärkeemehl. 507

man annehmen, daß die Größe dieser Abweichung vornehmlich in den
direkten Bestimmungen zu suchen ist, und nur der mittlere Fehler der
ganzen Versuchsreihe, ± 0,18 oder rund ± 0,2 Proc. als die eigent-
lliche Fehlergröße der indirekten Bestimmungen zu betrachten ist. Aber
abgesehen hiervon beträgt der Fehler, welchen man nach dem hier be-
sprochenen Prüfungsverfahren bei Wasserbestimmungen im Stärkeemehl
begeht, ungefähr nur ± 0,5 Proc., und dies ist eine für praktische An-
forderungen meist gleichgültige Größe.

Aus der vorgedachten Curve wurde die untenstehende Tabelle abge-
leitet, die den Wassergehalt eines Stärkeemehls nach vollen Procenten aus
der gefundenen Alkoholdichtigkeit zu ersehen gestattet.

Für die Bedürfnisse der Praxis habe ich ein Aräometer construirt,
mittels dessen man die Dichtigkeit des Alkohols vor und nach den Ver-
suchen bestimmt und an dessen Scala die in einem Stärkeemehl vorhan-
dene Wasserengie sofort nach Procenten abgelesen werden kann. Ein
denselben angefertigtes Procentthermometer gestattet den Eintauf einer
Abweichung von der Normaltemperatur zu corrigiten.

Praktiker, welche in den Beifüg eines solchen, sehr leicht zu hand-
habenden, mit ausführlicher Gebrauchsanweisung versehenen Instru-
mentes, des erforderlichen Zubehörs zu kommen wünschen, wollen
sich diesermal direkt an mich (Berlin, Alexandrinenstr. 24) wenden.

Tabelle über die Dichtigkeiten, welche Alkohol von 0,8339
spezifischem Gewicht zeigt, wenn 2 Gewichtstheile des-
selben mit einem Gewichtstheil Stärkeemehl von nach-
folgenden Wasser gehalten in Berührung gewesen sind.

<table>
<thead>
<tr>
<th>Stärke-Wasser</th>
<th>Alkohol, spezifisches Gewicht</th>
<th>Stärke-Wasser</th>
<th>Alkohol, spezifisches Gewicht</th>
<th>Stärke-Wasser</th>
<th>Alkohol, spezifisches Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,8226</td>
<td>13</td>
<td>0,8346</td>
<td>24</td>
<td>0,8474</td>
</tr>
<tr>
<td>1</td>
<td>0,8234</td>
<td>14</td>
<td>0,8358</td>
<td>25</td>
<td>0,8484</td>
</tr>
<tr>
<td>2</td>
<td>0,8245</td>
<td>15</td>
<td>0,8370</td>
<td>26</td>
<td>0,8498</td>
</tr>
<tr>
<td>3</td>
<td>0,8256</td>
<td>16</td>
<td>0,8382</td>
<td>27</td>
<td>0,8502</td>
</tr>
<tr>
<td>4</td>
<td>0,8269</td>
<td>17</td>
<td>0,8394</td>
<td>28</td>
<td>0,8511</td>
</tr>
<tr>
<td>5</td>
<td>0,8281</td>
<td>18</td>
<td>0,8406</td>
<td>29</td>
<td>0,8520</td>
</tr>
<tr>
<td>6</td>
<td>0,8293</td>
<td>19</td>
<td>0,8416</td>
<td>30</td>
<td>0,8529</td>
</tr>
<tr>
<td>7</td>
<td>0,8306</td>
<td>20</td>
<td>0,8426</td>
<td>31</td>
<td>0,8538</td>
</tr>
<tr>
<td>8</td>
<td>0,8319</td>
<td>21</td>
<td>0,8436</td>
<td>32</td>
<td>0,8547</td>
</tr>
<tr>
<td>9</td>
<td>0,8332</td>
<td>22</td>
<td>0,8446</td>
<td>33</td>
<td>0,8555</td>
</tr>
<tr>
<td>10</td>
<td>0,8345</td>
<td>23</td>
<td>0,8455</td>
<td>34</td>
<td>0,8563</td>
</tr>
<tr>
<td>11</td>
<td>0,8358</td>
<td>24</td>
<td>0,8465</td>
<td>35</td>
<td>0,8571</td>
</tr>
</tbody>
</table>
Die Stille Ocean-Bahn (Pacific Railroad) in Nordamerika.

Im Jahre 1867 des politischen Journals Bd. CXXXVI S. 486 wurden aus einer amerikanischen Zeitschrift Notizen mitgeteilt über die Art, wie das enorme Unternehmen der Pacificbahn quer durch den Continent von Nordamerika betrieben worden ist; im Folgenden geben wir nach dem preußischen Staatsangehörige einige Notizen über die allgemeinen Verhältnisse dieser Bahn, deren Vollendung kürzlich erfolgt ist.

Die Pacificbahn steht von Omaha (968 über dem Meerespiegel) allmählich bis 8242 (Evanspass im Hillsengebirge, 115 preußische Meilen westlich von Omaha), fällt in den nächsten 6 Meilen (Lamarie River) bis auf 7775, steigt dann aber wieder auf 7560, welche Höhe sie nach vielen Schwanken 60 Meilen weiter bei Nubs Summit wieder erreicht. Dann senkt sich die Bahn allmählich auf 4047 (Humboldt, 313 Meilen von Omaha), bis sie die Sierra Nevada erreicht, deren höchsten Punkt Crest, 7042, die 38 Meilen weiter überquert. Hieraus fällt die Bahn auf 22 Meilen Länge (Sacramento) bis auf 56. Von Sacramento wendet sie sich südlich nach San Francisco (25 Meilen), bis wohin sie noch zweimal Steigungen, deren eine auf 0,4 Meilen 60s6 beträgt, zu überwinden hat.

Die Pacificbahn ist von zwei verschiedenen Gesellschaften erbaut worden und besteht deshalb aus zwei aneinander anschließenden Linien. Beide Gesellschaften sind von der Bundesregierung mit Privilegien ausgestafft. Die Union-Pacific-Railroad-Company hat von Omaha westwärts gebaut. Ihr Capital beträgt 100 Mill. Dollars, wo-

Nicht diese beiden großen Pitsch als noch andere Bahnen mit ähnlichen Namen thöten im Bau begriffen, thöten projektiert, so die Union-Pacificbahn, östliche Abteilung, welche aus Kanada kommend an der Grenze von Nebraska (Omaha) in die große Bahn einmündet, die Midwest-Pacificbahn, welche von St. Louis über Springfield und Fort Smith nach Californien führt, die südliche Pacificbahn, welche von Nevelin nach Californien projektiert ist, die Sioux-City-Pacificbahn, welche die große Pacificbahn an der Grenze von Iowa rechtwinklig durchschneidet, und andere.

Über das Vermögen des Petroleum, Jod und Schwefel auszulösen; von Dr. Roller.

Ein Tropfen Petroleum verrichtet so leicht beim Auffassen aus 1/4 Gran Jod eine schöne violette Färbung, ebenso bei 1/8 und 1/6 Gran Jod. Schwefelknöpflchen ist bekanntlich ein sehr kräftiges Lösungsmittel für Jod; 1 Tropfen desselben auf 1/4 Gran Jod fallend, nimmt sofort eine violette Färbung an; aber ein Tropfen Schwefelknöpflchen löst 1/8 Gran Jod noch nicht aus, es sind zur vollen Anfärbbung dieser Menge 3 bis 4 Tropfen nötig und auch in diesen findet die Lösung erst allmählich statt. (Temperatur 17° C.)

Löst man Jodbadum in Wasser auf, setzt dann Petroleum und 1 Tropfen Sal- petersäure zu, schütte hierauf wegen des oben erwähnten Petroleum und rühre mit einem Glassstäbchen durch, so nimmt das oben erwähnte Petroleum durch das ansgetrieben Jod ebenfalls eine der ansgetrieben Jodmenge entsprechende rothe Färbung an; die untere Hälfte ist wenigstens gefärbd.

Schwefel löst sich etwas schwieriger in Petroleum. Während nämlich 1 Theil Jod zu seiner Lösung bei 17° C. 14,6 Theile Petroleum benötigt, erfordert 1 Theil Schwefel (in der Form der sogenanten Schwefelbäume) zu seiner Lösung bei 17° C. 15,8, 1 Theile Petroleum. Auch ist zu bemerken, daß die Lösung auch bei Anwendung so sein gepulverten Schwefels, wie es hier geschieht, nur sehr langsam stattfindet (in etwa 2 bis 8 Tagen). Sie besitzt eine gelbe Farbe.

Es muß hier noch angemerkt werden, daß das zu den Bitteren angewandte Petroleum gewöhnlich, aus dem Kanalbad begogenen Brandt war. (Bayerische Gewerbezeitung.)
Ueber elastische Formen zum Gypsgießen und die Methode des Gyps-
härtens; von Dr. Hiller.

Bisher waren als elastische Formen zum Gypsgießen nur Leimformen üblich. Diese Formen müssen jedoch, weil der Gips beim Hartwerden (durch die Wiederauf-
nahme seines Kryyllallwassers) sich etwas erwärmt, was ein oberflächliches Erweichen der Leimgallerte zur Folge hat, stets mit Leimölfarin übergossen werden. Darum leitet jedoch nochwendiig die Hart schaft der Form. Da die aus sogenannter künstlicher Glutina erhaltene Gallerte erst in verhältnismäßig hoher Temperatur wieder weich wird, und sich von allen Stoffen, auf welche sie aufgetragen wird, sogar vom Papier, wieder ungemein leicht und vollkommen abstösst, so versuchte Dr. Hiller, Formen aus dieser Gallerte für die Leimformen zu substituieren. Die dem Nürnberger Gewerbeverein vor-
gelegten, aus diesen Formen erhaltenen Gypsadüße zeigten die volle Erfüllung der Ursprünge, und wurden überhaupt in jeder Hinsicht als ganz vollkommen befunden.

Ver goldetes Hartes des Gyps es hat Dr. Hiller die von Prof. Löhner in
Berlin angegebene Methode, 477 obgleich etwas umständlich, bei weitem als die bess
be funden. Nach seiner Erfahrung wird aber ein möglichst vollkommenes Produkt nur
dann erhalten, wenn man den zersch gruben und allmählich Gips beim zweiten
Brennen einer andauernden schwachen Heizflamme ausleucht. Die vorgelegten Argufü
waren in ihrem Ausein dem unglasten Urseren vollkommen ähnlich, durchschei nend
wie Marmer, manche zeigten sogar den lieblichen Schimmer deselben, so daß sie faun
von Marmer zu unterscheiden sind, und wenn sie auch an Härte legtern nicht ganz
gleichkommen, so sind sie entschieden härter als Alabaster. (Bayerische Gewerbezeitung,
1869, Nr. 10.)

Begünstetes Verfahren, das Bleiweiss nach der sogenannten englischen
Methode darzustellen; von Prof. Dr. Artús.

Bei der bisherigen englischen Methode der Bleiweissfabrikation wird Biroydp,
welches durch Calciniten von Blei in einem flammenden dargestellt ist, mit 1 Proc.
seines Gewichtes in Wasser aufgelöst, Bleiäure befeuchtet, und die Mischung in
horizontal, oben verschlossene Eroge gebracht, welche mit einander communiciren. In
die Eroge leitet man dann einen Strom von Kohlen säuregas, welches man in der
Regel durch Bervenmen von Kohls ergennt. Durch das Gasbild des Diphes, in wel
chern man die Kohls verdreht, wird ein hintereinander Druck hervorgebracht, um das
Gas durch Kohlen, welche zur Abstiftung bessern durch saures Wasser gehen, in die
Mi stung zu treiben. Diese wird während des Eintrinmens der Kohlen säre fort
vor wärrend umgerührt, was in der Regel durch Krichen geschicht, welche mittels einer
Dampfmaschine bewegt werden.

Dieses Verfahren ist nun nicht geeignet, ein gutes Bleiweiss von guter Detafft
z zu erreichen. Das Produkt enthält, wie Prof. Artús früher, zu viel Biroydpdypdrat,
wechsel reflekt, es von einem nach dem englischen Verfahren arbeitenden Bleiweissfabri
kanten, welcher mit der Detafft seines Produktes nicht übereind war, um Rath ge
fragt, die Mi stung dahin abänderte, daβ er auf 100 Gewichtsteile Biroydp 2 1/4 Proc.
nitruales essigsaures Biroydp, in Wasser gelöst, anwenden lieβ, welchem nach einige
Procenten Essig zugesetzt wurden. Auf diese Weise gelang es nicht nur, den Prozec
der Biroydpbereitung zu beschleunigen, sondern es wurde auch ein zarteres Bleiweiss
ehalten, welches eine außerordentliche Detafft besaβ. (Biroydpzeit schrift für technische
Chemie, 9. Jahrg. S. 262.)
Darstellung einer weissen Glasurmasse für Ösenfächeln, nach Prof. Dr. Artus.

Prof. Artus hat bereits früher die Darstellung einer solchen Masse angegeben, neuerdings aber im Verein mit einem Lübeckermeister weitere Versuche zur Verwölbung derfelben angestellt, und theilt nun auf Grund dieser Versuche folgende Vorschrift mit.

über die weisse Glasur eiserner Gefässe; von Dr. Fr. Goppelstöcker.

über Lackierung auf Zinkschieß; von J. Miller in Erlingen.

Um dauerhafte Anstriche auf Zinkschieß zu erhalten, sind schon verschiedene Vorschläge gemacht worden, z. B. Bemalungen von Bleches auf altem Wege, Anbeigungen mit Salzsäure, um die Verdilation zu neutralisiren und eine räthliche Oberfläche herzustellen u. a. m.

Ich habe während einer fünfjährigen Betriebszeit als Techniker in einer löchenschießfabrit des badischen Schwarzwaldes, welche größtentheils nur Zinkschieß — wegen der Benutzung des Bleches zum Räderguss — verwendete, Gelegenheit, die angeführten Vorschläge zu prüfen, ebensowohl aber nach verschiedenen Probier zum Zweck der Herstellung eines haltbaren Anstriches oder Lackes angewendet.

Ich will meine Erfahrungen hier mittheilen.

Das Anbeigen mit verdünnter Salzsäure ist nur für Gusswaren tauglich; für Blech ist das Ruffschleifen, wenn auch etwas umständlicher, so doch sicherer.

In diesem Erde werden die abgebrochenen und gut ausgeschliffenen Schilder (andere Gegenstände von Zinkblech können mit Blindscheiben mitten eines Zwischlappens abgeschliffen werden) aus der zu lackirenden Seite mit feinem Sand- oder Büschelfein und des angemixten Staubes wegen naß abgeschliffen, bis sich keine dunklen Stellen mehr zeigen, und gut abgetrocknet.
Als erster Anstrich sind alle aus Blei, Kupfer und Eisen hergestellten Farben zu verwenden.

Ich fand bei meinen Anstrichen in besagtem Geschäft mit Stromerweiβ, was vielleicht ohne vorhergegangene Grundierung, laudiret, Zitterblätter, von welchen der Lack bei der ersten Mischung ablöste oder sich loschähte, obgleich das Blei ausgeschliffen war. Zwischen Farbe und Blei befand sich grautes Pulver oder Staub, ähnlich dem Nieder- schlag, der sich aus in eine Ausführung von eisgesaurem Blei gestaltetem Zinkblech bildet, was mich annehmen ließ, daß auch hier ein Bleiniederschlag stattgefunden, und dadurch zwischen Farbe und Blei sich eine Schicht gebildet habe, welche das Cohäsionsverhältnis änderte, und die Haftbarkeit verhärte.

Der erste Anstrich ist demzufolge auf weisse Baare mit Bleiweiß oder auch mit ganz ordinarem Bleiweiß, welches mehr Luft als Viellatt enthält, zu machen.

Ladung mit schnell trocknenden Farben ist auf Zinkblech durchaus unanwendbar.

Es ist eine unumgängliche Tatsache, daß nur fette und in erforderlichem Higrograde getrocknete Anstriche aus Blei und Metallwaren von entsprechender Farbe und Dauer sind; daher das Trocken in sogenannten Lackäpfchen und Heißflößen.

Zinkblech jedoch kann nicht über 800° ertragen, es verbrennt seine Elastizität wie Eisenbahn, der ausgeglüht wird. Schnell trocknende magere Anstriche haften aber schon der leichten Bildung wegen nicht; deshalb verwende man wohl fette aber gut trocknende Del- und Lackmische zum Anstrich und lasse die Baare in einer Wärme von 50–700° 2–3mal 24 Stunden abtrocknen.

Das Ausbewahren von lackierten Zinkwaren in feuchten Magazinen ist auch den beflastirten nachteilig.

Versuchen zur Herstellung photographischen Abdrucke auf Malerleinwand.

P. Lothian machte der Edinburger photographischen Gesellschaft folgende Mitteilungen über sein Versuchen, Abdrucke auf Malerleinwand herzustellen.

Die Malerleinwand wird von ihrer Zettigkeit befreit, indem man sie sacht auf ein Brett legt und mit Weingeist oder Losenlaurum Narren, mit einem Schwamm leicht abreibt und dann mit Wasser abwascht. Die Ränder der Einwand werden nun ausgebogen und die so entstandene Schale mit einer Ausführung von 20 Gramm Citronensäure in 1 Unze Weingeist gefüllt; dann ausgesogen und, bevor sie trocken geworden, mit folgender Lösung gesättigt:

\[
\text{Chlorkalicium} \quad 10 \text{ Grän} \\
\text{Weingeist} \quad 1 \text{ Unze} \\
\text{Wasser} \quad 1 \text{ Unze} \\
\text{Gelatine} \quad 2–4 \text{ Gramm}
\]

Nach fünf Minuten wird diese Lösung wieder ausgesogen und die Einwand getrocknet. Nach dem Trocken gibt man sechspersentige wässerige Silberlösung hinein, die man 4 bis 5 Minuten lang einwirken läßt. Man copirt wie gewöhnlich und fügt mit unterschüssigem Kupfer. (Photographisches Archiv, Juni 1869, S. 183.)
Darstellung des künstlichen Alizarins nach Gräbe und Liebermann.

Zum polytechnischen Journal Bd. CXCII S. 342 (zweites Februarheft 1869) wurde aus den Berichten der deutschen chemischen Gesellschaft zu Berlin die Notiz von Gräbe und Liebermann (zu Berlin) über künstliche Bildung von Alizarin mitgetheilt. Darnach ist es diesen Chemisten gelungen, das Alizarin, den Farbstoff des Krappes, künstlich aus dem Anthracen (Paranaphtalin) darzustellen. Dieser Umstand liegt eine frühere derselben Chemiker zu Grunde, nach welcher das Alizarin ein Derivat des Anthracens ist. Während das letztere die Zusammensetzung $\text{C}_4\text{H}_4\text{O}_4$ hat, ist dann die Formel des Alizarins $\text{C}_4\text{H}_6\text{O}_4$, womit auch die älteren Analysen von Schnitt und Nebiquest, sowie die neuen von Solter und Rassa besser übereinstimmen als mit der bisher fast allgemein adoptirten Formel $\text{C}_4\text{H}_6\text{O}_3$. Das Alizarin enthält also nur 4 O mehr und 2 H weniger als das Anthracen.

Die Nebenfüllung des Anthracens in Alizarin geschieht nach dem Verfahren von Gräbe-Liebermann (wie in Nr. 20 der deutschen Industriezeitung mitgetheilt wird) durch drei auf einander folgende Operationen.

Zunächst wird nämlich das Anthracen $\text{C}_4\text{H}_4\text{O}_4$ in Anthrachinon $\text{C}_4\text{H}_6\text{O}_2$ umgewandelt, entweder dadurch, daß 1 Lhl. Anthracen in Gegenwart von Schwefelsäure mit 2 Lhl. doppelt-chromsaurem Kali ersetzt wird, oder dadurch, daß man doppeltchromsaures Kali und chromsaure Schwefelsäure oder konzentrierte Salpetersäure in Gegenwart von chromsaurem Kali auf Anthracen einwirken läßt. Aus dem Anthrachinon wird nun Bisanthranthren darzustellen, indem man es bei 80—130° C. mit Brom erwärmt,

$$\text{C}_4\text{H}_6\text{O}_2 + 4 \text{Br} \rightarrow \text{C}_4\text{H}_6\text{Br}_2\text{O}_2 + 2 \text{HBr}$$

Das Bisanthranthren läßt sich auch direkt aus Anthracen darstellen, indem man leitetes in Bierstachbornanthren überführt,

$$\text{C}_4\text{H}_4\text{O}_4 + 8 \text{Br} \rightarrow \text{C}_4\text{H}_8\text{Br}_4 + 4 \text{HBr}$$

und aus dem Bierstachbornanthren mittels eines der obigen Chemische Bismarthenz von Alizarin darzustellt. Das Bisanthranthren wird endlich in Alizarin übergeführt, indem man es mit Kali- oder Natronlauge auf 150—200° C. erhitzt. Es entsteht dabei eine blauviolette Färbung, die immer intensiver wird; steigert sich dieselbe nicht mehr, so ist die Operation beendet. Man läßt die Masse dann erkalten, zieht sie mit Wasser aus, fällt die erzitterten Lösungen durch eine Säure und wäscht den entstehenden gelben Nieder- schlag, der eben das Alizarin ist, aus.

Das Naphthalin-Scharlach (Rosanaphthalin).

In der Sitzung der Wiener Industriegeellschaft vom 2. Dezember 1868 berichtete Schiendl über den Farbstoff von Schiendl: „Derselbe ist äußerst als eine dunkelrothfarbene, zart und von der Art ist, daß sie in kaltwasser, als gutem, kalt- und fettlöslich, in kalten Wasser dagegen fast unlöslich ist. Die Lösungen des Rosanaphthalins zeigen in hohem Grade Disproportion; durch Farben und durch Alkalien wird der Farbstoff aus seinen Lösungen gefällt; durch Kalt und Salzsäure kann er reduziert werden, wobei seine alkoholische Lösung sich allmählich ent- scheidet. Mit konzentrierter Schwefelsäure gibt dieser Farbstoff eine olivengelbe Lösung, welche bei Verdünnung mit Wasser gelb wird und allmählich in Orange und Rot übergeht; bei weiterer Verdünnung mit Wasser wird das Rosanaphthalin als violettes Pulver gefällt. Auf Seide liefert der Farbstoff eine Masse, welche mit Saflor erzeugten ähnlich ist, ein Biolettrota mit orangefarbenem Schimmer. — Der Preis des Farbstoffes beträgt vorläufig 1000 Francs per Kilogramm.“

In der Sitzung der Wiener Industriegeellschaft vom 6. Januar d.J. machte Dr. Brandt, welchen Proben des neuen Farbstoffes zur Prüfung übergeben worden

waren, die Mitteilung, daß derselbe beim Druck auf Wolle und insbesondere auf Baumwolle weniger schädliche und bis jetzt auch weniger schöne Färbungen gibt als das saubere. (Bulletin de la Société industrielle de Mulhouse, t. XXXIX p. 141, 143; Februar und März 1869.)

Synthese einer mit dem Toluindin isomeren Base; von W. Körner.

Seit zweien Jahren schon habe ich mich im Verlaufe meiner Studien über die Isomeren der Benzol-Abkommliche mit Bürschen der Darstellung neuer Toluindine beschaftigt und bereits früher ein Monojodtoluid beschrieben, das als Ausgangspunkt hiezu dienen sollte (Bull. de l'académie royale de Belgique t. XXIV p. 167).

Was nun damals mit dem Monojodtoluid nicht gelungen welter, habe ich jetzt unter Anwendung von Monojodtoluid zu Stande gebracht.

Wenn man triftsäures Monojodtoluid (Schmelzpunkt 23,40°) in gut abgefüllte Salpetersäure allmählich einträgt, so löst sich daselbe bald aus; nach kurzer Zeit fällt eine bläse Wässer aus, ohne daß sich dabei viel salpetrige Dämpfe entwickeln. Dieses Produkt wird mit Wasser und Soda gewaschen und liefert bei Destillation mit Wasser, dampfen des Jodkem, welches man nur noch im Vakuum zu reichsölen, um es vollkommen rein zu erhalten.

Wenn man die Base dieses Salzes mit Natriumamalgam behandelt, so wird das Brom entfernt und bildet sich das neue Toluindin. Dapur habe ich daselbe nur ständig erhalten. Es ist farblos, durch schwere als Wässer, färbt gegen 18°C. und liefert mit Säuren gut triftsäuren Salze, unter denen namentlich das Nitrat durch seine Schönheit auffällt.

Verfahren zum Bleichen des Eisenbeines; von Prof. Dr. Artus.

Von Pianoforte-Fabrikantern angeordnet, ist ein einfaches Verfahren zum Bleichen der Eisenbeinplatten ausgearbeitet, das Prof. Artus nach angestellten Versuchen folgendes Verfahren für zweckmäßig befunden.

Wenn die gewünschte Weiche noch nicht entsteht, so kann man die Operation zum zweiten und endlich noch zum drittenmal wiederholen.

Die Brodbereitung mittels des Horsford-Liebig'schen Backpulvers.

Die f. württembergische Centralstelle für Gewerbe und Handel hat Anfangs d. J. an 70 Adressen in allen Gegenen des Landes verschiedene Mischungen des Horsford-Liebig'schen Backpulvers 158 hinausgegeben, damit demselben Nachrufen angestellt und demgemäß die Resultate dieser Versuche mitgeteilt werden.

Von 100 Pfund Weiß wurden gewonnen an Brod:

Stuttgart 89 Pf. von einer mit Sauerteig: mit Backpulver: Mehr mit renommierten renommierten
Kurzmelife 135 Pfd. 16 L. 144 Pfd. 8 1/2 Proc.
Riten inaand. Weiß 145 " 150 " 5 "
unget. Weiß 150 " 164 "
Heidenheim 144-146 Pfd. 160 " 14 "

Dagegen nennt viele — ja die Backer lehrenkräftig und schon die konditor Bäder in Stuttgart, die Bäder Leib in Heidenheim, Göhring in Leonberg, Gunther in Calw und andere — die angefertigten Verwaltungen, besonders diejenigen, die Broschauer Backen, abet nicht minder gut, als bei dem hervorragenden Verfahren, das Brod nachhocherkräftig, besonders bei Verwendung von schwächerem Weiß; sie finden das gewonnene Brod nicht bloß genießbar, sondern gut ausgebaut und geschmackhaft.

Eines der gründlichsten Gutachten von dem Bäder C. Gutseher in Stuttgart (Bergrstraße), welcher bei etwas erhöhtem Preise (1 Kreuzer das Pfund theurer) für...

während der Arbeit findet, hebt als Vortheil der neuen Methode namentlich hervor, daß man das Baden beim Herbstzeit für die Gährung verbunden ist, und man nie ein eisiges Bad nehmen könne; daß das Eiswasser von der Temperatur unabhängig sei, und man halte der warmen Wäsche kaum können; daß das Bad bald und gelernt werde.

Aus letzteren Gründen, namentlich wegen der Schnelligkeit der Badereitung und des Gewinnes an Heizfähigkeit wird die Erfindung als eine für Zeiten der Thuerung eigentümlich begrüßen und werden besonders die unbestreitbaren Vortheile der und unberechenbare Effekte des neuen Verfahrens in den Nachtzehn und in Fällen unerwartet eintretenden größeren Bedürfnisses hervorgehoben, indem es nach demselben möglich ist, innerhalb 2 Stunden ganz gut gesundes Bad nachzufühlen. (Königlich Leopoldinische, Königlich Leopoldinische, Fr. Maucher in Walde.)

Wir behalten uns vor, später, wenn alle Berichte eingeliefert sind, wieder auf die Sache zurückzukommen. (Württembergisches Gewerbeblatt, 1869, Nr. 22.)

Ueber die sogenannte Desinfektionsweise.

Auch der vorjährigen Dresden Württembergische Verheiratung der Kreisphösen Dr. Pincus aus Fassberg mit (n. 1. Publ. in. Württemberg. Journal Bd. CXXI S. 481), daß es ihm im Verein mit Apotheke Schlechter und Kunsthäusfabrikanten Schnell und gelungen sei, eine Seife dargestellt, welche übermanganautes Kali, belanglos eines der besten Desinfektionsmittel, in künstlich destillierter Form enthält, in begünsstiger Weise die Desinfektion gefährdet und in Folge ihrer eigentümlichsten Dargestellungsweise die Haut nicht braun färbe. Eine solche Seife wäre nun jedenfalls ein höchst wertvolles Mittel für alle Fälle, wo für Geräthe, die von Verschiffung mit vorwiegenden Körperrn herrühren, oder anhaftender Anfißungstoffe entfernt werden sollen; leider scheint sie aber durchaus nicht das zu bieten, was sie verspricht. Dießes ist namentlich noch schlechter als gewöhnliche Seife, nur ein ungleichmäßiges Gemisch aus Seife und Manganta und einer Spur Hypermanganaat, welches in dem Augenblick verbindet, in welchem Wäsche auf die Seife einwirkt. Das Hypermanganaat ist eben das Besten, welche Anfißungstoffe zu zerstören vermögen, es muß also ganz vorhanden sein, und ohne Wäsche ist eine Seife nicht verwendbar. Die Seife ist in der Art bereitet, daß seine Seifenstoffe sich mit Hypermanganaat gemischt und durch Drücken in eine harte Masse verwandelt sind. Nach der Pressung, auch einige Tage später, mag die Mischung noch größtenteils das sein, was für sie ausgegeben wird, dann geht sie in ihrer Beschaffenheit schnell abwärts; die Zersetzungs des Hypermanganaats geht langsamer und mehr vor sich, und zuletzt ist das Präparat nichts weiter als eine von Mangantopf schwach gemachte Seife, die nicht mehr desinfiziert. Die Gründen haben bisher einen guten günstigen Eindruck gehabt, sie haben sich aber geirrt. (Industrie-Blätter, 1869 S. 80.)

Buchdruckerei der G. Cotta'schen Buchhandlung in Augsburg.