Forttechnisches Journal

Herausgegeben

von

Dr. Emil Maximilian Dingler.

Dritte Reihe, Achtunddreißigster Band.

Jahrgang 1855.

Mit sechs Tafeln Abbildungen.

Stuttgart und Augsburg.

Druck und Verlag der J. G. Cotta'schen Buchhandlung.
Polytechnisches
Journal.

Herausgegeben
von
Dr. Emil Maximilian Dingler.

Hundertachtunddreißigster Band.

Jahrgang 1855.

Mit sechs Tafeln und Abbildungen.

Stuttgart und Augsburg.
Verlag der J. G. Cotta'schen Buchhandlung.
Journ.}

Dr. Fritz Schwarzer

Zoologische Zeitung

Dresden 1888

Landschiffthek

Dresden

Bibliothek
Inhalt des hundertachtunddreißigsten Bandes.

Erstes Heft.

I. Der pneumatischer Apparat um große eiserne Gußylinder in das Bett des Flusses Medway zu fassen, welche als feste Grundlage für den Überbau der Brücke bei Rochester in England dienen. Mit Abbild. auf Tab. I. 1

III. Neben zum leichtsten Schmiren eingerichtete Zapfenlager; von Hrn. J. L. Vaubelot zu Sarancourt (Ardenne). Mit Abbildungen auf Tab. I. 9

IV. Neben Freihiemen, von Hrn. J. Blaikie in Glasgow. Mit einer Abbildung auf Tab. I. 11

V. Verfeuerung einer Maschine zum Einpressen der Metalldecke in Kupfer- und Zinkhütten; erfunden von Hrn. J. S. Poxten, Mechaniker der Zinkhüttenfabrik der Hrn. Braun und Bloom in Ronsdorf. Mit Abbildungen auf Tab. I. 14

VI. Verbesserungen in der Fabrication von Kistenlaufern, welche sich Samuel Brandon, Mechaniker zu Woolwich, am 14. Novbr. 1854 patentieren ließ. Mit Abbildungen auf Tab. 1. 18

VII. Verbesserter Umboß, von Hrn. F. Kirkup zu Newcastle am Tyne. Mit Abbildungen auf Tab. I. 19

VIII. Verbesserter Maschinen zum Spinnen und Drehen der Baumwolle, welche sich Thomas Whitworth, Mechaniker zu Tafford in Lancashire, am 11. April 1854 patentieren ließ. Mit Abbildungen auf Tab. I. 20

IX. Gerbohr-Apparat von den Hrn. Walker und Platt. Mit Abbildungen auf Tab. I. 22

X. Neue Sicherheitslampe, welche sich Mr. Thomas Burdon zu Hull, im September 1854 patentieren ließ. Mit einer Abbildung auf Tab. I. 20

XI. Die Fähigkeit der Reiter, Stöße verschiedener Batterien gleichzeitig aufzunehmen und die Telegraphie von Dr. zu übernehmen. Mit Abbild. auf Tab. I. 28

XII. Neben ein elektrisches Papier für die elektrischen Telegraphen; von Hrn. Bouget-Maisoneneuve. 43
Inhalt

XIII. Über eine neue Form der bei Lößrohrversuchen angewendeten Platinvincetten und Platinröhre; nach M. Vogel jun. und C. Reichsauer. Mit Abbildungen.

XIV. Über die Prüfung des Gliederalks mittels Eisenwirbel; von Dr. G. G. Mitteis.

XVI. Zur Analyse des molybdänauen Bleiersdes und dessen Anwendung als Magnets auf Phosphorsäure; von Dr. Wilh. Wiede.

XVII. Über die Gewinnung des Saffes der Runkelrüben nach breiter getrennt geschlachter Versuchsarten und über die geistige Gährung dieses Saffes; von Prof. M. Payen.

Miscellen.

Zweites Heft.

XIX. Beschreiben die Gruben der an die Dampfseil-Platten zu befestigenden Mühlen zu verkaufen, welche sich William Johnson zu Manchester, am 9. März 1854 patentiren ließ. Mit einer Abbildung auf Tab. II.

XX. Methode die Siedereihen der Dampfseife zu reinigen, welche sich Allis und James Lowland zu Manchester, am 17. Februar 1854 patentiren ließen. Mit einer Abbildung auf Tab. II.

XXI. Das Backenfutter, neug eingerichtet und beschrieben von Herrn. Mechaniker Ludwig Frey. Mit Abbildungen auf Tab. II.

XXII. Verbeffungen an den Maschinen zum Vorbereiten, Spinnen und Döübren der Baumwolle, welche sich Ephraim Hallum zu Steventon, am 25. Juli 1854 patentiren ließ. Mit Abbild., auf Tab. II.

XXIII. Maschine zum Formen der feurigen Ziegel, von Herrn. Reynolds zu Pont-Audrey (Cure-Deport). Mit Abbild., auf Tab. II.

XXIV. Fabrication von Gläsern zum Reifen der Alkalisiten; von Herr. H. Hudson zu South Shields. Mit Abbildungen auf Tab. II.
Seite

XXV. Neue Schützere des Gn. Mechanikers Klintworth in Hannover; beschrieben von Karl Karmarz. Mit Abbildungen auf Tab. II. 90

XXVI. Konstruktion der Parabel; von A. Müller, Rechnungs-Nach im königl. preuß. Kriegs-Ministerium. Mit einer Abbildung auf Tab. II. 92

XXVII. Versuche mit dem für die Mittelmeer-Leitung bestimmten Telegraphen-Zaue; von Charles Wheatstone. 94

XXVIII. Die Fähigkeit der Lieder, Stroms verschiedener Batterien gleichzeitig aufzunehmen und die Telegraphie; von Dr. H. M. G. zur Redden. (Schrift.) Mit Abbildungen auf Tab. II. 100

XXIX. Leichtes Verfahren, um die auf Glasplatten mittels Colloidiun darstellenden Eichbilde auf Wachselinwand zu übertragen; von den Hörn. Eirc, Braun und Chapelle. 108

XXX. Uber zwei photographische Versuchsmaterialien des Herrn. Dr. Laupenot; Bericht von Prof. Chevreul. 109

XXXI. Apparat zum Reinigen des Steinschlaggastes mittels Thon; von W. N. Bewitched. Mit einer Abbildung auf Tab. II. 112

XXXII. Chemische Meßmittelungen, von Dr. E. Müller. 114

XXXIII. Uber die Ursachen des Silberverlustes beim Reiben silberhaltiger Geze und Hüttenprodukte; von Prof. Blattner. 119

XXXIV. Verfahren zur Bereitung der Quecksilber für die Kerzen- und Eisengießerei, von Dr. H. said; patentiert in England am 9. Januar 1854. Mit Abbildungen auf Tab. II. 122

XXXV. Verfahren zur Fabrikation der Quecksilber, von O. H. Melsen, Professor der Chemie zu Brüssel; patentiert in England an 18. Dezember 1854. Mit Abbildungen auf Tab. II. 126

XXXVI. Untersuchung einiger Braunkohlen des Westerwaldes in Gänse auf die Produkte, welche die bei der trockenen Destillation liefern; von Prof. Dr. M. Fresenius. 129

XXXVII. Verfahren zur Destillation des Tepetinsins und anderer Harze, ferner zur Fabrikation trocknender Ole, welches sich Thomas Keates am 15. März 1854 patentiert ließ. Mit einer Abbildung auf Tab. II. 140

XXXVIII. Mabru's Verfahren zum Konserveren der Milch; Bericht des Hon. Herpin. Mit Abbildungen auf Tab. II. 142

XXXIX. Uber den Einwurm der Eide und seine Einwanderung in Eurova; von Hon. J. C. Guérin-Ménéville. 146

XL. Über die ersten Cocoon, welche im 3. 1855 bei der Zucht der aus China erhaltenen Seidenwürmer gewonnen wurden; von Hon. Guérin-Ménéville. 148

XLI. Uber den industriellen Verzicht des Bombyx Cynthia von Hon. Garby. 150

Miscellen.

Uber eine Einnahmfähigkeit psychologischer Ueberlegung; von F. Denzler. 152

Uber die Darstellung der Chlorinzubereitung, als Reagens für mikroskopische Untersuchungen; von Dr. L. Mablißer. 152

Analyse des Stephensburger Porzellan und der dortigen Kauffmanns; von Federl. Berlin. 153

Beobachtung der Künstler der sogenannten Glännitzohlen; von Leopold Stahl. 154

Reinigung der Gemäss in der Ganzsägerkiel; von L. Hoffrütte. 155

Über schnell trocknender Anstrich. 156

Rekreation des Grafenherren; von W. Engelhardt. 156

Uber die Entfärbung der mit Pflasterfärbe gelb gefärbten Eide

Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden gefördert von der Deutschen Forschungsgemeinschaft DFG Humboldt-Universität zu Berlin

Drittes Heft

Seite

XLII. Helings patentirtes Sicherheitsventil für Dampffėstel. Mit Abbildungen auf Tab. III. 161

XLIII. Erfahrungen und Resultate über den Brennmaterialverbrauch bei den Dampfmaschinen des Hrn. Faxeot. 163

XLIV. Uber das Heizen der Dampfmaschinen-Desen; von dem Ingenieur R. Armstrong zu London. 165

1. Instruktionen für die Setzer der Dampfmaschinen-Desen, welche ihren eigenen Dampf verbrennen. — 2. Instruktionen für die Setzer der Dampfmaschinen-Desen, welche nicht besonders zur Verbesserung der Dampfmaschinen eingereicht sind. — 3. Notizen für Dampfmaschinen-Setzer in Beziehung auf die Nachsichtlichkeit der Buscherei. 166

XLV. Mechanismus der Hörn. Caffin und Hipley zum Verbessern einer reitenden Bewegung. Mit einer Abbildung auf Tab. III. 169

XLVI. Die Masserpupe des Mechanikers Petri zu Paris. 171

XLVII. Maschine zum Wachsen und Ziehen der Wollebänder; von den Hörn. Köhlin zu Mühlhausen im Glaß. Mit Abbild. auf Tab. III. 172

XLVIII. Verbesserungen an elektrischen Telegraphen, welche sich Carl W. Siemens am 25. Februar 1854 für England patentirt ließ. Mit Abbildungen auf Tab. III. 176

XLIX. Über einen elektrischen Apparat, welcher als Ventil wirkt; von Hen. J. M. Gaugain. 180

L. Nachtrag zu dem elektrochemischen Schreibtelegramm für die gleichzeitige Gegenzerrung; von Dr. Wilhelm Eitn. f. f. Telegraphen-Director. Mit einer Abbildung auf Tab. III. 184

LI. Uber Verbesserung der elektrischen Telegraphe; von M. Neubronner. 186

LII. Uber die Leuchtkraft und den Beleuchtungswert der Paraffin-Lampen; von Karl Karman. 188

LIII. Uber einen von dem Mechaniker Siegfried Marxus konstruirten Apparat zur Erzielung gleichförmiger Temperaturen mittels einer Gaslumpe; von Karl Ritter v. Bauers. Mit Abbildungen auf Tab. III. 196

LIV. In England erlangte Erfahrungsergebnisse über die bei der Eisenfabri- cation erforderlichen Maschinensteine. 200

LV. Höchsten. — Ueberhitzungsapparat; Glühlampe mit großer Geschwindigkeit; Hartwalzen in bünnten Schalen gegossen; von den Hörn. Thomas und Laurens, Ingenieure zu Paris. 205

LVI. Die Höchsten des Ingenieurs Fabry. 207

LVII. Neue Verbesserungen zur Fabrikation des Stahls, Eisens und ver- schiedener Legirungen; von Hrn. C. V. Chenolet zu Paris. 209

LVIII. Uber die Wirkungswerte der Schwefelblüthe gegen die Täubungskrank- heit; von Hrn. Mares. 218
LX. Ueber das hydrostatische Bett oder die schwimmmende Matrize, deren man sich in den englischen Spitaln bedient; von Dr. Neil Arnott. 221

LXI. Aeronauten-Drainierung vom Capitain Norton zu Dublin. Mit Abbildungen auf Tab. III. 223

LXII. Ueber den Blutegelumpf zu Montsalut (Landes-Depart.); Bericht von Hrn. Soudeiran. 224

LXIII. Ueber die Blutegelzucht in den Eingrenz der Societe d'Encouragement von Hrn. A. Chevalier erhaltenen Bericht. 229

Miscellen.

Viertes Heft.

LXIV. Ueber Wilhelm Siemens's Maschine mit regeneriertem Dampf; von Hrn. J. Mozin. Mit einer Abbildung auf Tab. IV. 241

LXV. Schmierbahn für Dampfmaschinen, von dem Amerikaner Mather. Mit Abbildungen auf Tab. IV. 249

LXVI. Beschreibung einer Pumpen mit Kautschuk-Bentolen; von Gottfried Stumps. Mit einer Abbildung auf Tab. IV. 250

LXVII. A. Owne's verbesserte Centrifugalpumpe. Mit Abbildungen auf Tab. IV. 255

LXVIII. Beiträge zur Bestimmung des richtigen Kohlen-Durchmessers und des Mindestablaufes der Drainage, Mit Abbild, auf Tab. IV. 257

LXIX. Ueber das Schmieden und Schweifen des Gießbaus für Dampfvesseln, den Bau eiserner Schiffes; von Hrn. William Bertram zu Woolwich. Mit Abbildungen auf Tab. IV. 269

LXX. Verfahren zur Anstiftung eiserner Achen, Kolbenrahmen usw. aus Blechplatten; von Hrn. James Fenton zu Low Moor in Yorkshire. 271
Inhalt

X

LXXI. Verbesserungen in der Fabrikation gewisser Eisenstöfen und an den dazu erforderlichen Maschinen oder Apparaten, von Herrn James Grif-
sich zu Wolverhampton. Mit Abbildungen auf Tab. IV. 272
LXXII. Versuche zur Gewinnung des Zinks aus seinen Erzen, von Herrn
Lesoinne zu Lütich. Mit Abbildungen auf Tab. IV. 275
LXXIII. Neuer Beiratungen: von Professor F. Grace Galver und Richard
Johnston in Manchester. 282
LXXIV. Neuer die Färbung des Glases durch die alkalischen Schwefelmetalles
und deren dem Schwefel analogen Farbveränderungen beim Erhitzen;
von D. C. Spleiger. 292
LXXV. Zur Färbenfabrikation; von G. C. Habich in Heckerhagen. 295
(l. Bereitung des Barisierblau nach verschiedenen Methoden.)
LXXVI. Chemisch-technische Notizen; von Dr. Aler. Mülter in Chemnitz.
301
A. Gegenartiges Salpeterturres Giesorow als Färberzeug. — B. Analyse
des Vieffigur, welcher bei der ovitischen Jodprobe zur Färbung des
Münzstückesfass bient. — C. Darstellung des Kitchson aus Leopoldität.
— D. Darstellung von Seifen betreffend.
LXXVII. Neuer die Verfasser, welche die Verarbeitung der positiven Lichte-
bilder herbeiführen, und über ein Mittel, dieselben wieder herzustellen;
von den Herren Davoane und Girard. 306
LXXVIII. Verfahren zur mineralischen Geburt der Hämme; für A. G. Belfor-
d in London am 12. Januar 1855 als Mittheilung patentirt. 310

Miscellen.

Neuer Kammerscheine. S. 313. Die Erhaltung von geschlissenen und polirten
Marmorarbeiten, welche dem Wetter ausgesetzt sind, mit einfachen und billigenden Mitteln;
sais. 320. Vauvene's Verfahren zur Händelzucker-Fabrication. 320.

Fünftes Heft.

LXXIX. Bereinfachung des Franke'schen paradoxalen Centrifugalregulato-
tors für Dampfmaschinen. Mit einer Abbildung auf Tab. V. 321
LXXX. Verbesserungen in der Konstruktion der Feuerfässen für Locomotiven,
welche sich James Hove am 14. December 1864 für England patentirt
lieg. Mit Abbildungen auf Tab. V. 323
LXXXI. Verbesserungen an Rüffern, welche sich A. v. Mallet zu Paris,
am 28. Febr. 1864 für England patentirt lieg. Mit einer Abbildung
auf Tab. V. 324
LXXXII. Verrichtung zum Anheben und Wiederbefestigen der Nader und
Rohr an den Locomotiven, von Guard Strong zu Glasgow. Mit
einer Abbildung auf Tab. V. 325
LXXXIII. Ueber das Genussiren von Bahnkissen und andern Höslern gegen Käunitz vom Ingenieur B. Schweiger in Hannover. Mit Abbildungen auf Tab. V. 327
LXXXIV. Methode zur Erzeugung ganz reiner Muntien. Mit Abbildungen auf Tab. V. 337
LXXXV. Fabrikation der Kupferzinkhütten; von J. H. Rössle, Mecha-
nister in Hütten bei Düsseldorf. Mit Abbildungen auf Tab. V. 338
LXXXVII. Verbesserungen im Lösen der Metalle, welche sich W. C. Bell-
sford zu York als Mithelfer am 26. Juli 1854 patentiren ließ. Mit Abbildungen auf Tab. V. 345
LXXXVIII. Neues Verfahren bei der Stiftsfabrikation, von Hrn. Mære
zu Hartford in den Vereinigten Staaten. Mit Abbildungen auf Tab. V. 347
LXXXIX. Ueber die galvanoplastischen Operationen des geöldütchen Bureau der Vereinigten Staaten; von Georg Mathies, Direktor des geöldütchen Laboratoriums. Mit Abbildungen auf Tab. V. 350
XC. Der Naturfeldbruk. 363
XCI. Galvanisches Gravirverfahren zur Darstellung von Stereotypplatten; von Hrn. G. Devlin. 368
XCI. Beischreibung eines Verfahrens mittelst welchem jeder Künstler leicht selbst Kopien einer Zeichnung darstellen kann; von Hrn. C. Baiten. 370
XCVII. Ueber die Darstellung von Lichtbildern auf trockenem, mit Eisen-
überzogenem Collodium, nach Dr. E. T. van Poonet. 370
XCV. Ueber Chlorometrie und über die freiwillige Umwandlung der unter-
chlorisäuren Salze in chlorisäuren; von W. J. Ford. 379
XCV. Ueber Weichsalfabrikation; von Professor W. Stein. 376
XCVI. Ueber planinierte Rehle; von F. Steinhäuse. 377
XCVII. Ueber neue Eigenschaften der röthlich-gelben Gelscholle von Hrn. Moride. 379
XCVIII. Untersuchung des bituminösen Glieders zu Werther bei Bielefeld; von Dr. Reeh. G e n e r a l - a t t i o n. 380
XCVIX. Ueber die in Europa eingeführten und mit den Blättern der gewöhn-
lichen Gieß geätzteten, bengalischen Lufsch-Tiemenwurm; von Hrn. F. E. Querin-Meneville. 386

Miscellen.

graphien mittelst der Photographie zu erhalten. 393. Methode das Horn zu prépa-
rieren, um es als Surrogat für Tschirch zu benützen; von Karl Bumig, Kammer-
Sächsische Landesbibliothek -
Staats- und Universitätsbibliothek Dresden

geförderd von der
Deutschen Forschungsgemeinschaft DFG

Inhalt des hundertachtunddreißigsten Bandes.

Sechstes Heft.

C. Verbesserungen an den Spinnmaschinen, von Herrn. Leopold Müller, Maschinenbauer zu Lohann im Depart. des Oberheins. Mit Abbildungen auf Tab. VI. 401

CII. Über Treibriemen für nicht parallele Wellen; vom Maschinenmeister Meßner in Görlingen. Mit Abbildungen auf Tab. VI. 404

CIII. Über den Dremeser von Desbovres; von dem Fabriksmeister Herrn. A. Löwe. 407

CIV. Über das gleichzeitige Telegraphieren in entgegengesetzten Richtungen auf demselben Leitungsdrahte; von G. A. Nyström, Telegraphen-Direktor zu Dösebro. Mit einer Abbildung auf Tab. VI. 408

CV. Nachverzeichnender Dampföfen usw.; von Herrn. A. Georg e. Ingenieur zu Paris. Mit Abbildungen auf Tab. VI. 410

CVI. Verbesserungen in der Fabrikation von Glasröhrchen, welche sich James Chance zu Birmingsham, am 3. Februar 1853, patentieren ließ. Mit Abbildungen auf Tab. VI. 415

CVIII. Über die Bereitung des Salomes aus Sublimat mittels schwefriger Säure; von J. Sartorius. 420

CIX. Verfahren von Berth des Blutlangensalzes annähernd zu bestimmen; von Herrn. J. W. Sailer. 421

CX. Über die Bereitung der neutralen Fette, insbesondere des Talgöls, durch die Geiß; von Prof. S. Pelouze. 422

CXI. Verfahren der Zuckerverbrennung der Getreidearten mit Schwefelsäure statt des Malzöls und Einmaischens zu bewirken; von Herrn. Leplay. 424

CXII. Verfahren, um zahlreiche vegetabilische Substanzen zur Fruchtsaftfabrikation verwerten zu können; von C. F. Weffels, Prof. der Chemie zu Brüssel. 426

CXIII. Über die Darstellung von entsfuseltem absolutem Alkohol; von Prof. W. Stein in Dresden. 429

CXV. Dampfsapparat zum Reinigen der Betriebswerden und Matraßen-Resinäure; von Hospitaalverwalter P. Spahn in München. Mit einer Abbildung auf Tab. VI. 433

Mischellen.

Der pneumatische Apparat mit großer eiserner Cylindcr in das Bett des Flusses Medway zu senken, welche als feste Grundlage für den Oberbau der Brücke bei Rochester in England dienen.

Mit Abbildungen auf Tab. I.

Ich theile im Nachfolgenden eine Beschreibung unseres pneumatischen Apparates mit, so wie wir denselben jetzt gebrauchen, um zu Rochester (belaßt die halbe Entfernung zwischen London und Dover) große eiserne Cylindcr ins Bett des Flusses Medway zu senken, damit diese Cylindcr dann eine soliche und feste Grundlage für den Oberbau einer 800 Fuss langen Brücke ausmachen können, deren mittlerer Bogen 170 Fuss, die äußeren Bogen 140 Fuss betragen werden.

Nachdem bestimmt war, daß jene Brücke für die Ost-Kent-Eisenbahn gebaut werden soll, wurde natürlichweise die Beschaffenheit des Bodens untersucht, und es stellte sich heraus, daß das erste Lager über das eigentliche Bett des Flusses aus braunem Lehmc besteht; dann folgt ein dünnes Lager von 2 Fuss dicke, aus Kieselsteinen bestehend; hierauf wieder 20 Fuss tiefer Lehcm mit Steinen vermengt; nach diesem folgen 18—20 Fuss Krende; und dann ein mächtiges Lager von compactem Kiesel- und Flintsteinen. Legieres Lager wird nnt als eine sehr feste Grundlage betrachtet, denn die ganze Masse ist so compact, daß es den Arbeitern eben so schwer fällt in diesem Lager zu arbeiten, als wenn es ein Lehm wäre. Unser niederer Ausgangspunkt liegt also 40 Fuss unter dem Bett des Flusses, und es wurde die Frage ausgeworfen, wie jenes Lager am besten in Anwendung zu bringen sei; hölzerne Pfähle wurden man kaum lang genug erhalten können, um bis zum Kiesel hinabzureichen, und

würden wir sie in den Lehnhineingetrieben haben, ohne den Kiesel zu erreichen, so hätten wir einerseits nur eine unvollkommene Grundlage erhalten, und andererseits den natürlichen Bortheil, welchen das Kieselboden uns bot, nicht benutzt. Es wurde daher beschlossen, eiserne Cylinder anzubringen; von diesen brauchten wir nur immer einen auf den andern zu schrauben, um ein Mahrenstück von beliebiger Größe herzustellen. Diese lange Cylinderreihe muss dann senkrecht in die Erde getrieben werden, und nachdem das untere Ende das Kieselboden erreicht hat, wissen wir, dass sein Druck im Stande sein wird diese Cylinder tiefer zu treiben, und sind überzeugt, dass wir eine gesunde und starke Grundlage für den Dachbau bessern.

Nun entstand die Frage, auf welche Art sind die Cylinder bis zum Kieselboden hinunterzubringen? Dieselben haben 7 Fuß im Durchmesser, sind 9 Fuß lang und 1 Zoll dick gegossen, wegen daher wenigens 100 Centner, und sind also schwer genug, um großartige Hülfsbauten mit schweren Laufstränen notwendig zu machen.

An Stellen wo das Wasser nicht sehr tief ist, sehen wir erst einen Cylinder auf den gewöhnlichen unvorbereiteten Boden, holen dann sogleich einen zweiten Cylinder, und schrauben ihn vermittelst Bolzen auf den ersten. Dies muss so schnell wie möglich geschehen, damit das Wasser nicht über die Flansche springt, was hier leicht geschieht, weil wir in je 6 Stunden 4 Fuß Differenz im Niveau des Flusses haben. Aus den zweiten Cylinder können wir nun einen dritten und vierten schrauben. Wenn diese Säulenreihe auf dem festen Lande stände, so könnte ein Mann, mit Spaten und Hacksel versehen, vermittels Leitern in dieselbe Cylinder hinuntersteigen, die innere Erde ausgraben, und so die Cylinder, welche dem Graber vermittelst ihrer grossen Schwere immer folgen würden, nach und nach bis zur beliebigen Tiefe hinuntergraben. — Unser Boden ist aber nicht trocken, wir haben vom Anfang 10 oder 20 Fuß dieses Wasser in den Cylindern stehen, und um unter diesen Umständen die innere Erde aus den Cylindern graben zu können, wenden wir daher einen pneumatischen Apparat folgendermassen an:

Wir schließen zuerst den obersten Cylinder vermittelst eines gußeisernen Deckels ganz luftdicht; der Deckel hat ein Ansaugrohr, welches mit einem Gefäß in Verbindung steht. Dieses Gefäß muss aus einem Druckwerke bestehen, so dass wir im Stande sind Luft von hohem Druck in die Cylinder zu blasen; sobald dies geschieht, verlässt das Wasser unter der unteren Kante den Cylinder, und nach kurzer Zeit haben wir alles Wasser hinausgetrieben, und der Boden ist so trocken, dass das Ausgraben sofort
um große eiserne Cylindern in das Bett eines Flusses zu senken.

beginnen kann. Dies ist das einfache Prinzip unseres pneumatischen Apparates.

Nun stellen sich aber praktische Schwierigkeiten ein, deren vollkommene Lösung der allerletzten Zeit angehört. Wie können die Arbeiter in den Cylindern hineinkommen, wenn es verschlossen ist, und wie kann die ausgebogene Erde hinweggeschafft werden? Wollte man die Erde aus den Cylindern hinausheben, so würde der Luftdruck aufhören und das Wasser sogleich wieder steigen, dabei die Arbeiter aber Gefahr laufen zu ertrinken. Der gebräuchliche Apparat ist daher so eingerichtet, daß die Arbeiter in die Cylinder hineingehen können, während hoher Luftdruck in denselben vorhanden ist, ohne daß derfelbe ausgehoben wird.

Wir erinnern, daß die ganze Cylinderreihe mit einem Deckel verschlossen ist; denken wir uns nun in der Mitte dieses Deckels ein rundes Loch, so groß, daß es einen Mann durchlassen kann, so läßt sich dieses Loch mit einer Klappe an der unteren Seite verschließen, denn so stärker der Luftdruck in der Cylinderreihe ist, desto stärker wird auch die Klappe an den Deckel angebracht werden, und desto sicherer verhindert solglich die Klappe den Ausfluß der comprimirtten Luft. Unter der Klappe, also im Cylinder, haben wir nun ein ganz kleines Zimmer a, Fig. 6, nur so groß, daß ein Mann sich darin befinden kann, und mit einer Thür b versehen, so daß man nach Belieben vom Zimmer in den inneren Raum der Cylinderfäule hineingehlen, ohne umgekehrt vom Cylinder ins Zimmer gelangen kann. Dieses Zimmer hat den Zweck, den Ausfluß der comprimirtten Luft dadurch zu verhindern, daß man niets eine der beiden Öffnungen im Zimmer verschlossen halten kann; wenn man durch die Klappe e ins Zimmer hineinsteigt, so ist die Thür b geschlossen, und wenn man vom Zimmer in den inneren Raum der Cylinderfäule geht, dann ist die Klappe e verschlossen.

Um also von der äußern Luft in die comprimirtte Luft der Cylinderfäule hineinzugehen, ist es nicht vonnöthen die comprimirtte Luft erst entschlüpfen zu lassen, sondern wir können durch Hilfe des kleinen Zimmers den Luftdruck in dem Cylinder behalten, doch verlieren wir jedesmal ein Volumen comprimirtter Luft, so groß wie das Volumen des Zimmers; deshalb ist es vorteilhaft, das Zimmer so klein wie möglich zu machen.

Ich gehe nun auf die Mittel über, um das Wasser aus den Cylindern hinauszutreiben. Wenn wir keinen Ausgang für das Wasser hätten, so würde der stärkste Druck uns nichts helfen. Wir böhren also im Deckel ein zweites Loch von 6 Zoll Durchmesser, und sind dadurch im Stande eine Nöhe f von Eisenblech bis zum Boden hinabzulegen. Vermittels
des Druckes der comprimirten Luft wird das Wasser in dieser Rohre aufsteigen, und außerhalb des Deckels abfließen; dadurch werden die Cylindere ganz vom Wasser entleert. Die Rohre muß immer bis zum Boden reichen, um alles Wasser abführen zu können, und das letzte Stück der Rohre besteht daher wie ein Fernrohr aus einem verschiebbaren Stück g, so daß die Rohre innerhalb gewisser Gräben nach Belieben verkürzt oder verlängert werden kann.

Wir haben jeft den Boden trocken gelegt; die Arbeiter, mit Hacke und Spaten versehen, können vermittelst Leitern bis auf den Boden hinuntersteigen, und das Ausgraben der innern Erde kann beginnen. Nun entsteht die Frage, wie können wir die ausgegrabene Erde wegschaffen, um dann tiefer zu graben.

Die zweite Methode hat diesen Lebelständen größtemteils abgesohlen, dagegen allerdings einige andere eingeführt. Um die gefüllten Cimere hinauszuschaffen, versetzen wir sie aus Eisenblech und rund wie eine Walse, d., Fig. 6. Der Boden springt ein klein wenig vor, ist genau abgedeckt und mit einer Ruh verschanzt, in die wir eine Kasauchuf- und Hanspungung legen können, wie bei den Dampfsolden. Mehrere dieser Cimere werden über einander und an einander gehaft und dann in eine sehr genau ausgeböhrte, gusseiserne Rohre e, welche in senkrechter Stellung in dem Deckel sitzt, hineingeschoben. — Außerhalb des Cylinders müssen wir dann Leute haben, welche die Cimere hinausziehen. Hierbei findet nur sehr wenig Verlust an comprimirter Luft statt, denn 3 — 4 Cimere füllen immer luftdicht in der Rohre, und wenn ein Cimer oben eingebracht wird, dann wird unten ein frei gefüllter Cimer wieder angehaft. Diese Cimere sind ungefähr 2 Fuß hoch und wiegen, wenn sie gefüllt sind, über einen Centner; wenn solch 20 oder 30 Cimere an einander gehaft werden, so wird die Last so groß, daß es sehr schwierig ist, die Säule einigermaßen schnell hinauszuziehen. Durch gehörig eingerichtete Krahne kann diesem Lebel doch einigermaßen abgeholfen werden. — Daselbe Prinzip, welches
um große eiserne Cylindere in das Bett eines Flusses zu senken.

dem Herausheben der vollen Eimer zu Grunde liegt, kann auch benutzt werden, um die leeren Eimer wieder hinunterzubringen. Vermittelst einer zweiten Rohre von demselben Durchmesser wie die erste, werden die leeren Eimer wieder zurückgefördert.

Wie ergieß es uns aber im Cylindere, wenn dieses geschieht? Durch die Eruption der Luft verliert sich die Spannung, das Wasser fließt frei hinein, und anstatt aus dem trockenen Boden, stehen wir in weniger denn fünf Stunden in 2 oder 3 Zoll Wasser. Dies hat manche Arbeiter so erliefert, daß sie wochenlang stark gelegen haben, und sich nie wieder in den Cylindere hineinwagen wollten. Während der Eruption der Luft erställt sich der ganze Cylindere mit einem hichtten Nebel, welcher die Lichter
oft auslöscht und die Temperatur von Sommersitze bis zur unangenehmen Kälte herabbringt. — Das Wasserleitungsrohr erscheint Anfänger auch sehr oft, denn da es am unteren Ende wie ein Fertigo zu verziehen eingerichtet ist, so schiebt es sich durch den Luftdruck in sich selbst zusammen, und jede Bewegung, jeder Zusatz oder Abstrich der Luft ist mit einem so starken Geräusch verbunden, daß es meistens in hohem Grade unbehaglich wird. Sobald die Arbeiter an dieses Geräusch gewöhnt sind, arbeiten sie aber leicht in den Cylindern.

Nachdem einmal das Ausgraben begonnen wurde, geht das Füllen der Cimer, das Hinaufziehen der gesüßten und Zurückenden der entleerten ununterbrochen fort, bis die Arbeiter das Kiesellager erreichen. In letzterem Fall ist die eigentliche Senkarbeit beendet; um dem Cylinder dann eine größere Tragkraft zu erteilen, wird der ganze innere höhle Raum deselben mit einer Mischung von schnell erhärtendem Cement und Kieseln gesüßt, welche nach einigen Tagen Steinbädefe erlangt, von dem wir annehmen, daß die Cylinder im Stande sind den Oberbau zu tragen.

P. A. Freund,
zweiter Ingenieur des Hochster-Brückenbaues.

II.

Aus dem Repertory of Patent-Inventions, August 1855, S. 120.

Mit Abbildungen auf Tab. 1.

Vorliegende Erfindung besteht erbliech in der Anwendung von Hülsseheижern, welche durch Ventile vorgehau mit einander in Verbindung stehen, daß die zur Speisung der Maschine dienliche Luft gegen das Minimum des innerhalb des Hauptscheegers stattfindenden Drudes hineinpumpt wird, während sie unter dem Maximum des Drudes wirkt. Ferner besteht die Erfindung darin, daß man die aus dem Cylinder gepumpnte Luft mit dem aus dem Ofen kommenden Rauch und den heißen Gaffern durch die Hülsseheижer nach der einen Richtung streichen läßt, während die zur Speisung der Maschine dienliche Luft die Röhren in diesen Hülsseheigeria in der ent-

Ein großer Nebenstand lag bei den Luftexpansionsmaschinen seither in der Schwierigkeit, eine Nachfrage herzuleiten, welche der hohen Temperatur, die der Kolben erlangt, widerspreicht. Um diesem Nebenstande abzuhelfen, fühlte der Erfinder jetzt den Kolben mittelst eines konstanten Stroms kalten Wassers ab, welches durch das Innere des Kolbens circulirt und ihn dadurch auf einer Temperatur erhält, welche die des fließenden Wassers nicht übersteigt.

Fig. 27 stellt die Maschine im Grundriss, Fig. 28 im Durchschnitt nach der Linie w w in Fig. 29 und 30 dar, wobei das Gehäuse des Hülsheizers weggelassen ist, um die inneren Theile sichtbar zu machen. Fig. 29 ist ein Durchschnitt nach der Linie XX von Fig. 27; Fig. 30 ist ein Durchschnitt nach der Linie XX von Fig. 27. Fig. 31 ist ein in einem größeren Maafsstabe nach der Linie ZZ in Fig. 28 genommener Durchschnitt des Hauptheizers.

Der Rauch des Daches tritt durch die Rohre g in die Kammer 1', geht von da durch die Rohren C, K, K'' in die Kammer 1 und sofort durch die Rohren K', C' in die Kammer 1', dann durch die Rohren K, C in die Kammer 1, von wo er durch den Schornstein M abzieht.

Auss der beschriebenen Anordnung geht hervor, dass die Abtheilungen H1, H2, H3, von den Kammer 1, 1', 1'' und von den Rauchkanälen C und K, durch welche sie gehen, gänzlich abgeschlossen sind. Dagegen communiciren sie mit einander durch die kurzen Rohren L, L'. Diese Rohren
find an ihren vorderen Enden mit Ventilen e, e^1 versehen. Die Luft gelangt aus der Druckpumpe in diese Abtheilungen ihrer Reihenfolge nach, indem sie auf eine unten näher zu erläuternde Weise durch die Rohren L, L^1 und durch die Ventile e, e^1 strömt. N ist der Arbeitszylinder; Q der heisse Luftkammer, welche durch die Röhre P mit dem Heizer A kommunizirt. Q ist der hohe Kölben, dessen Stanghe, wie Fig. 28 zeigt, gleichfalls hohl ist; g ist eine in die hohe Kolbenstange eingeschlossene Röhre, welche in dieselbe ungefähr bis zum Punkte h bringt; R ist ein Wasserbehälter S, S^1 von dem oberen Theile und dem Boden dieses Behälters ausgehende Rauschhuftröhren, von denen die eine mit dem Innern des hohlen Kolbens und die andere mit der binnen in beiden eingeschlossenen Röhre kommunizirt. Dadurch wird eine beständige Circulation des Wassers durch den hohen Kolben erzielt und seiner Ueberhitzung des legteren vorgebeugt. T ist die Röhre, welche aus dem Arbeitszylinder in dem Abscscassfall C unmittelbar unter dem Rothe mündet, was den Borstheil gewährt, das das Feuer mit erwärmer Luft gespeist wird. Der Ueberschusse der durch das Feuer nicht verzehrten Luft gelangt durch die Öffnungen d in die Kammer D, welche den Ösen einschliesst, und entschweicht mit den heissen Gasen und den Verbrennungsproducenten durch den Rauchstock G in die Kammer P, aus welcher Luft und Gasen auf die beschriebene Weise fortgeleitet werden.

Diese Fortführung der heissen Luft aus dem Cylinder in den Abscassfall unterhalb des Ösen hat einen doppelten Zweck: erstens wird das Feuer durch erhitzte Luft angeschafft, zweitens gelangt der nicht verzehrte Theil dieser Luft mit den Verbrennungsproducenten des Ösen in die Hülsheizer, wo sie durch die von der Druckpumpe gelieferte frische Luft auf die nunmehr zu erläuternde Weise abgeführt wird. V ist die Druckpumpe, welche den Heizer mit Luft versieht. Ihre Kolbenfläche beträgt ungefähr die Hälfte von derjenigen des Arbeitszylinders. Die Luft tritt in diese Pumpe durch die Ventile g^1 und aus der Pumpe in die Kammer h^1, aus welcher sie durch die Röhre A^1 in die Abtheilung H^1 des Hülsheizers gelangt. Sie circuitt bald und rings um die äussere Seite der Rauchanale und Röhren C, K und gelangt durch die kurze Verbindungsröhre L und die Ventile e in die Abtheilung H^2; hier circuitt sie wieder um die Rauchröhren C^1, K^1, tritt dann durch die Röhre L^1 und das Ventil e^1 in die Abtheilung H^3, und gelangt aus dieser durch die Röhre F und das Ventil h in den Heizer A.

Folgendes ist nun die Wirkungsweise des Apparates. Indem sich die Luft innerhalb des Hauptheizers A ausdehnt, schliesst sich das Ventil h, welches somit ihre Räthet nur durch die Röhre F in den Hülsheizer H ver-

III.

Über zum leichten Schmieren eingerichtete Zapfenlager; von

Hrn. J. P. Baudelet zu Harancourt (Ardennen).

Aus Armengaud's Genie industriel, Juni 1855, S. 297.

Mit Abbildungen auf Tab. I.

Im Allgemeinen haben die in Fig. 12 bis 14 dargestellten Zapfenlager den Zweck, den Zapfen fortwährend und vollkommen in Schmier
zu erhalten. Das Del wird fortwährend erneuert und dringt zwischen die Oberflächen der Büchsen oder Zapfenlagerflure und der Wellzapfen so daß die Reibung sehr vermindert wird.

Fig. 12 ist ein senkrechter Durchschnitt, durch die Mitte der Welle A. Fig. 13 ist ein horizontaler Durchschnitt.

A ist eine auf einem Zapfenlager stehende Welle. Dieselbe ist mit einer Scheibe B versehen, welche stets einen weit größern Durchmesser hat als die Welle selbst, damit sie immer in das, in dem Behälter C befindliche Del untertaucht.

Man begreift, daß diese Scheibe bei ihrer Umdrehung eine bedeutende Delmenge mit sich führt; dieses Del verbreitet sich auf beiden Flächen der Scheibe, um auf die Welle zu stehen und in die Büchsen zu dringen. Indem das Del aus der ganzen Länge der Reibungsfläche circulirt, fällt es in dem Zwischenraum c zwischen der Büchse und dem Scheiber oder der Wand d, um durch den Canal b, der sich unter der Büchse befindet, zu dem Behälter C zurückzukommen, so daß das Del nicht herausgeworfen wird. Auf diese Weise wird der Zapfen stets in gehöriger Schmiere erhalten.

Eine bronzene Kappe bedeckt das Zapfenlager, damit kein Staub hinein gelangen kann.

Ich habe dieses Zapfenlager für die Welle eines Ventilators ange- wendet. Es wurde nicht für zweckmäßig erachtet, die Welle A gänzlich durchgesehen zu lassen, allein man wird leicht begreifen, daß wenn man es zu einer gewöhnlichen Transmission benutzen will, man nur einen Zwischenraum c auf jeber der beiden Seiten zu lassen braucht, damit das Del zum Behälter zurück gelangen kann.

Ein solches Zapfenlager, Fig. 14, besteht aus denselben Theilen wie die Fig. 12 und 13.

Um die Scheibe B zu erzeugen, ist die Welle da, wo sie in dem Lager liegt, verstärkt, so daß sie sich vollständig im Del dreht; denn da die Wand d höher als der Boden des Lagerlagers oder der Büchse ist, so behindert sie den Abfluß des Deles und bewirkt, daß Lager und Welle auf ein Drittel ihrer Höhe in Del getaucht sind.
IV.

Ieber Treibriemen, von Hrn. J. Blaikie in Glasgow.

Aus dem Practical Mechanic's Journal, August 1855, S. 105.

Mit einer Abbildung auf Tab. I.

Eine fähse Bewegung, welche für die meisten Maschinen so wesent-
lich ist, hängt sehr von der Beschaffenheit der angewendeten Treibriemen ab. Es hat nicht geringe Schwierigkeiten Leder von gleichartiger Dicke zu erhalten, um solche Riemen anzusetzen, so daß jedes wirksame Mittel, Riemen darzustellen, welche die nötigen Eigenschaften haben und ver-
hältensmäßig wohlsitzt sind, für das Maschinen- und Fabrikationswohn von
großer Wichtigkeit ist. Aus diesem Grunde verdient nachstehende Patents-
description alle Beachtung.

Sie hat den Zweck, vollkommen gleichartige Riemen oder Treibbänder von Leder oder jedem andern Material, sowohl im Hausteile, als da wo die Enden übereinander liegen, zu versetzen. Zu dem Ende wird das Leder (oder die andern Materialien, welche zur Fabrication der Treibriemen oder Treibbänder dienen) zuvorberst in eine Maschine gebracht, mittels welcher es eine gleiche Dicke erlangt, indem da, wo das Material zu dick ist, die überflüssige Dicke weggenommen wird. Diese Maschine besteht aus einem langleich vierfachen Gerüst, an dessen einem Ende eine Walze vorhanden ist, die einem festliegenden Messer näher gebracht, oder mehr davon entfernt werden kann. Das zu behandelnde Band wird an dem einen Ende der Maschine zwischen das Messer und die Walze einge-
geführt und absehn zwischen deren beiderseitigen Oberflächen mittels einer Walze durchgezogen. Dadurch wird das Messer veranlaßt, alles über-
flüssige Material abzuschaben und dem Bande die gehörige Dicke und Gleichförmigkeit zu geben.

Darauf gelangt das Band oder das Stück Leder zu einer andern
ähnlichen Maschine (oder zu derselben, zweckmäßig vorgerichteten Maschine), um die Verbindungenden des Leder abzuführen. Um die zu bewirken, wird die erwähnte Walze, welche mit dem Messer parallel liegt, auf die Enden der flächen Arme zweier geteilter oder geneigten Hebel gesetzt, die auf festen Knaggen des Gerüstes ruhen. Das Band wird absehn wie vorher zwischen dem Messer und der Walze durchgezogen und zwar wird dies durch die Bewegung einer Zahnsäge und eines Getriebes be-
wirkt. Die zugescharften Enden der Bänder werden hierauf durch einen Klotz oder durch Nähen mit einander verbunden. Die auf diese verseiften Nieren haben eine vollkommene gleichförmige Stärke und sind aus diesem Grunde weit wirksamer als die gewöhnlichen Treibriemen.

Um die Verbindungsenden des Nienens abzuschärfen, dient nachstehende Vorrichtung der Maschine: Indem der Riemen durch die Maschine gezogen wird, nähert sich die Führungswalse nach und nach dem Messer A; jedoch wird der Riemen für den vorsiegenden Zweck nicht mittels der Trommel H durch die Maschine gezogen, sondern er wird zwischen einer Stange I, die in Fälsen in den Seitenständern verschobbar ist und
V. Beschreibung einer Maschine zum Einpressen der Metalldecke in Kupferzündhütchen; erfunden von Hrn. J. G. Josten, Mechaniker der Zündhüttenfabrik der Hr. Dr. Brauns und Bloem in Ronsdorf.

Mit Abbildungen auf Tab. I.

I. Theile der Maschine.
a Messingscheibe zur Aufnahme der zu preßenden Hüttchen.
b Daumen, welcher die Bewegung der Scheibe bewirkt.
c Sperrhaken, der die Scheibe arretirt.
d kleiner Daumen der den Sperrhaken aus den Vertiefungen der Scheibe hebt.
e Pressstift, der die Zündmasse, so wie die Metalldecke, zu gleicher Zeit in das Hüttchen festpreßt.
f Zylinder, worin der Pressstift eingefräst ist.
g Hebel, woran das Gewicht befestigt wird.
h Scharnier, welches den Hebel mit dem Zylinder verbindet.
i Abschleifer.
j Feder mit Stift zum Ausstoßen der Hüttchen aus der Scheibe, wenn selbige gepreßt sind.
k Winkelhebel, welcher auf diese Feder wirkt.
m Excentricum.
n Bleistange, welche das Excentricum mit dem Winkelhebel in Verbindung setzt.
o senkrechtstehende Spindel, welche die Daumen b und d, so wie ein conisches Rad p trägt.
p conisches Rad.
q zweites conisches Rad.
r steeines Stirnrad.
s großes Stirnrad.
t Haftpel, dazu bestimmt den Hebel g zu heben und fallen zu lassen.
u kleines Getriebe, welches in das große Stirnrad eingreift.

Wir werden auch die übrigen vom Erfinder ausgeführten Maschinen zur Zündhütchen-Fabrikation mitteilen.

A. d. Red.
v Kurbel, von wo die Bewegung ausgeht.

w Frictionsrollen im Gassel.
x gusseiserne Stück, woran die Theile der Maschine befestigt sind oder doch mit demselben in Verbindung stehen.
y ein gusstahlerlicher Umboß, worin die Firma, oder das Zeichen welches die Häutchen erhalten sollen, eingeschlagen oder graviert ist.
z gusseiserne Platte, welche der Maschine als Fundament dient.
a Achse für den Gassel t und das große Stirnrad r.
b Achse für das kleine Getriebe u und die Kurbel v.
c Achse für das Excentricum m, das conische Rad q und das kleine Stirnrad r.
d Drehachse für den Winkeleheb l.
e Spindel woran der Messingscheibe a befestigt ist.

II. Bewegung und Verrichtungen der Maschine.

Die Messingscheibe a, welche auf einer fächerförmigen Spindel s so fest aufgesetzt ist, als ob dieselben ein Stück wären, ist ein wesentlicher Theil der Maschine; von ihrer Genaugkeit hängt haupstsächlich der richtige Gang der Maschine ab. Sie ist auf ihrem Rande in 24 gleiche Theile eingeteilt, und diese Theile sind sperradsformig ausgearbeitet, in welche Vertiefungen der Sperrhaken c eingreift, der durch eine gewöhnliche Spielschaf, welche unter der Messingsplatte a auf der Fundamentplatte z in einem Gehäuse befestigt ist, fortwährend gegen die Scheibe gedrückt wird.

Auch ihrer Fläche enthält die Scheibe zwei Theilkreise, woron jeder ebenfalls in 24 Theile eingetheilt ist. In dem größeren dieser Kreise werden 24 Löcher gebohrt, welche der Größe der Häutchen entsprechen, worin die Zündmasse mit der Metalldicke gepreßt werden soll. Der kleinere Kreis ist dazu bestimmt, 24 Stifte von Stahl aufzunehmen, welchen in gleichen Abständen von einander entfernt sind. Diese Stahlscheiben sind in die Scheibe so fest eingeschraubt, daß sie durch das sich immer wiederholende Gegenschaufeln des Daumens h nicht los werden können.

Soll die Arbeit mit der Maschine beginnen, so werden die Löcher in der Scheibe an derjenigen Seite, wo sich der Sperrhaken e, die beiden Daumen b und c befinden, mit Häutchen gefüllt. An dieser Seite sitzt auch die Maschine bedienende Arbeiter. Die Scheibe dreht nun mit der rechten Hand die Kurbel v in der Richtung des nebeneinanderliegenden Triebes, während er mit der linken Hand stets die folgenden leeren Löcher mit Häutchen füllt. Es wird nun das kleine Getriebe u auf das große Stirn-
rad S, welches auf der Achse 1 mit dem Hahnel t fest aufgesteckt ist, dessen Arme die Frictionroller w tragen und den Hebel g mit seinem Gewicht so hoch heben, bis der Preßstift e, der in den Zylinder s eingeschaubt und vermittelt des Scharniere h mit dem Hebel verbunden ist, aus der Scheibe a geschoben ist. Zu gleicher Zeit wirkt auch das große Stirnrad S auf das kleine Stirnrad r, welches letztere aus der Achse 3 fällt (auf welcher das Centricium m und das conische Rad q ebenfalls fest aufgesteckt sind) und die Bewegung vermittelt, des conischen Hahnes p auf das conische Rad p überträgt und so die Scheibe, welche auf der Spindel o festgehen (nämlich das conische Rad p, den Daumen b und den kleineren Daumen d), in eine fortwährende Kreisbewegung versetzt.

In den Augenblick wo der Preßstift e so hoch aus der Scheibe geschoben ist, daß es dem Daumen b durch seinen Druck gegen einen der in die Scheibe eingeschaubten Stahlsitze möglich wird die Scheibe a in eine drehende Bewegung zu setzen, hat der kleinere Daumen d den Sperrhaken o bereits so weit von der Scheibe abgedrückt, daß der Einstahlfaden des Sperrhakens o die Scheibe nicht verhindern kann. Sobald dies geschehen ist, fängt der Daumen b an die Scheibe a zu drehen, damit ein anderes Loch, worin ein Hüttchen sich befindet, unter den Preßstift e kommt. So wie nur der kleinere Daumen d den Sperrhaken o eher angreift, als der Daumen b die Scheibe a, verläuft er denselben auch früher, und der Sperrhaken kann dann, weil er durch die Feder angesogen wird, zur gebräuchigen Zeit in die entsprechenden Vertiefungen auf dem Rande der Scheibe einfallen und dieselbe arretieren. Während dies vor sich geht (nämlich die Aushebung des Preßstiftes e aus der Scheibe a, die Aushebung des Sperrhakens aus den Vertiefungen, und die Drehung der Scheibe), ruht der Hebel g noch immer auf den Frictionrollen w, bis er seinen höchsten Punkt erreicht hat, die Scheibe vollkommen gedreht ist und von dem Sperrhaken festgehalten wird. Sobald dann fällt er mit seinem ganzen Gewicht in die niedrigste Stellung zurück, und hat, da sein volles Gewicht auf dem Preßstift e lastet, die Schneide des Amboss x aus das Hüttchen gepresst.

Sobald der Daumen b die Scheibe (oder deutlicher gesagt den Stahlsstift welcher sich gerade demselben zum Angreifen darbietet) verlassen hat, zieht die Scheibe unbeweglich fest, und diesen Moment benutzt das Centricium m, um vermittelst seiner Bleuеstange n auf den Winkelhebel l zu wirken, dessen langerer Schenkel auf einer Feder k drückt, die einen dünnen Stift trägt, um so das etwa in der Scheibe fügen gebliebene Hüttchen aus derselben in einen untergestellten Behälter zu fördern.
Sollte es sich ergeben, daß ein Hütchen beim Pressen an dem Pressstift e, während er aus der Scheibe gehoben wird, üben bleibe, so ist dafür der Abstreifer i vorhanden, welcher dem Pressstift e einen Durchgang gestattet, dem Hütchen jedoch verweigert, weil das Loch so enge ist, das nur eben der Pressstift durch kann, das Hütchen hingegen mit seiner Wandung sich dagegen stemmt, weil der Stift noch im Steigen begriffen ist und sich von dem Hütchen löst.

III. Erforderliche Kraft um die Maschine in Bewegung zu setzen, und wesentliche Vortheile derselben.

Die Kraft eines neun- bis zehnjährigen Kindes ist hinreichend die Maschine den ganzen Tag in Bewegung zu erhalten, ohne daß es sich dabei anstrengen braucht, und es kann die Maschine so rasch in Umdrehung gelegt werden als es dem sie bedienenden Kinde möglich ist die Scheibe mit Hütchen zu füllen. 30,000 Stück können tägig auf der Maschine gepresst werden.

Unbedingt ist jede Gefahr bei dem Pressen beseitigt, da jedes Hütchen für sich abgeschlossen ist, und daβ ein Erzündern in Masse, welches schon so oft beklagt worden ist, bei diesem Verfahren gar nicht stattfinden kann. An jeder Seite sitzt eine Person, jede bedient ihre eigene Maschine und hat derselbe ganz in ihrer Gewalt. Beide Maschinen sind nur so weit, wie an einem gemeinsamen Träger befestigt, um mehr Raum zu gewinnen und das Gleichgewicht so wie die Symmetrie besser herzustellen zu können.

Das Ganze wird von einer gusseisernen Säule getragen, weil dies am wenigsten in der Arbeit Hinderinner verursacht.

IV. Bemerkungen hinsichtlich der Zeichnung.

Fig. 8 stellt die Maschine im Längendurchschnitt dar, so daß man die rechte und linke Seite derselben sieht. Die in der Beschreibung angefuhrte Spindelsohle c ist beispielsweise nicht gezeichnet, weil sie hinfällig bekannt ist und durch die Scheibe zu sehr verdreht wurde. Die Sperrhaken e sind Fig. 8 beispielsweise weggelassen, weil sie die Scheibe leicht hätten verdecken können, dagegen sind sie in Fig. 9 um so deutlicher, wogegen aber das cotishe Rad p weggelassen wurde, um das Spiel der Taumen d und h deutlicher darstellen zu können. Ebenso hat man das Gewicht an dem Hebel g in Fig. 9 weggelassen, weil dasselbe viel verdreht hätte.

Die Zeichnung ist im vierten Theile der natürlichen Größe ausges
führt, und man sieht in Fig. 8 die rechte Maschine in ihrem höchsten
Hub, die linfe hingegen in ihrem niedrigsten.

Fig. 9 stellt die obere Ansicht der beiden Maschinen dar; in derselben
find, wie schon oben erwähnt wurde, die conischen Räder p so wie das
Gewicht am Hebel g weggelassen, um mehr Deutlichkeit zu erzielen.

VI.

Verbesserungen in der Fabrication von Flintenläufen, welche
sich Samuel Pearson, Mechanifer zu Woolwich, am

Mit Abbildungen auf Tab. 1.

Diese Verbesserung besteht in der Fabrication von Gewehrläufen (und
Röhren) aus zwei Vförmigen Metallstreifen, welche spiralförmig um einen
Dorn gewunden werden. Die Basis des einen Streifens kommt nach
innen, während der andere Streifen mit seiner Spitze nach unten geleht
ist und die Zwischenräume des ersteren Streifens ausfüllt. Das Ganze
wird nachher gewalzt und zusamment geschweißt, und bildet in diesem Zu-
stande eine vollkommen dichte und solide Röhre.

Fig. 17 zeigt das Verfahren solche dreiseitig prismatiche Eisen- oder
Stahlstreifen zu einem Laufe zu winben. Zuerst wird der Streifen a
spiralförmig um einen Kern oder Dorn gewickelt, so daß seine Basis sich
an den Kern legt; dann winbet man den zweiten Streifen b gleichfalls
spiralförmig, so daß er die von dem ersten Streifen a gebildeten Schrauben-
gänge ausfüllt.

Fig. 18 ist ein Durchschnitt von Fig. 17. Beiben Streifen kann
man auch die in Fig. 19 im Durchschnitt dargestellte Form geben, wo
ein doppelter von einem einfachen Streifen umwunden ist, oder die Form
von Fig. 20, wo ein Doppelsreifen von einem zweiten ähnlichen Doppel-
streifen umwunden ist, so daß jedesmal der eine die Fuge des andern
bedeckt.
VII.

Verbesselter Amboß, von Hrn. L. Kirkup zu Newcastle am Tyne.

Aus dem Practical Mechanic’s Journal, August 1855, S. 106.

Mit Abbildungen aus Tab. 1.

Bei dem gewöhnlichen Verfahren der Verfertigung von Schmiedeamboßen werden sieben Stücke Eisen zusammengeschweißt, nämlich der Körper oder Kern, die vier Teilstücke zur Bildung des Fußes und die beiden Stücke zur Bildung der hervortretenden Hörner der Bahn. Der Körper wird zuerst geschmiedet und es werden daraus die übrigen sechs Stücke angefertigt und das Ganze ausgeschiemdet, um ihm die erforderliche Form zu geben.

Hr. Kirkup schmiedet dagegen den Amboß aus einem einzigen Stück Eisen und gibt dem Ganzen eine Einfachheit. Dadurch wird der Amboß wohlselber, hauptsächlich weil die Bahn nicht verstaucht zu werden braucht. Das Bahnstück ist breiter, aber nicht so hoch als gewöhnlich; es liegt auf einem Fuß, der eine höhere abgestumpfte Pyramide, oder ein höhler abgestumpfter Kegel sein, oder irgend eine andere Form haben und zulässig aus Gusseisen bestehen kann.

Fig. 10 ist eine Seitenansicht des ganzen Amboßes, aus dem Fuß aufspringend; Fig. 11 ist eine Seitenansicht, mit zwei Einbuchtungen des Bahnstückes ohne den Fuß. Dasselbe hat unten eine Kante A, welche in den hohen gusseisernen Fuß genau einpaßt. Durch das eine Horn geht ein senkrechtes Loch zur Aufnahme der Angel von den Messern zum Abschneiden von Eisen. Die schwabenschwanzförmige Vertiefung D dient zur Einzeichnung der Gesenke verschiedener Art, welche beim Ausschiemden erforderlich sind.
VIII.
Verbesserungen an Maschinen zum Spinnen und Doppeln der Baumwolle, welche sich Thomas Whitworth, Mechaniker zu Salford in Lancashire, am 11. April 1854 patentierte ließ.

Mit Abbildungen auf Tab. 1

Meine Erfindung bezieht sich auf die Mulespinnmaschine von Sharpe und Robertson, und zwar zunächst auf denjenigen Theil, welcher das Hemmungsrad abwechselnd auslöst und einhält; ferner auf die Anwendung einer rotirenden Fläche, gegen welche der sogenannte "Langehebel" oder irgend ein mit ihm verbundener Theil während der Aenderung seiner Lage sich stützt; endlich auf den Mechanismus zum Auswideln des Garns.

Fig. 23 stellt einen Theil einer Mulespinnmaschine, soweit derelche zur Erläuterung meiner Verbesserungen dient, in der Seitenansicht, Fig. 24 im Grundriss dar.

a ist der gewöhnliche um b drehbare Langehebel. Dieser Hebel enthält eine Platte c, welche mit einem Schlit c verfeinert ist. Eine durch diesen Schlit treteende Mutter beschränkt seine Bewegung in transversaler Richtung, während sie vermöge des Schlüfes seine Hin- und Herbewegung der Länge nach gestattet. An diese Platte ist eine Stange e befestigt, welche sich an ihrem andern Ende in einer Führung f bewegt und mit einer Spiralsfeder g verfeinert ist, die sich gegen eine Hervorragung lehnt. Durch diese Vorrichtung wird die Platte c auswärtig gedrückt, bis sie durch den Aufsätler h angehalten wird, indem dieser mit dem Ende eines in dem Langehebel angebrachten Schlüfes in Berührung kommt. Dieser Aufsätler setzt die Bewegung des Hemmungsrades m eine Grenze. Wenn daher einer der Stifte i, j, k oder l mit dem genannten Rade in Berührung kommt, so wird der Stoß durch die Feder g ausgelenkt und gemildert.

Das Hemmungsrad m besitzt eine Hervorragung n, deren Peripherie räumlichlich des Mittelpunktes des Rades eccentricisch ist. Gemäß der dargestellten Lage hält der Aufsätler h den Stift i des Auslauf-Mechanismus (running out motion) zurück, und die nächste Bewegung des Hebeln an diesem Ende wird daher auswärtig erfolgen. Während dieses geschieht,
geht der Aushälfte h an der Hervorräumung n vorüber, ehe das andere Ende des Hebels o mit dem gewöhnlichen Aushälfte in Berührung kommen ist. Da jedoch der Theil n mit dem Hemmungsrade zugleich rotirt, so kann sich der Aushälfte h allmählich nach innen bewegen, so daß er ein Widerlager für den Stift k bildet; die weitere Bewegung desselben wird durch den gewöhnlichen in Verbindung mit dem Theil o wirksenden Apparat verhindert. Ich habe oben angenommen, daß zwischen dem Auszug und dem Rückschlag des Wagens keine besondere Bewegung statt findet, und daß daher der Aushälfte h innerhalb des Stiftes j tritt. Soll aber der Faden eine Drehung erhalten, so wird der Hebel a durch die gewöhnlichen Mittel verhindert, durch einen so großen Raum sich zu bewegen, und der Aushälfte h wird die Bewegung des Hemmungsrades mittels des Stiftes j hemmen. Hierauf führt, sobald ein anderer Wechsel statt findet, der excentrische Theil n den Hebel in eine Lage, worin er auf die oben beschriebene Weise auf den Stift k wirken kann.

Die Construction einer britten Verbesserung ist in Fig. 25 und 26 nach einem größeren Maßstabe dargestellt. Die Schraube p zur Regulierung des Befestigungspunktes der Kette besitzt Schraubengänge, deren Weite von dem Centrum des Quadranten aus allmählich abnimmt. Um nun die zugehörige Mutter diesem Umstande zu accommodiren, habe ich folgende Einrichtung getroffen. Der Block q enthält zwei cylindrische Vertiefungen, in deren jeder zwei halb cylindrische Blöcke r, r* angeordnet sind. Zwischen den letzteren befinden sich die Stahlplatten s, welche durch die Büchse q treten und in die Schraubengänge hineinragen. Die unteren halb cylindrischen Blöcke r* sind mit Schraubenlöchern versehen zur Aufnahme der Schrauben t, welche auch durch die oberen Blöcke r und die Platten s treten und sich mit Hülse von Schultern gegen die ersteren lehnen. Durch Umbiegung dieser Schrauben werden daher die halben Blöcke dicht gegen die Platten s zusammengezogen. Die Schrauben t treten durch Schlüse, welche in der Büchse q angebracht sind, wodurch sie den cylindrischen Blöcken gestatten sich in ihren Hälften zu drehen, und den Platten s, sich den verschiedenen Steigungsverhältnissen der unregelmäßigen Schraube zu accommodiren.

Aus dem Civil Engineer and Architect's Journal, Juli 1855, S. 248.

Mit Abbildungen auf Tab. I.

Die Eigenhümlichkeiten dieses Apparates bestehen in dem Bohrcps, dem Löffel und in der Art und Weise wie die stösende Bewegung erlangt wird. Die Apparate zum Einlassen und Aufhören des Bohrers können die bekannten sein.

Der Löffel, Fig. 22, ist ein gusseiserner Zylinder, oben mit einem schmiedeisernen Führer verbunden. Der Zylinder ist, wie eine gewöhnliche Saug- und Druckpumpe, mit einem Kolben versehen, der ein Ventil von Kautschuk hat. Am Boden des Zylinders ist eine Klappe, welche auf dieselbe Weise wirkt wie bei einer gewöhnlichen Pumpe, jedoch wegen des besonderen Zwecks, den sie hier zu erfüllen hat, etwas verändert ist. Das Bodenventil ist nicht an dem Zylinder befestigt, sondern wirkt in einem Rahmen, der mit einer Stange verbunden ist, die durch den Kolben so wie auch durch einen schmiedeisernen Führer am oberen Theil des Zylind-
ders geht, und durch einen Keil in ihrer Stellung erhalten wird, der durch eine Nuth an Kopf der Stange geht. Die Pumpenstange, durch welche der Kolben bewegt wird, hat eine gabelförmige Gestalt; sie hat den doppelten Zweck, der Stange, womit die Klappe verbunden ist, zu gestatten daß sie durch den Kolben geht, und dann auch als Bügel zu dienen, an dem das ganze Werkzeug hängt.

Der eiserne Führer ist an dem Zylinderdeckel befestigt und verhindert daß der Kolben herausgezogen wird, wenn das Ganze aufgehängt ist. Das Bodenventil hat auch eine solche Einrichtung, daß es sich ungefähr 6 Zoll von seinem Sitz erheben kann, damit größere Ge steinsstücke und andere Materialien leicht in das Innere des Zylinders gelangen können, nachdem durch den Ausgang der Pumpe ein luftleerer Raum in demselben entstanden ist.

und Kolbens läßt sich durch ein belastetes Ventil an der Auslaßröhre regulieren, so daß der Niederhang nach Erforderniß langsamer oder schneller erfolgt.

Alsban wird der Löffel eingehängt und durch ein etwa dreimaliges Senken und Heben des Kolbens der Bohrschmand in denselben eingespumpt. Diese Bewegung kann durch die Winde leicht bewirkt werden; worauf der Löffel wieder aufgeholt und über Tage durch die folgende einfache Anordnung entleert wird. An einem Punkt der Auffangungsstange ist, senkrecht über einer kleinen Tafel in dem Troge, der den Bohrschmand aufnimmt, ein Haken angebracht; die Tafel oder Platte kann mittelst
einer Schraube höher oder niedriger gestellt werden. Der an dem Haken hängende Löffel befindet sich direkt über der Platte, welche durch die Schraube so hoch gestellt wird, daß sie das Gewicht des Löffels aufnimmt. Ein Kell, der das Bodenventil festhält, wird gelöst und die Schraube nebst Platte gesenkt. Das Ventil mit seinem Rahmen geht auch nieder, mit ihm der Inhalt des Löffels, der durch das in dem Cylinder befindliche Wasser ausgewaschen wird. Die Platte wird nun wieder in die Höhe geschraubt und das Ventil nimmt seine gehörige Stellung ein; der Kell wird dann in die Nuth geschoben und der Löffel kann wieder eingeschoben werden, was zur Reinigung eines Bohrlochs dieser Art gewöhnlich dreimal geschehen muß.

Ueber die Leistungen dieses neuen Bohrapparates entnehmen wir dem Practical Mechanic's Journal, Julius 1855, S. 91 Nachstehendes: Beim Durchbohren des bunten Sandsteins bei Manchester wurde der Bohrer mit einer Geschwindigkeit von 500 Fuß in der Minute eingelassen; er machte 24 Schläge in der Minute und eine Höhe dauerte 10 Minuten, während welche Zeit er 5 bis 6 Zoll tief einbrang. Das Ausfahren erfolgte mit einer Geschwindigkeit von 300 Fuß in der Minute. Es wird also dann der Löffel mit einer Geschwindigkeit von 500 Fuß in der Minute eingeschoben; das Pumpen dauert 1 1/2 Minuten und das Ausfahren erfolgt mit einer Geschwindigkeit von 300 Fuß in der Minute. Der Löffel wird hierauf entleert und der Proces wiederholt, was dreimal in 10 Minuten bei einer Tiefe von 200 Fuß geschehen kann. Um daher 5 bis 6 Zoll tief zu bohren und das Bohrloch zu reinigen, sind bei diesem Verfahren 20 Minuten erforderlich. — Bei der alten Bohrmethode sind solche Tage erforderlich, um 6 Zoll tief zu bohren, so daß also die Vortheile des neuen Verfahrens klar vorliegen. 2

Neue Sicherheitslampe, welche sich Mr. Thomas Purdon zu Hull, im September 1854 patentiren ließ.

Aus dem Practical Mechanic's Journal, August 1855, S. 104.

Mit einer Abbildung auf Taf. I.

Bei dieser Einrichtung der Sicherheitslampe kann kein Luftzug durch die Falze gehen, wenn man damit eine Grube durchfährt, da nur eine von den vier Seiten für den Luftzugtritt offen ist, welche überdies die hintere ist. Ein anderer Vortheil in Folge der Anwendung nur weniger Drahtgase besteht darin, dass, da weniger Luft zur Flamme treten kann, jeder Mangel an Sauerstoff in den Grubenweiten sich fast gleich dadurch anzeigt, dass sich die Flamme verdunkelt oder gar verlöscht, wenn jene gefährlich, d. h. so mit Gerümpel angeschwemmt werden, dass schlagende Wetter entstehen können.

Die Lampe kann durch eine sehr einfache Vorrichtung verschlossen werden, indem der senkrechte Bolzen oder Kiefer des Schlosses, welches an dem Deckelhalter befestigt ist, in die befestete Verkleidung in der Platte M tritt und daher verhindert, dass der Deckelhalter oder der Fuß A herausgezogen und von der Laterne abgeschraubt wird. Da die Gläser in Falzen befestigt sind, so können sie leicht ausgewechselt werden, wenn es erforderlich ist; man braucht dazu nur die Ecke und die Scheibe G abzuschrauben.
XI.
Die Fähigkeit der Leiter, Ströme verschiedener Batterien gleichzeitig aufzunehmen und die Telegraphie; von Dr. zur Nedden. 3

Mit Abbildungen aus Tab. I.

3 Verspätet eingesandt; vom Verfasser die Nr. 10 im Januar 1855 niedergeschrieben.

Dr. b. Ned.
Tabelle I.

Gleichgerichtete Ströme in Drähten.

<table>
<thead>
<tr>
<th>Batterien</th>
<th>Summe</th>
<th>Unterschied der beobachteten gegen die berechnete Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>3 Kl.</td>
<td>3 Kl.</td>
<td>—</td>
</tr>
<tr>
<td>2 Kl.</td>
<td>2 Kl.</td>
<td>2 Kl.</td>
</tr>
<tr>
<td>3 Kl.</td>
<td>3 Kl.</td>
<td>—</td>
</tr>
<tr>
<td>2 Gr.</td>
<td>2 Kl.</td>
<td>—</td>
</tr>
<tr>
<td>3 Kl.</td>
<td>1 Gr.</td>
<td>—</td>
</tr>
<tr>
<td>3 Kl.</td>
<td>1 Gr.</td>
<td>—</td>
</tr>
</tbody>
</table>

Tabelle II.

Gleichgerichtete Ströme in Flüssigkeiten.

<table>
<thead>
<tr>
<th>Batterien</th>
<th>Summe</th>
<th>Unterschied der beobachteten gegen die berechnete Summe</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
<td>III</td>
<td>beobachtet.</td>
</tr>
<tr>
<td>4 Gr.</td>
<td>6 Kl.</td>
<td>—</td>
<td>0,11098</td>
</tr>
<tr>
<td>6 Kl.</td>
<td>6 Kl.</td>
<td>—</td>
<td>0,15838</td>
</tr>
<tr>
<td>6 Kl.</td>
<td>6 Kl.</td>
<td>—</td>
<td>0,16435</td>
</tr>
<tr>
<td>6 Kl.</td>
<td>6 Kl.</td>
<td>—</td>
<td>0,17632</td>
</tr>
<tr>
<td>6 Kl.</td>
<td>6 Kl.</td>
<td>4 Gr.</td>
<td>0,68726</td>
</tr>
<tr>
<td>6 Kl.</td>
<td>4 Gr.</td>
<td>—</td>
<td>0,70732</td>
</tr>
<tr>
<td>6 Kl.</td>
<td>4 Gr.</td>
<td>—</td>
<td>0,48413</td>
</tr>
<tr>
<td>6 Kl.</td>
<td>4 Gr.</td>
<td>—</td>
<td>0,52056</td>
</tr>
<tr>
<td>6 Kl.</td>
<td>6 Kl.</td>
<td>—</td>
<td>0,19891</td>
</tr>
<tr>
<td>6 Kl.</td>
<td>6 Kl.</td>
<td>—</td>
<td>0,21559</td>
</tr>
<tr>
<td>6 Kl.</td>
<td>6 Kl.</td>
<td>—</td>
<td>0,23393</td>
</tr>
</tbody>
</table>

Bemerkungen:
- Die Glastuben sind zwei Platintuben.
Beide Tabellen liefern den Beweis, daß sowohl Metalle als Flüssigkeiten gleichzeitig Ströme verschiedener Batterien, wenn sie gleich gerichtet sind, durchlassen können, und daß ihre Wirkungen sich summieren. Die geringe Differenz zwischen den beobachteten und berechneten Summen liegt in dem Beobachtungs-Versagen, nach welchem, da nur eine Boussolde zu Gebote stand, die Ströme einzeln gemessen werden mußten, bevor man wiederum für sich die Summe messen konnte. Sie erklärt sich daher einerseits durch unvermeidliche Fehler in der Bestimmung der Summanden, andererseits aber kann sie in einem bei gleichzeitiger Schluß aller Batterien durch Spaltung der Ströme vermehrten Leitungswiderstand auf der gemeinschaftlichen Stromstärke begründet sein. Es ist aber die Summierung der Wirkungen der Ströme nicht für ein Verständnis der Ströme selbst zu nehmen, vielmehr sind sie als neben einander existent anzusehen.

indem man seine Pole an dem Umfange in demselben Sinne fortbewegt, bis sie bei 90° gleich Null wird und bei fortgesetzter Drehung in eine Schwächung übergeht, welche ihrerseits wieder ein Maximum erreicht, wenn die Ströme parallel, aber gleichgerichtet worden sind. Es erinnern diese Resultate an die Eigenschaft von Strömen durchschnittener, beweglicher Drähte, welche sich angieben, wenn die Ströme gleichgerichtet sind, und einander absoßen, wenn jene entgegengesetzte Richtung haben; jedesfalls gesättigten die angewandten Apparate nicht durch eine Combination der Batterien, sondern nur durch Annahme der Leitfähigkeit der Flüssigkeit in entgegengesetzter Richtung diese Erscheinung zu erklären.

3. Nicht minder sichtet auch bei Drähten eine Leitung gleichmäßig von entgegengesetzten Strömen statt. Seien zwei Batterien so geschlossen, die Theile ihrer Schleusungsbogen, aus denen die Ströme entgegengesetzte Richtung nehmen, gemeinschaftlich sind, und schalte man auf diesen, wie auf den getrennten Theilen des Bogens Galvanosopke ein, so lassen sich die Verhältnisse so gestalten, daß das Deffsen und Schließen des einen Ströms auf das im geschlossenen Bogen des andern befindliche Instrument ohne Einfluß ist, während auf der gemeinschaftlichen Strecke der Schlüsse beider Batterien die Differenz der Ströme, der Schlüsse einer oder der andern aber die zugehörige Stromstärke gibt. Die Leitfähigkeit eines Körpers überhaupt gleichmäßig für entgegengesetzte Ströme steht durch den einfachen Versuch fest, daß man in einem festen oder flüssigen Leiter diametral entgegengesetzte Ströme einführt und an jedem beliebigen Punkte sie einzeln oder ihre Summe wiede ableiten kann. Man muß daher nach dem Vorhergehenden in allen den Fällen, wo diese Erscheinungen nach den bekannten Gesetzen für jetzt nicht vollständig erläutert werden können, nach der üblichen Ausdrucksweise den Sag gelten lassen, daß Leiter unter geeigneten Umständen die Ströme verschiedener Batterien entweder in einer Richtung oder in entgegengesetzten Richtungen durchlassen können, und dass dann die Gesamtwirkung der selben entweder der Summe oder der Differenz der Wirkungen der einzelnen Ströme auf der gemeinschaftlichen Stromzuführung gleich ist. Wie aber auch die Ströme zur Bildung von Summen oder Differenzen zuverlässig treten mögen, sie bleiben ein jeder für sich dem Gefüge des Leitungswiderstandes unterworfen.

4. Durch die Gesetze haben wir die vollständigste Herrschaft über die galvanischen Ströme gewonnen, und sind auch ohne Lösung der eben behandelten Zweifel im Stande den Erfolg zu beurteilen, wenn Ströme verschiedener Batterien auf denselben Leiter gleichzeitig wirken. Nach ihm verhalten sich die Stromstärken auf einem oder mehreren eine galvanische Spannung ausgleichenden Leitern umgekehrt wie der Leitungswiderstand,
welchen jeder dem Strome entgegengesetzt. Finden sich aus allen Leitern verschiedene Widerstände und fügen wir für jeden ihren reduzierten Leitungswiderstand, so wird der Strom auf dem kürzesten Wege am stärksten sein und diesen Weg wollen wir in der folgenden Betrachtung als den einzigen „Wege“ des Stromes, oder als den einzigen „Strom“ bezeichnen. Diese Abstraktion ist zur Übererficht immerhin gesattier, dass, nachdem man auch jede Gegenkraft in Bezug auf ihren Gegenfach als einen unendlich großen Widerstand in Rechnung zieht, überall da sehr nahe mit der Wirksamkeit zusammensäufl, wo aus allen übrigen Wegen durch natürlichen Widerstand, durch eingeschobene Hindernisse oder durch Gegenkräfte die Wirkungen des Stromes auf die angewandten Apparate unmerklich geworden sind, und wo dieser Fehlblick nicht der Fall ist, man nach Umständen auf ihre Bedeutung zurücksehen kann. Man kann indessen durch die angegebenen Widerstände und ihre Veränderung den Strom in unserem Sinne beliebig aus einem Leiter in den andern versetzen. Leisten bagegen alle Leiter einen gleichen oder nahe gleichen unveränderlichen Widerstand, so findet natürlich jene Abstraktion keine Anwendung; man hat abdann so viele Stromtheile als Leiter.

Seyen nun B und B' in Fig. 1 zwei Batterien von einer gleich Anzahl gleich großer Zellen, welche mit ihrer mittelst einer gleich starken Strom geben, und seyen sie mit ungleichnamigen Polen nach oben gekehrt, so sind ihre Ströme auf den homogenen Leitungen c' c und d' d' gleich gerichtet. Ohne die Verbindungen c d hat man auf ihrer Leitung einen Strom von gleicher Dauer mit dem jeder Batterie für sich, aber von doppelter Spannung; nach Herstellung der Verbindung c d wird man auf jeder derselben Strom der benachbarten Batterie haben, so lange der Widerstand auf der c d sehr gering ist. Wenn dieser Widerstand wächst, wird man sehr bald den Strom auf c' c' und d' d' so, dass er seinem ohne die c d möglichen Maximum schon sehr nahe kommt, wenn jener dem von c c' + d d' gleicht. Sind dagegen die Batterien mit ihren gleichnamigen Polen nach oben gekehrt, also ihre Ströme entgegengesetzt gerichtet, so hat man nach unserer Annahme ohne die c d auf der ganzen Leitung keinen Strom. Mit den Verbindungen c d hat man auf jeder von ihnen, welches auch der Widerstand derselben sei, wenn er nur nicht unendlich groß ist, den Strom der benachbarten Batterie. Wollte man unter diesen Umständen den Strom von B durch c' d', den von B' durch c d gleichzeitig zum Schluss bringen, so bedürfte es eines leaders, welcher dem Strom in einer Richtung geringeren Widerstand leiset als in einer anderen, oder eines ähnlich wirkenden förderungsmittels, wozu der Magne-
Ströme verschiedener Batterien gleichzeitig aufzunehmen.

tiumus dienen könnte, wenn er den Strom ablenkte; jedoch wirkt er nur drehsend auf bewegliche durchstromte Leister. Es muß nun zwar nach dem Vorhergehenden, wo auf der Fig. 1 ein theoretisches Bild der Vorgänge auf einer Telegraphenlinie gegeben, für unmöglich gelten, aus den Endpunkten eines Leitungsdrähtes mit entgegengesetzten Strömen gleichzeitig Depeschen zu fördern; jedoch ist die Ausgabe in der Fassung zu lösen: gleichzeitig aus und von Endstationen eines Leitungsdrähtes Depeschen abzugeben und zwar sowohl unter Anwendung entgegengesetzter Ströme, als auch unter Anwendung eines aus beiden Leitungsbatterien kombinirten Stromes von doppelter Spannung.

5. Zum besseren Verständniss ist es notwendig, den Hergang bei dem jetz üblichen Morse'schen Telegraphensystem an den in Fig. 4 und 5 in horizontaler Proportion stehenden Apparaten kurz durchzugehen und an ihnen die Löungen der vorstehenden Aufgabe zu zeigen. Es ist in der Zeichnung an dem Schlußfel die Proportion desselgen Arms fortgelassen, welcher bei der jebedenmaligen Stellung des Schlüssels nicht an der Leitung des Stromes Theil nimmt. In beiden Figuren ist für die nachste Erklärung von den Zeichnungen R und den verbindenden Linien abzusuchen; in den übrigen Theilen bezeichnet S die Station, R die Leitungsbatterie, T den Taster oder Schlußfel, E die Erdplatte, L die obere Leitung und R′ das von Station S bewegte Relais. Dieselben Theile sind für die Station S′ mit entsprechenden Buchstaben bezeichnet und das von S′ bewegte Relais mit R. Bei Anwendung entgegengesetzter Ströme von beiden Stationen geht, wenn nur eine Station spricht, wie das Fig. 4 darstellt, der Strom vom + Pol der B aus zum Schlußfel T, von da nach E durch Erde nach E′ zu T in Station S′, durch g, l und o zum Relais R′, der oberen Leitung L und zum — Pol der B in S zurück. Auf diesem Wege schließt der Strom durch den Elektromagnet des Relais die locale Batterie in S′, welche dann durch den Schreibapparat die Depesche gibt. Die beiden legeten Apparate sind, als die Frage nicht berührend, in der Zeichnung nicht berücksichtigt. Wenn beide Stationen gleichzeitig sprechen, wie es Fig. 5 zeigt, so sind beide Schlußfel offen, und die für das Zeichengeben erforderlichen Relais von dem Stromwege ausgeschlossen, welcher jetzt für beide Batterien durch B′ T E′ L′ B′ d e L b′ a B bezeichnet ist.

Man verbinde den durch das Relais g e b e n d en Leitungsdraht, nachdem er d a s s e l b e bei o oder h wieder verlassen hat, nach der punktierten Linie direkt unter Umgebung der Schlüssel mit der Erde und schließe auf dieser Strecke einen Widerstand W ein, dessen Größe aus der folgenden Gleichung zu bestimmen. Wenn WL den Gesamtwiderstand der oberen Dingler's vollst. Journal Bd. CXXXVIII. S. 1.
und unteren Leitung, WB den der Batterie mit den Verbindungen zum Relais und Schlüssel bezeichnet, so muß sein

\[I \cdot W > WL < WL + WB \]

wobei vorausgesetzt ist, daß wenn WR den Widerstand eines Relais bezeichnet, WR < WB sein, was immer zu erreichen ist.

Nach Fig. 4 wird jezt bei einseitigem Sprechen der Strom von S den oben beschriebenen Weg als den stärkeren beibehalten und das Relais R' in S' bewegen. Wenn aber, Fig. 5, beide Stationen gleichzeitig sprechen, so hebt Station S' durch Deffnung des Schlüssels dem Strom von S den bei einseitigem Sprechen gangbaren stärkeren Weg durch g aus und läßt ihm nur die Wege:

1) von B durch Erde, B', d. e. und obere Leitung zu B zurück, oder
2) von B durch Erde, W und R' in Station S', L zu B zurück, oder
3) von B durch Erde zu W und R auf derselben Station S zu B zurück.

Die Widerstände auf diesen Wegen sind, wenn WR den Widerstand des Relais bezeichnet:

ad 1. \(WL + WB \)

ad 2. \(WL + W + WR \)

ad 3. \(W + WR \)

und nach der gemachten Voraussetzung ist aus I.

\[W + WR < WL + WB < WL + W + WR \]

daher geht der Strom von S den Weg 3 durch das nächste Relais R' und der von S' den analogen durch R, wählt aber den Weg nur so lange, als ihm der bessere Weg durch das jenseitige Relais R in S' zum Schlüssel bei F durch Deffnung desgelben verpirrt ist, d. h. so lange S' es haben will, und umgekehrt wird gleichzeitig der Strom von S' durch indirectes Eintreiben des Widerandes WB in S gezwungen durch das ihm nächste Relais R' für S zu gehen, so lange der bessere Weg bei g aufgenommen ist, d. h. so lange die Station S ihn arbeiten lassen will.

Der Elektromagnetismus kann auch mit den kombinierten Strom das Geforderte leisten, jedoch nicht durch die größere Spannung, welche nur die Sicherheit der Action erhöht, sondern durch die auch bei gleichzeitiger Telegraphirens unveränderlich verfügbare bleibende Stromquantität, wie die folgende Theorie zeigt.

Man stelle, Fig. 4 und 5, die zweiten Relais R auf, verbinde sie, nach Entfernung der Drähte aB und bB', mit den Batterien und der oberen Leitung, wie es aus der Zeichnung zu ersehen, und mit den Batterien der Schreibapparate, das auch sie dieselben durch das Spiel der Elektromagneten selbständig schließen und öffnen können. Diese Relais haben bis auf die Drähte des Elektromagnets, welche den nahe Durehschnitt von dem der Drähte in den übrigen Relais haben, eine dieselge entire Einrichtung.

Lässt man die punktierten Linien außer Acht, mit den als wegschaffenden oben bezeichneten Verbindungen, so nimmt nach Fig. 4 bei einzeitigem Sprechen von Station S, der Strom den Weg B durch hR" a" bL c d R' f g E' nach E und B zurück, vorausgesetzt dass der + Pol in S der unterer Leitung zugeführt ist. Ebenso sind bei gleichzeitigen Sprechen nach Fig. 5 die Stromwege B hR" a" bL c d R" a" b' g E' und zurück durch E nach B. Nach der in (5) angenommenen Bezeichnungweise sind die Widerstände von dem ersten und zweiten Wege

1) \[WR + WL + WR = WL + (n + 1) WR' \]
2) \[WR + WL + WR' = WL + 2WR' \]

indem hier \(L \) die gesamte Leitung, außer der im Relais, bezeichnet. Da sich die Stromstärken, also die elektromagnetischen Wirkungen, umgekehrt
wie die Widerstände verhalten, so sind diese in beiden Fällen

\[\text{ad } 1. \quad \frac{1}{WL + (n+1)WR^n} \text{ oder } \frac{1}{WL + nWR^n}, \]

\[\text{ad } 2. \quad \frac{1}{WL + WR^n} \text{ oder } \frac{1}{WL + WR^n}. \]

Febt man an den Relais R^a die Wirkung des Stroms bei einseitigem Sprechen durch die Feder s unter s^n auf, so wird man bei der beschriebenen Einrichtung mit um so größerer Sicherheit gleichzeitig Depreschen abgeben können, je größer n ist.

7. Die theoretischen Auffassungen (5.6) bedürfen für die praktische Anwendbarkeit noch einer näheren Prüfung und Ausführung. Die für Anwendung entgegenfegter Strome gegebene Einrichtung beruht auf der Abstraction, daß der Strom durch den Widerstand W bei einseitigem Sprechen in seinen Wirkungen auf die Apparate unmerklich geworden sey, und daß weiter nach Einschieben des größeren Widerstandes bei gleichzeitigen Sprechen die Kraft in dem Maße gesteigert werde, daß sie wieder im Stande ist die Relais zu bewegen. Um die eritere Wirkung zu erreichen, muß W möglichst groß gegen WL seyn, und für den zweiten Zweck möglichst klein gegen $WL + WB$. Der beste Werth wäre daher $\frac{WL + WB}{2}$; da aber WB immer an sich nur klein gegen WL ist, so wird die Kraft durch W, selbst wenn WB in maximo auf WL erhöht würde, nicht klein genug werden, um vernachlässigst werden zu können. Man nähme daher am besten für W seinen Gränzwerth WL, höbe für einseitiges Sprechen seine Wirkung durch die Feder s auf und bestimmte für gleichzeitiges Sprechen $WB = WL$. In welchem Maße dann im letzteren Falle eine für den Betrieb hinreichende Kraft disponibel werden würde, das konnte der Verfasscr mit den zu Gebote stehenden Mitteln praktisch nicht genügend prüfen.

Inzwischen liegt es nahe, zur Aushebung der bei einseitigem Sprechen hübenden Kraft im Relais, statt der Feder s den Strom selbst zu benützen, und so gelangt man zu der folgenden Construction. Es sey zu dem Zweck neben der Feder s ein Eisenstab aufgestellt, in gleicher Entfernung von der Drehäche des Hebels, wie die bisher üblichen beiden Arme des Hufseisenmagnetens im Relais, man lasse durch seine Windungen den Strom der sprechenden Batterie eintreten und dann einzelne sich durch den Hufseisenmagnet zu W, andererseits zur oberen Leitung theilen. Da nach der getroffenen Bestimmung von V beide Ströme einander gleich sind, so befindet sich in den Windungen des Stabmagnetens doppelt so viel Strom, als in denen
des Hufeisenmagneten, und daher bedarf ersterer nur halb so viel Bindungen von doppeltem Durchmesser als letzterer, sobald er die Capacität für den Magnetismus hat, daß er bei gleicher Windungszahl mit denen beiden Arme des Hufeisenmagneten den zweifachen Magnetismus annimmt. Nach Feststellung dieser Elektromagneten ist auch ohne die Erhöhung von WB auf WL ein richtiges Spiel im Anker des Hufeisenmagneten für gleichzeitiges Sprechen gesichert. Es scheint aber schwieriger einen Eisenstab so herzustellen, daß er den hier vorkommenden Bedingungen genügt, als eine Hufeisenform; daher ist in der Fig. 2 gegebenen Zeichnung eines nach den oben erklärten Prinzipien zu konstruierenden Relais, auch bei s ein Hufeisenmagnet angenommen. Für die richtige Auffassung der Zeichnung ist noch zu bemerken, daß, wenn nach den bisherigen Erfahrungen bei einseitiger Telegraphie x die Gesamtzahl der Windungen um die beiden Arme des Hufeisenmagneten M war und den Draht den Durchmesser d hatte, zur sichren theoretischen Bestimmung die Anzahl y der Windungen auf jedem Arm x von gleichstarke Drähten betragen mag. Es soll hier nach der Arm m von Elektromagneten M ab, welcher zunächst den Strom der Leitungsbatterie in seine Windungen ausnimmt, eine Anzahl \(\frac{x}{2} \) Windungen eines Drahtes vom Durchmesser 2d haben, und der Arm m\(^{a}\) eine Anzahl y Windungen eines Drahtes vom Durchmesser d. Der Gebrauch des Relais ist nach den Bemerkungen bei der Zeichnung klar und bedarf, nachdem alle seine Theile gehörig abgestimmt sind, es noch der Regulirung wegen der Veränderlichkeit des Widerstandes in der oberen Leitung. Da das Spiel des Apparates auf der Gleichheit von W und WL beruht, so muß dasfelbe durch W regulirt, dieser daher zweckmäßig verändert gemacht werden.

8. Um den Mechanismus bei Anwendung eines verbaltirten Stromes (6) praktisch brauchbar zu machen, muß vorerst der Unterschied der Werthe der Ströme vergrößert werden. Zu dem Ende nehme man in den Werthen III und IV daselbst n = 2 an, so gehen dieselben, nachdem noch auf den Drähten of und hg, Fig. 4 und 5, die Widerstände W = WL - WR\(^{a}\) eingestohen worden, über in

ad 1. \[\frac{1}{2WL + 2WR^{a}} \]

oder 1.

ad 2. \[\frac{1}{WL + WR^{a}} \]

oder 2.

ob der Strom ist bei gleichzeitiger Telegraphie doppelt so stark, wie bei einseitiger.
Zu richtiger Arbeit mit den angegebenen Einrichtungen ist vor allem erforderlich, daß die bei gleichzeitigen Sprechen stattfindende und notwendige Unterbrechung des Stromes auf so kurze Dauer beschränkt wird, daß während derselben und der gleichzeitigen Unterbrechung des Stromes in der lokalnen Batterie des Schreibapparates, ein Abreißen des Ankers in demselben nicht die Folge ist. Die bisher üblichen Schlüssel scheinen dem Verfasser nicht hierzu genügend, und ist daher eine ähnliche Vorrichtung in Fig. 3 entworfen. In der selben ist pq eine starke seidene metallene Schiene, welche bei q an die leitenden Zappen einer gleichen zum Durchlassen des Stempels z durchbrochenen Platte m spielt. sq ist eine empfindliche, in einem festen Bügel leicht festzustellende Schraube, so daß man den Zwischenraum zwischen ihrem fugelförmig abgerundeten Ende und der metallenen Schiene bei q durch Einstellen einer später wieder zu entfernenden Metallschicht bequem reguliren und auf ein Minimum reduciren kann, während der Sicherheit der Leitung wegen das Ende der Schraube und Schiene an den Berührungsfächen q stark vergoldet oder mit Platinschicht versehen wird. Der Arm az kann nach Berücksichtigung der Bemerkungen neben der Figur von beliebigem, dauerhaftem Materialien sein und bedarf weiter die ganze Einrichtung keiner Erläuterung. Im Notfalle würde die Feder zum Abreißen des Ankers zum Schreibapparat, in Ubereinstimmung mit dem Spiel des neuen Schlüssels zu reguliren sein.

9. Bei den Entwickelungen Nr. 6 und 8 war es besonders die Absicht die Stromtheilung zu vermeiden, und gerade die bei Anwendung gleichgerichteter Ströme vorhandene Eigenschaft zu benutzen, daß der einfache Strom quantitativ und selbst mit doppelter Spannung erhalten wird. Will man das Prinzip der Theilung auch hier zur Anwendung bringen, so wäre schon mit dem Relais Fig. 2 eine Einrichtung hierzu gegeben, sobald man den Strom nicht durch die Windungen um m' von M', sondern durch die um den entsprechenden Arm von M eintretende leie, oder nur die in den Anmerkungen der Zeichnung gegebenen Funktionen der Drähte b und c vertauschte, mithin auch den Draht d durch W zur Erde mit dem Draht b verbünde. Dazu müßten die Windungen des einen Arms m' des Hufeisenmagneten M' dem des anderen Arms m" entgegengesetzt gewunden sein, d. h. wenn bei einem in derselben Richtung fämmliche Windungen durchfließenden Strom diese den Nordpol nach m" zu verlegen trachteten, jene den Südpol dahin zu bringen bestritten wären. Wenn ferner die Arme von M nach der früheren Bestimmung (7) eine Anzahl jeder von \[\frac{x}{2} \] Windungen hier eines Drähte's vom Durchmesser 2 d
haben, müssen die Windungen um den Arm \(m^a \) jenen gleich, die Anzahl der Windungen um \(m^1 \) aber muss \(\frac{3}{2} \) eines Drahtes vom Durchmesser d seyn. Erwägt man hiernach, dass bei einseitigem Sprechen der Strom bei s sich in zwei entgegengesetzte spaltet, mithin bei der Wirkungsweite der Windungen in \(m^1 \) einen gleich starken Magnetismus wie in \(m \) erzeugt, so erkennt man, dass das eigene Relais der sprechenden Station ruht. Dagegen ist unter Beibehaltung der Eigenschaften an Fig. 1, wie sie in Nr. 4 gegeben sind, klar, dass bei gleichzeitigen Spreehen in den Windungen um \(m^1 \) fast kein Strom ist, wodurch aber in denen von \(m^a \) und \(m^1 \) und das das Relais daher mit halber Kraft gewiss arbeiten wird. Es wäre daher hier jedenfalls, vielleicht auch in derselben Figur für Nr. 7, in der Praxis besser einen abgestuften Elektromagnet in Stabsform, wie er dort beschrieben, bei s anzuwenden, um so mehr als die bisher übliche Feder zum Abreissen des Ankers in allen angegebenen Einrichtungen ebenfalls belassen werden muss.

Dennoch ist die Anwendung des kombinierten Stromes ohne Theilung vorzuziehen, wenn sie sich in einem praktischen Versuch bewähren sollte.

Zwar erfordert sie die Auffüllung einer zweiten Relais, dagegen werden die Betriebskosten geringer, als bei der Angabe für entgegengesetzte Ströme, wo sowohl bei einseitigem als gleichzeitigem Sprechen der Strom durch \(W \) mithin das ihn unterhaltende Material der Zellen, verloren geht. Eine jede Verzögerung derselben erscheint nur als eine neue Kosten verursachende Bedürfnung, es kann denn das man ihn zur Regulirung des Widerstandes \(W \) selbst durch einen zweckmässigen Mechanismus vortrefflich könnte. Wäre es zweckmässig die Hindernisse \(W \) bei einseitigem Sprechen zu entfernen, zugleich mit Einührung der Drähte a B und a B', so könnte dies als ein weiterer Vortheil des kombinierten Stromes gesehen, ja selbst wenn der sene Gebrauch von \(W \) eine Vermehrung der Zellen erforderte, würde dies Verfahren vorzuziehen seyn, sobald sich im Uebrigen die Einrichtung praktisch bewährt.

Es bestatt nur einer Leitungsbatterie auf eine der Einladungen \(S \), sobald man auf der andern das Relais \(R^a \) direkt mit dem Amboss \(I^a \) verbundet; aber in der Figur 3 mit der derselben vertretenden Schraube s q. Ob eine solche Einrichtung für den Betrieb zulässig ist, während Station \(S \) die eigene Batterie in Reserve behält, werden die Erfahrungen im Telegraphenwesen entscheiden müssen; jedenfalls würde das Betriebsmaterial in den Zellen bei gleichzeitiger Deeselbst-Abgabe vermehrt und wahrscheinlich die Kraft vollständiger benutzt.
10. Denkt man sich in der Nr. 5 angesogenen Zeichnung statt des Widerstandes W eine gleichgestaltende Leitung, welche auch dieselben Apparate wie L enthält, so ist einleuchtend, daß man mit denselben gleichzeitig eben dieselben Zeichen geben wird, wie auf der ursprünglichen Leitung L. In ähnlicher Weise wird man von einer Station aus nach beliebigen Richtungen dieselbe Depesche gleichzeitig befördern können, wenn die Batterie im Stande ist sämtliche Leitungen zu fällen. Jedoch wenn man, statt in einer Richtung den Strom zum Schlusse zu bringen, deren n von gleichem Widerstande anwendet, wird aus jeder derselben nur der die Theil des gegebenen Stromquantums vorhanden sein. Es ist hier der Ort beispielsweise daran zu erinnern, daß die Anwendung des Princips der Theilung, wie es in Nr. 7 zur Ausführung für gleichzeitige Telegraphie empfohlen, eine Schwächung der ohne sie zur Förderung der Depesche disponiblen Kraft ist. Wenn nun für Abgabe einer Depesche in der einfachen Richtung die Flächengröße der Zellen = q hinreichend ist, so wird jede Depeschenabgabe gleichzeitig nach n gleichgestaltenden Richtungen die Flächengröße = nq der Zellen notwendig machen bei unveränderter Anzahl derselben. Für die Praxis ist hiebei nicht zu vergessen, daß jede Leitung nur eine bestimmte Stromstärke zulässt; sie wird daher dem größeren Quantum auch einen größeren Widerstand entgegensetzen und man muß daher im vorliegenden Falle die Wege, durch welche der ungeteilte Strom gehen soll, angemessen erweitern. Will man zu einer solchen gleichzeitigen Absetzung derselben Depesche nach n verschiedenen Richtungen, welche, wie im ganzen Verlauf dieser Nr. angenommen, einen gleichen oder gleichgemachten Widerstand ausübten, n für die einfache Richtung genügende Batterien verwenden, so läßt sich damit nur angenehmert der Zweck errei- chen, wenn dieselben aus den Wegen zur Vereinigung einen erheblich größeren Widerstand überwinden, als derjenige ist, den sie bei der späteren Trennung in den verschiedenen Richtungen zu überwinden haben, denn der Strom einer jeden wird den nächsten Weg wählen. Die hier stattfindende Stromspaltung ist schon in Nr. 1 als eine Ursache des Unterschieds zwischen der berechneten und beobachteten Stromsumme in Tabelle I dargestellt angeführt. Schaltet man bei einer der dort näher angegebenen Combinirungen zweier Batterien auf der gemeinschaftlichen Stromkreise einen Rheostaten ein, so fällt die beobachtete Summe sogleich unter die Stromstärke der stärksten Batterie, wenn der Widerstand im Rheostaten den der schwächsten Batterie übersteigt. Widerspenstige verschiedene Widerstände auf einem der nicht gemeinschaftlichen Drähte eingeschoben, so sind vor ein geringer Unterschied in den berechneten und beobachteten Summen statt, wie ihn auch Tabelle I gibt und größer gibt für mehr
Batterien als für zwei. Ohne Zweifel würde sich auch hier die Geltung des Öhm'schen Gesetzes (4) auf das stärkste nachweisen lassen, und man wird ihm die selbe Bedeutung für die Mechanik des Galvanismus mehr und mehr zugestein müssen, welche das Gravitations-Gesetz für die Mechanik der Schwere hat.

Über die Fähigkeit der Leiter, Ströme verschiedener Batterien gleichzeitig aufzunehmen.

Die Beschränkung welche sich im Nachtrag zu der angegebenen Abhandlung ausgesprochen findet als könnten Witterungs-Verhältnisse, und man kann allgemein sagen Leitungsvorhältnisse den elektrochemischen Telegraphen weniger zuverlässig machen als den elektromagnetischen, erscheint unbegründet, wenn man erwartet, das chemische und magnetische Wirkungen des Stromes immer gleichen Schritt halten; dennjeweils wird daher bei geringerem Leitungswiderstande des Elektrolyten mit dem des Relais unterm übrigens gleichen Verhältnissen der chemische Telegraph eher dem Dienst verlegen ab der elektromagnetische. Das Feuchten des Papiers, die Unterhaltung und Beaufsichtigung des Präparats machen das Gintel'sche Verfahren schwieriger und weniger praktisch als das Morris'sche, dem es den Resultaten und der Einfachheit seiner Apparate nach vorziugeist.

Das Problem der gleichzeitigen Telegraphie wird für das elektrochemische Verfahren durch den kombinierten Strom ohne Einbuße seiner Einfachheit schwerlich gelöst werden; durch entgegengesetzte Ströme wäre es auch durch die Theorie in Nr. 5 gelöst; wenn die dortige Abstraktion in der Praxis richtig bliebe, oder eine Ausbeute der Wirkung der sprechenden Batterie, wie sie für die elektromagnetische Wirkung (7) angegeben worden, hier ausführbar wäre. Inzwischen ist das Problem durch den Director Gintel gelöst und sein Verfahren im Februarheft 1855 der Zeitschrift des deutsch-österreichischen Telegraphen-Vereins (polystekn. Journal Bd. CXXXVII S. 166) beschrieben. Daselbe liegt dem Verfasser angenehmlich nicht vor; jedoch glaubt er bemerken zu müssen, daß die dort sogenannte Ausgleichsbatterie diesen Namen nicht verdient, denn, soviel erinneırliegt, gehört die Action der Batterie unter die hier Eingangge der Nr. 4 an der Fig. 1 angedeuteten Erscheinungen, welche durch die Leitungsvorhältnisse bedingt sind, wenn die Combination gleichgerichteter Ströme stattfinden kann. Es ist darnach nur erforderlich, je nach den Leitungs-
verhältnissen auf den verschiedenen dargebotenen Stromwegen, einige Zellen der Leitungsbatterie, bis zur halben Anzahl derselben, an die Stelle der Ausgleichsbatterie zu legen.

(Der Schluss folgt im nächsten Heft.)

XII.

Über ein elektrochemisches Papier für die elektrischen Telegraphen; von Hrn. Pouget-Maisonnuve.

Aus den Comptes rendus, Juli 1865, Nr. 6.

Nachdem der Generaldirector der französischen Telegraphenlinien sich jetzt damit beschäftigt hat, daß der gegenwärtig (in Frankreich) gebräuchliche Telegraph durch das Morse'sche System ersetzt werden soll, welches schon von allen benachbarten Staaten angenommen ist, bemühte ich mich ein Problem zu lösen, das längst und mit Recht mehrere Personen beschäftigte, welche sich die Vervollkommnung und Vereinfachung der telegraphischen Apparate angelegen sein lassen; ich meine nämlich die Darstellung eines entsprechenden elektrochemischen Papiers.

Ein solches Papier muß folgenden Anforderungen genügen: es soll 1) nur wenig rosten; 2) hinreichend geleimt sein, um mit Tinte darauf schreiben zu können; 3) hinreichend feucht sein, um einen guten Leiter darzustellen; 4) etwas sauer sein, um seine Leitfähigkeit zu vergrößern, aber doch nicht in solchem Grade, daß es die Metalle benachteiligen kann, welches es berührt; 5) bei leichter Zerschlagung ein stark gefärbtes, unölsobliches und unwasserlösliches Salz liefern; 6) so leicht zu bereiten sein, daß man nötigenfalls auch auf den Stationen solches darstellen kann; 7) nicht die Anwendung eines besonderen Papierzeuges erfordern; 8) endlich eine einfache Zusammenfassung haben, so daß man die erforderlichen Salze nicht in ganz genauen Verhältnissen anwenden braucht.

Ich lege der (französischen) Akademie der Wissenschaften eine Probe meines elektrochemischen Papiers vor; die Zubereitung eines Streifens für eine ganze Balze kommt auf beinahe 15 Centimes zu stehen.

Durch die Einführung dieses Papiers reduziert sich der Morse'sche Schreibapparat auf ein Überras zum Umbrechen der Papiерwalze und auf
einen Schreibheft von Stahl. Der Hebel mit trockener Druckspitze und die Spule mit ihrem Anker, also die heutigen und zartesten Theile, werden unnütz. Ueberdies geschieht die Uebertragung durch die Elektricität allein, unverhältnismäßig räthlicher als durch die Schläge des Hebels.

Zum Zubereiten meines Papiers sind nur zwei im Handel vorkommende Salze erforderlich; unter allen von mir versuchten Compositionen ist folgende die einfachste und diejenige welche mir am besten gelang:

<table>
<thead>
<tr>
<th>Wässer</th>
<th>100 Theile</th>
</tr>
</thead>
<tbody>
<tr>
<td>kristallisiertes salpetersaures Ammoniak</td>
<td>150 "</td>
</tr>
<tr>
<td>gelbes Brotlaugensaft</td>
<td>5 "</td>
</tr>
</tbody>
</table>

Wendet man 150 Theile salpetersaures Ammoniak an, so ist das Papier während des Sommers brauchbar, ohne daß man es gegen den Zutritt der Luft zu verwahren braucht. Es ist übrigens einleuchtsend, daß man die Verhältnisse abändern und doch noch ein gutes Resultat erhalten kann. Um einen Ueberschluß des angewandten Präparats zu entfernen, genügt ein kurzes Eintauchen in Wässer, welches man auch verlängern kann, ohne daß die Schärfe der Schriftzüge dadurch beeinträchtigt wird.

XIII.

Über eine neue Form der bei Löschvorgängen angewandten Platinpinzetten und Platindrähte; nach A. Vogel jun. und C. Reischauer.

Mit Abbildungen.

1.

Von den Werkzeugen, die dem beobachtenden Naturforscher stets zur Hand sein müssen, ist die Pinzette ein, wohl durch alle Branchen der Forschung, gleich unentbehrlich. Ze nachdem man durch dieses Instru-
ment das momentane oder längere Festhalten eines Objectes beabsichtigt, confruirt man dasfelbe in zwei wesentlich von einander verschiedenen Gestalten. Aus dem Bedürfniss des ersteren Falles entstanden jene Formen, die in ihrem normalen Zustande geöffnet erscheinen und bei welchen erft der Fingerdruck des Beobachters, die Federkraft der elastischen Blättchen überwindend, die Spigen nähert und zum Eingreifen des Objectes nöthigt. Wird bei dieser Form des Instrumentes ein mehr andauerndes Festhalten des Gegenstandes verlangt, so ist auch ein fortwährender Druck der Finger erforderlich, wobei dann die baldige Ernüübung eine Unsicherheit mit sich führt. Ohne diese Pression der Finger ist aber das Werkzeug absolut unbrauchig.

Diese Nachthülle in den Fällen, wo es auf ein länger anhaltendes Beobachten des Objectes in der Pinzette ankam, bedingten die Construction der zweiten Form, indem ein von den Handwerfern schon lange gebräuchtes unausgebildetes Werkzeug einem neuen Wirkungskreise angepaßt und vervollkommnet, in die wissenschaftliche Praxis übergang, wo es in einzelnen Zweigen im Laufe der Zeit unentbehrlich wurde. Bei dieser zweiten Gestalt berühren sich die Spigen im normalen Zustande und sind mit einem sanften, durch die federnden Blättchen vermittelten Druck gegen einander gehalten, indem erst der Fingerdruck des Beobachters das Deffien des Werkzeuges bewirkt. Die zwischen die federnden Spigen gebrachten Objecte werden von diesen mit leichter und gleichmäßiger Pression fest gehalten, wenn der Fingerdruck des Beobachters nachläßt. In dieser lebhafter Form wirkt also die Pinzette, durch den Beobachter angeregt, selbständig fort, so daß man sie im Gegenüber zur ersteren die lebendigere nennen könnte.

Man bedient sich desselben bei Löthrohversuchen, um kleine Splitter eines Minerals auf ihre Schmelzbarkeit in der Löthrohrflamme zu untersuchen, oder die Färbung desselben mit und ohne Anwendung besonderer Reagentien, wie ihr sonstiges Verhalten in der Flamme zu erforschen.
In der von den Botanikern gebrauchten Form, nur mit angelegten Platinspiken versehen, dient bisher die in „Bergelius‘ Löthrohr“ und a. a. O. ausführlich beschriebene Construction, die wie in der beigefügten Skizze als „alte Form“ bezeichnet, des Vergleiches wegen neben die neuere stellen. Der bequemer und sichern Anwendung dieser gebräuchlichen Form widersehen sich nun namentlich zwei Umstände, die wir durch eine geänderte Construction heben zu können glaubten:

1) Das Deffnen der Pincette bisheriger Construction wird durch den Druck auf die beiden gestielten Knöpfe (a' und a") vermittelt, indem dabei der auf den Knopf applizierte Druck sich durch den Stiel auf den gegenüberliegenden Ehenkel der Pincette fortplanziert. Der Umstand, dass man mit den Fingerspizen diese kleinen Knöpchen aussuchen muss, erfordert beim jebesmaligen Gebrauche des Instrumentes ein sehr vorzügliches Auffassen besitzen in der Hand.

Beiden Uebelsständen begegnen wir in der neuen Construction, indem,
wie aus der Figur leicht verständlich, jene Knöpfe durch ein zweites stark
elastisches Blättchen ersetzt werden, die mit denen in der ursprünglichen
Pincette in der Mitte des Instrumentes zugleich vernietet sind. In diese
Blättchen sind nun am anderen Ende die den Knopftiechen der alten

Wie es bei Werkzeugen aller Art der Fall ist, so wird auch bei diesem der spezifische Vorteil gegenüber der alten Form erst dann recht auffällig, wenn man beim Gebrauche selbst beide Arten vergleicht. Wir haben daher den höchsten Autoritäten dieses Gebietes Exemplare zugestellt und dürfen wohl den verhältnismässig nur um ein Geringes höheren Preis der neuen Construction nicht als ein Hinderniss allgemeiner Einführung betrachten.

II.

Ein in der bestimmenden Mineralogie und analytischen Chemie täglich gebrauchtes Instrument ist der oxy- oder hakenförmig umgebogene Platindraht, dessen man sich, wenn nicht die Holste besonders verlangt wird, stets als Unterlage für Glässlüsse, mit denen man eine Probe in der Löthrohrlampe behandeln will, bedient. Ein einfach hakenförmig umgebogener Draht, wie ihn Berzelius und Plattner in ihren trefflichen Werken beschreiben, war lange Zeit die ausschließlich angewandte Form dieser Drähte. In solchen einfachen Haken nimmt aber die Probe stets eine Kugelgestalt an, wodurch bei tiefer gefärbten Persen leicht eine Schwierigkeit in der Beurtheilung der Farbe ohne Zerschlagen des Glases entschieden kann. Diesem Nachtheile fuchte man entgegenzutreten, indem man das Ende nicht mehr haken- oder usförmig, sondern zu einem Dehr (sozusagen) umbog, welche beiden Formen neben der alten Form der Platindrillenpinnice im Holzschnitte dargestellt sind. Diese letztere Art der Umbiegung

5 Plattner's Prod. Ent. 24.
entrichtt allerdings ihrem Zweck schon sehr vollkommen, indem der Glas-
flasch nun nicht mehr zu einem Tropfen zusammenstieß (man müßte denn
eine zu große Menge zum Schmelzen bringen), sondern eine mehr oder
weniger flache Einsengestalt annimmt, wodurch die gehörige Erkennung
der Farbe sehr erleichtert wird. Dennoch führen diese so hergerichteten Dehre
einen natürlichen Mangel an Festigkeit mit sich, so daß, wenn man die
ausgewählte Probe herauszuheben sucht, sie äußerst leicht ihre ringförmige
Gestalt einbüßen.

Wir stellen daher die Platindrähte in der Weise her, daß das ganze
schiefen Dehre (wie die Zeichnung angibt) nicht mehr geöffnet ist, son-
dern einen continuirlichen Ring bildet, wodurch der kleine Apparat seine
hochbühmliche Festigkeit gewinnt, ohne daß sein Kreis unverändernmäß
sich erhöhte. Die Herstellung solcher Dehre an Platindrähten, von der
Stärke wie sie eben für Löthrohversuche geeignet ist, wird auf eine doch
einfache Weise bewerkstelligt, indem man vor einer einfachen Weinigelt-
lampe, auf die Sauresoffgas durch eine Löthrohfsige gebläht wird, an
den in passenden Längen zugeschnittenen Platindrähten die Enden zu einem
am Draht hängendebleibenden Tropfen vom drei- bis fünffachen Durch-
messer des Drahtes zusammenfügen läßt. Mit einer geringen Uebung
gelangt man leicht dahin, das Ende der Drähte auf solche Weise zu einer
nahezu vollkommenen Kugel zu verbinden. Diese bietet nun die Substanz
für die anzufärgenden Ringe. Der Draht hat bei dieser Metamorphose
fünf bis sechs verschiedene Stadien zu durchlassen, die, wenn sie mit
freier Hand ausgeführt werden sollen, freilich einige Geschicklichkeit des
Arbeiters voraussetzen. Durch eine Art von Maschine, unter dem Namen
Platin Tropan für diesen Zweck von uns konstruiert — deren speziellere
Beschreibung, wie des Verfassers selbst wir uns für eine andere Gelegen-
heit vorbehalten — werden alle befördernden mechanischen Fertigkeiten bei der
Herstellung der Platindrähte fast entbehrlich gemacht.

Unter den mechanischen Ausarbeitungen des, wie oben beschrieben,
vordereiften Drabtes bildet die Ummantung der Kugel zu einer flachen
Scheibe in einem Gesichte mittels Hammerschlags die erste Stufe. Durch
ein den in Maschinen-Fabriken allgemein angewandten Losmaschinen ganz
ähnliches kleines Instrument wird sodann das möglichst concentrische Lochen
der Scheibe mit einer Stange von 0,3 Millimeter Durchmesser, welches
den ganzen unbüedrigen Substanzenverlust bei der Operation bedingt, voraus-
genommen. Die auf solche Weise mit einem Loch versehene Scheibe ist
in den folgenden Operationen nur noch durch einen Dorn auszutreiben,
wobei sich die Desinfinition derselben also vergrößert und der vorher breite
massive Ring verschmäler wird. Um aber bei diesem Aufreiten des Ringes ein Zerreissen zu vermeiden, ist ein mehrmaliges Ausglühen nicht zu umgehen. Bei fünfmaligem Ausglühen ist man indessen bei der jetzt so vollkommenen Masstabillität des im Handel vorkommenden Platinis vor dieser Gefahr vollkommen gesichert.

Die Zeichnung ergibt auf den ersten Blick den Vorzug dieser neuen Form gegen die, wobei das Dehner einen nicht zusammenhängenden Ring bildet, indem diese Vorrichtung mit der Möglichkeit die Farbe selbst tief gesäubter Flüsse genau zu beurtheilen, die möglichste Festigkeit und man darf wohl sagen, eine gewisse Eleganz verbindet.

Hr. Prof. H. Rose in Berlin hat die Güte gehabt, diese neue Form von Platindrahten mannichfach zu Versuchen zu verwenden, und sich über deren Zweckmäßigkeit in sehr anerkennder Weise auszusprechen. 6 (Gelehrte Anzeigen der k. bayer. Akademie der Wissenschaften, 1855, Nr. 15.)

XIV.

Ueber die Prüfung des Chlorkalks mittels Eisenwürfeln; von Dr. G. E. Wittstein.

Aus dessen Vierteljahreschrift für praktische Pharmacie, 1855, Bd. IV S. 555.

Zur Ermittelung der Bleichkraft des Chlorkalks empfahl bekanntlich Graham vor längerer Zeit das reine frischliiferte schwefelsaure Eisenoxydul. Das Versäumen besteht kürzlich darin, daß man 100 Gran Chlorkalk mit 900 Gran Wasser anreibt, etwas absehnen läßt, und von der überstehenden Flüssigkeit so lange zu einer Auflösung von 78 Gran Eisenwürfel gießt, bis ein herausgenommen Tropfen der legirten durch Kalium-schwefelsaure nicht mehr blau wird. Hierbei verwandelt sich der Eisenvitriol in schwefelsaures Eisenoxyd, angeblich nach der Gleichung:

\[\text{CaO} + \text{ClO} + 4 \left(\text{FeO} + \text{SO}_3 \right) = \text{CaCl}_2 + 2 \left(\text{Fe}_2 \text{O}_3 + 2 \text{SO}_3 \right) \]

6 Der selbe schrieb die Verfassern: „Ihre neue Form von Platinstäben erscheint in der That für Letztprüfungszwecke sehr zweckmäßig. Dafür aber hat der Flüss auch beim Ekalten den ganzen inneren Kreis des ringsförmigen Drühts überzieht und sich nicht zu einer Kugel von gleichem Durchmesser zusammenballt, ist man sehr gut im Stande bei intensiven Farbungen die Farbe des Flüsses richtig beurtheilen zu können. Ich habe mich durch manichfaltige Versuche davon überzeugt.“
Der kristallisirte Eisenbitriol = FeO + 3SO₂ + 7H₂O hat die Zahl 1737,5; 4 Aeq. desselben = 6950,0 Theile behörd. also 2 Aeq. oder 200 Theile Sauerstoff, und 78 Theile Eisenbitriol = 2,24 Theile Sauerstoff, welche 10 Theilen Chlor entsprechen. Bären nun 3% von den aus 100 Gran Chloralkali bereiteten 1000 Gran Chloralkaliösion Solution 400 Gran verbraucht worden, um die 78 Gran Eisenbitriol vollständig zu erhärten, so enthielten diese 400 Gran: 2,24 Gran bleichendem Sauerstoff, entsprechend 10 Gran bleichendem Chlor, und in 1000 Gran Solution oder in 100 Gran trockenem Chloralkali befinden sich 5,60 Gran bleichen- der Sauerstoff, entsprechend 25 Gran bleichendem Chlor.

In einer bald darauf im Kunstd. und Gewerbeblatt des polytechnischen Vereins für das Königreich Bayern, Jahrgang 1854 S. 652, erschienenen Abhandlung: „Über die Notwendigkeit einer allgemein gleichförmigen Titration-Methode des Chloralkalis“ äußert sich Hr. Claude über die Gramische Probe folgendermaßen:

„Chloralkalistärke durch Eisenbitriol bestimmen, hat besonders in Deutsch- land viele und da Eingang gefunden, und da diese Probe sich, wie beim Arsenik, auf doppelte Abgabe von Sauerstoff an das Eisenoxydul, nämlich des Sauerstoffes der unterbürigen Säure und des Sauerstoffes aus dem durch das frei gewordene Chlor zerlegten Wasser gründet, sollte man sie unbedingt als zuverlässig ansehen; allein, wie genau man auch verfährt, sich streng am Punkte haltend, wo Kaliumeißenvanad-Auflosung nicht mehr blau oder grünlich gefärbt wird, erhält man immer einen Prozentgehalt, der um einige Grade niedriger ist, als wenn durch arsenige Säure ausgeführt. Der Chlorgeruch ist gegen das Ende der Operation persistent
und doch erhält die Probe noch nicht die braune Farbung, welche das gängliche Verschwinden von Eisenoxydul anzeigen soll. Gerade an diesem Punkte kann nun Chlor genug entwickeln, um einen irren Prozentsgehalt anzeigend und sich zum Nachteil der Chloralkaliprobe. Bindet man sich hingegen nicht an diesen Punkt, hört man mit dem Zutropfeln der Chloralkaliösung auf, sobald der Chlorgeruch nicht mehr verschwindet, oder ein stabiler Riederstand, sondern nur eine grünliche Farbung erscheint, so hängt das Ergebnis ganz von der Ansicht oder der Willkür des Probenstellers ab, und es ist unmöglich, dass die Resultate übereinstimmend seien, selbst bei Männern vom Fache, die mit voller Sachkenntnis und mit echtem Reagenzien arbeiten, viel weniger, wenn die Probe nur empirisch ausgeführt wird, wie dies meistens im Handel und sogar in Fabriken der Fall ist.

Das Auftreten von freiem Chlor bei der Zuführung von Chloralkaliösung mit Eisenwürstösung, wovon man sich durch den Geruch und durch das sozusagen bleichen der Probe gebliebenen Streifen Lackmuspapier leicht überzeugen kann, beweist, dass der Prozess nicht gemäß der oben angegebenen Gleichung, sondern faktisch auf nachstehende Weise verläuft:

\[
\text{CaO} + \text{ClO} + 2(\text{FeO} + \text{SO}_3) = \text{CaO} + \text{SO}_3, \text{Fe}_2\text{O}_3 + \text{SO}_3, \text{Cl}.
\]

Laßt wir das frei austretende Chlor vor der Hand ganz aus dem Spiele, indem wir annnehmen, es entwickle vollständig (was allerdings nicht der Fall ist), so führt die oben mitgeteilte Gleichung zu folgender Betrachtung:

Um 2 Aeq. = 3475 Gran Eisenwürstöl vollständig zu oxydiren, bedarf man 1 Aeq. = 894 Gran unterchlorigsauren Kalk. Diese 894 Gran unterchlorigsauren Kalk geben aber nur 1 Aeq. = 100 Gran Sauerstoff zur Oxydation des Eisenoxyduls her, und es zeigen somit 3475 Gran Eisenwürstiel zwar nur 100 Gran Sauerstoff an, entsprechen aber doch 894 Gran unterchlorigsauren Kalk oder 888 Gran, d. i. 2 Aeq. bleichendem Chlor: aber 78 Gran Eisenwürstol nehmen zwar nur 2,24 Gran Sauerstoff auf, diese 2,24 Gran Sauerstoff entsprechen aber nicht ihrem gleichen Aeq. Chlor oder 10 Gran, sondern ihrem doppelten Aeq. oder 20 Gran Chlor, oder ihrer gleichen Aeq. unterchlorigsauren Kalk = 20,13 Gran. Folglich zeigen 78 Gran Eisenwürstol nicht 10, sondern 20 Gran bleichendes Chlor oder 20,13 Gran unterchlorigsauren Kalk an.

Dieses theoretische Raisonnement wird aber durch die Praxis nicht bestritten. Wie leicht einzusehen, kann, so lange noch Eisenoxydul vor-
handen ist, das aus dem Chlorkalk frei gewordene Chlor nicht vollständig entweichen, sondern ein Theil dieses Chlor's entzieht dem Eisenvitriol Eisen, wodurch Eisenchlorid und Eisenoxyd entstehen:

$$6 \text{FeO} + 3 \text{Cl}_2 = 2 \text{Fe}_2 \text{O}_3 + 2 \text{Fe}_2 \text{Cl}_3.$$

Je weniger Chlorkalklösung in einer gegebenen Zeit mit dem Eisenvitriol zusammen kommt, um so vollständiger erfolgt die Umwandlung des ausgetretenen Chlors in Eisenchlorid und um so weniger Chlor entweicht. Gegen Ende des Versuchs muss aber das Entweichen von Chlor zunehmen, weil nur noch wenig Eisenoxyd vorhanden ist.

Obgleich man daher mit einer gewissen Menge Chlorkalk weit mehr Eisenvitriol oxydiren kann, als dem oben gegebenen zweiten Schema entspricht, so wird es doch niemals gelingen, mit 1 Aeq. unterchlorigsauren Kalk 4 Aeq. Eisenvitriol zu oxydiren, weil während des Versuchs ungeschickt aller Vorsicht ein Theil des freigewordenen Chlors entweicht. Daß dieses verloren gehende Chlor seine constante Größe ausmacht, sondern bald etwas mehr, bald etwas weniger beträgt, ist begreiflich; in jedem Falle aber, mag dieser Verlust noch so gering sein, wird dadurch der Schluss, daß 78 Gran Eisenvitriol 10 Gran bleichendes Chlor anzeigen, falsch, denn, um 4 Aeq. Eisenvitriol vollständig zu oxydiren, bedarf man mehr als 4 Aeq. unterchlorigsauren Kalk, weil eine Portion Chlor der Einwirkung auf den Eisenvitriol entgeht und entweicht.

Es liegt mithin im eigenen Interesse der Chlorkalk-Fabrikanter, ihren Chlorkalk nicht mit Eisenvitriol auf seine Bleichkraft zu prüfen, weil er dadurch geringhaltiger erscheint, als er in der That ist. Aber auch der Consument darf sich dieser Probe nicht bedienen, denn sie kann ihn zu einer ungerechten Anfrage gegen den Fabrikanter verleiten, wenn dieser seine Ware mit arseniger Säure titriert hat.

XV.

lieber die verstärkten galvanoplastischen Gegenstände, welche
von dem Civilingenieur H. Bouilhet zu Paris ver-
sorgt werden.

Hr. Bouilhet (rue de Bondy no. 56 zu Paris) hat der Société d’En-
couragement die Beschreibung seines (bereits im polytechn. Journal Bb.
CXXXIV S. 47 beprochenen) Verfahrens mitgeteilt, durch welches
man Arbeiten der Gold- und Silberschmiede, die mittels Galvanoplastik
dargestellt worden sind, das ganze massive Ansehen von gegossenen Sachen
geben kann.

Hr. Salvetat beschreibt in einem Gutachten die von Hrn. Bouil-
het befolgte Methode folgendermaßen:

Die ganze Arbeit zerfällt in mehrere Operationen, nämlich in die
Vorarbeitung des Modells, die Anfertigung der Form, die Ablagerung
des Kupfers in der Form, d. h. das galvanoplastische Copiren des Modells,
die Ausfüllung der galvanoplastischen Formen durch Messing, und
einmal die Vereinigung der verschiedenen, das Ganze bildenden Theile mittels
harten Leith.

Neben der Anfertigung des Modells haben wir nichts zu sagen; es
muß mit der möglichsten Vollkommenheit vorgenommen werden, weil die Copien
ohne jede Nacharbeit die Schärfe und Reinheit des Modells erlangen
müssen.

Die Formen bestehen aus Gutta-percha. Man überzieht das Modell
mit einer dünnen Graphitschicht, legt es auf den Boden einer Büchse, die
man unter einer Schraubenpresse anbringt, und läßt allmählich die Büchse
mit Gutta-percha aus, welche das Reliefs annehmen soll, eben-
sfalls mit einer dünnen Graphitschicht versehen wird; diese Gutta-percha
wird vorher durch Erwärmen hinlänglich erweicht. Der Druck muß nach
und nach angewendet werden und wenn er den höchsten Grad erreicht
hat, etwa 15 Minuten andauern. Ist hernach die Gutta-percha gehörig
hart geworden, so wird die Form herausgenommen. Die aus solchen Weise
präparirten Formen sind gute Leiter; man braucht sie nur, ehe man sie
in das Bad bringt, mit einem Pinsel mit etwas Graphit zu über-
ziehen. Man bewahrt die Formen entweder einzeln auf, oder man schweißt
sie durch Erweichung der Masse reihenweise an einander.
Die galvanische Copie bietet nichts Eigentümliches dar, nur bemerken wir, daß der galvanoplastische Niederschlag so viel als möglich, auf einmal, ohne Unterbrechung des Stroms bewirkt werden muß; besonders ist aber darauf zu sehen, daß der schon gebildete Niederschlag nicht an der Luft austrocknet, denn die nach dem neuen Eintauchen niedergeschlagenen Theilchen gehen mit den vorher gebildeten nur eine lose Verbindung ein.

Die mit den gehörigen Vorsichtsmassregeln hervorgebrachten galvanoplastischen Gegenstände sind sehr gleichartig; sie können, ohne ihre Form zu verlieren, ohne daß sich Schiefern ablösen oder Risse entstehen, rothglühend gemacht werden.

Die Niederschläge brauchen nur sehr dünn zu sein, und um ihnen die gehörige Festigkeit zu verleihen, soll man sie mit Messing aus, welches so leichtflüssig ist, daß es die Vertiefungen der galvanoplastischen Copie ausfüllen kann, ehe das Kupfer in Flüss gerät. Das Messing wird in kleine cylindrische Stäbchen geschnitten und der festigen Hülse eines Glasträgers untermischt, welche die Stückchen mit Hilfe von Borax schmilzt und untereinander, so wie mit der galvanoplastischen Hülse durch Leitung verbindet. Der so verstärkte galvanoplastische Gegenstand kann alsdann mit der größten Leichtigkeit gerichtet, beschnitten, befeilt und sogar eiselt werden. Die durchsichtigen Stellen, welche das Modell maßiv gibt und die man herauszumachen muß, erseheinen sehr bald mit Hülse einiger Feilenhöfe, welche fast auf die hintere Seite des Reliefs getrieben werden; ein sehr einfacher Kunstgriff, der darin besteht, auf dem Modell die Umrisse der auszuschneidenden, durchsichtigen Stellen auszutiefe, bildet auf der galvanoplastischen Hülse eine schwache Stelle, die sich dann leicht wegschneiden läßt.

Es lassen sich auf diese Weise eine Menge verschiedener Theile darstellen, die man alsdann durch hartes Lath vereinigen kann.

Hr. Bouthet äußerte sich folgendermaßen über den Zweck, den er zu erreichen gesucht hat:

„Es müßten bei der laufenden Fabrication die stählernen Matrizen, welche stets festbar sind und in Beziehung auf vollkommene Arbeit immer viel zu wünschen übrig lassen, gänzlich umgangen werden.

Man müßt an Arbeit sparen.

Man muß Stücke mit der reichsten Ornamentierung, genau und leicht, jedoch ohne vermehrte Kosten ausführen können.

Man muß auf einmal und mit Hülse von blos drei Arbeitern eine Stück, z. B. einen Tischfuß, darstellen können, welches außerdem die Arbeit eines Gießers, eines Formers, eines Gold- oder Silberschmiedes,
eines Planiers, eines Tiseleurs und eines Graveurs erforderlich haben würde.

Die hohen Gegenstände müssen durch massive erstellt werden können, welche beim Umbaulement und zu Lasergegenständen einen unbetrüglichen Vorteil haben.

Man muss mit wenigen Kosten Kunstgegenstände darstellen können, deren Ausführung durch Gus und Gießerei bedeutende Summen geöffnet haben würde; man muss Gegenstände zu fabrizieren vermögen, welche so dauerhaft als das Kupfer und genaue Copien der Modelle sind, deren Einheiten sie sämtlich wiedergeben.

Das hier beschriebene Verfahren ist in der galvanoplastischen Anstalt von Ch. Christosle zu Paris in vollem Gange. Die nachstenenden Jahren werden die Fabricationsmengen im Jahre 1854 nach:

Im ersten Halbjahr 1854 wurden an galvanoplastischen Hüllen verfertigt: 485 Kilogr. Diese, mit Messing ausgesüllt, stellten fast das Vierfache an Gewicht dar, d. h. 1940 "

Im zweiten Halbjahr 1854 wurden an galvanoplastischen Hüllen gemacht: 625 " Diese haben ausgefüllt ein Gewicht von 2500 "

Zur Analyse des molybdänsauren Bleioryds und dessen Anwendung als Reagens auf Phosphorsäure; von Dr. Bisch.

Aus den Annalen der Chemie und Pharmacie, Septbr. 1855, S. 373.

Die folgende Methode, das Gelbkleierz (molybdänsaures Bleioryd) zu sehen, hat sich als zweckmäßig bewährt, und es möchte kaum eine der anderen eine so große Ausbeute an Schwefelmolybdän, resp. Molybdän- säure liefern.

Das sein gepulvrierte Mineral wird mit concentriram Ammoniak — ungefähre dreimal so viel — übergossen und in die Flüssigkeit Schwefelwaßerstoff getrieben, bis eine dunkelbraunrothe Färbung der Lösung entstanden ist. Man hat jetzt eine Verbindung von Schwefelammonium-Schwefelmolybdän. Am Boden liegt ein schwarzes kristallinisches Pulver und außerdem ein grunes Salz, das sich, aus der Flüssigkeit herausgenommen, in dunkelgrünen, fast durchsichtigen Prismen darstellt. Ohne

Spült man das eben erwähnte schwärze Metallpulver mit Wasser ab und behandelt dasselbe noch einmal mit Ammoniak und Schwefelwasserstoff, so findet eine vollständige Zersetzung des Gelbsiliesters statt.

Verfeit man die, wenigstens mit der doppelten Menge Wasser verdünnte Lösung mit Salzsäure, so fällt das Schwefelmolybdän als braunen flüssiger Niederschlag heraus, woraus dann nach bekannter Methode reines Molybdän säure dargestellt werden kann.

Ist eine Flüssigkeit, die Schwefelwasserstoff enthält, aus Phosphorsäure zu prüfen, so zerstöre man zuvor daselbe durch Kochen mit Königswasser. Es würde sonst ein Theil der Molybdän säure reduziert und eine blaugefärbte Flüssigkeit (molybdän säureses Molybdän oxyd) erhalten werden.

Da die Herstellung des molybdän säuren Bleioroxyds leicht bewirken, dass man das sehr fein getriebene Erg mit färber Naturstoffe recht und allmählich Schwefelsäure hinzufügt. Man beobachte altes Molybdän als Schwefelsalz in Lösung.
Über die Gewinnung des Saffes der Runkelrüben nach dreierlei gebräuchlichen Verschöhnungsarten und über die geistige Gährung dieses Saffes; von Prof. A. Payen.

Entwicklung des Zuckerstoffes in den Runkelrüben.

Die Menge des in dem besonderen Gewebe der Runkelrübe sich absondernden Zuckers wechselt zwischen den Gränzen von 4 bis 15 Procent des Gewichtes der Wurzeln, und in denselben Verhältnissen kann also auch die Alkoholgewinnung wechseln, weil sie ganz von dem Zuckergehalt des Rohmaterials abhängt.

Da die Kosten der Ausziehung des Saffes, der Gährung und der Destillation für ein gleiches Gewicht Runkelrüben so ziemlich dieselben sind, so liegt es offenbar im Interesse der Zuckersfabrikanten, sich sowohl durch ihre eigenen Culturen, als bei ihren Käufern von Landwirten die zuckerreichsten Rüben zu verschaffen, welche überdies in der Regel, bei gleichem Gewichte, auch Rübenlärme geben, welche reicher an fester Substanz oder minder wässrig sind, somit größern Nährungswert besitzen.

Die Rübenvarietät, der Boden, Dünger, die Cultur und Jahreszeiten haben einen großen Einfluß auf den Ertrag an Zucker, folglich auch auf das Ergebnis an Alkohol.

Die beste Rübenvarietät, welche man bis jetzt kennt, ist in dieser Beziehung die schlesische weisse Rübe mit rosenrother Haut; ein gleiches Gewicht versilber im 2—3mal so viel Zucker als die Feldrunkelrübe, und 1½—2mal so viel als die meisten anderen Varietäten.

Der Boden muß ein röthlicher Sandboden, tief, frei von sehendem Wasser, oder durch Drainröhrchen trocken gelegt sein. Das Erdreich muß durch Aßern und Bearbeiten recht locker erhalten werden, die Aussaat in Zeilen geschehen und die Runkelrüben müssen (durch die Zucht aus Samen und Verfütterung) so nahe beisammen erhalten werden, daß sie kein größeres Volum bekommen, als dem Gewicht von 2½ bis 3 Kilog. entspricht. Den Dünger betreffend, ist es am besten denselben bei einer der Einsaat vorausgehenden Cultur anzuwenden; die erste Ausfütterung, zur rechten
Zeit vorgenommen, hat einen sehr günstigen Einfluß auf die Menge und Qualität der Bürzeln.

Gewinnung und Zusammenführung des Runkelrübensaftes.

1) Mittelt Neubmaschinen und Pressen gewonnener Saft.

Bei diesem Verfahren wird nur derjenige Saft gewonnen, welchen die durch die Zähne der Neubmaschine geöffneten Zellen enthalten; denn die verschlossenen und unverlebt gebliebenen Zellen liefern durch das Pressen so gut wie nichts, und nur sehr wenig zuckerhaltige Flüssigkeit vermittels der Endosmose, unter dem Einfluß von (15 bis 20 Proc.) Wasser, mit welchem der Brei während des Reibens begossen wird, um die Zähne von den anhängenden Theilen besser zu befreien.

Der so erhaltene Saft enthält, mit Ausnahme des beinahe ganz aus Zellensubstanz bestehenden Gewebes und des nicht zerriebenen Teiles der Bürzel, so ziemlich alle näheren Bestandtheile und die verschiedenen Substanzen, aus welchen die Runkelrübe selbst besteht, deren mittlere Zusammenführung, eine gute schlesische weisse Varietät vorausgesetzt, folgende ist:

Wasser	83,5
Juter und Spuren von Dextrin (ungefähr 0,1)	10,5
Zellstoff (Cellulose) und Pektine (welche im Brei zurückbleiben)	0,8
Albumin, Gelen und noch zwei andere stickstoffhaltige Substanzen	1,5
Fettwolle	0,1
Acetyl säure, Pektinsäure, Pektin, Humussubstanz, aromatische Substanzen, färberischer Stoff und Kalkstoff, atherisches Del. Chlorsäure, optische Säure, phosphoräure Kal., phosphoräure Magnesia, salzaures Ammoniak, fettige Säure, salpetersaures Schwefelsäure und oralaures Kali, oralaures Natron, Chlornatrium und -Kalium, pectinsaure Kal., pectinares Kali und Natron, Schwefel, Kieselerde, Talg,	3,6

Wie man sieht, hat der Saft eine sehr kompliziert Zusammensetzung, wenn er durch Reiben und Pressen gewonnen wird, wobei eigentlich nur der Zellsaft abgesondert wird; überdies bleiben mehrere Körper in solchem Saft schwebend, welche seine Durchsichtigkeit beeinträchtigen, unter diesen eineartige Körnchen und Substanzen in größerer Menge als in dem durch Maceration mit Wasser gewonnenen Saft, durch welche Operation versehene Körper erhalten wird; es leuchtet daher ein, daß die zur Bildung und Entwicklung der Hefe erforderlichen Elemente, welche in reichlicherer
Menge vorhanden sind, wenn der Saft durch Auspressen des Frisches gewonnen wurde, unter gleichen Umständen eine lebhaftere Gährung und die Erzeugung einer größern Menge Fermenta veranlassen.

2) Durch Maceration mit Wasser gewonnener Saft.

Wir haben so oben bemerkt, inwieweit sich dieser Saft vom vorigen unterscheidet, wodurch es sich erklärt, daß man während der letzten Campagne (1853/54) gezwungen war, der durch Maceration erhaltenen Flüssigkeit ein Drittelhils ihres Volums durch Reiben gewonnenen Saptes zuzusehen. Wahrscheinlich wäre man dessen überhaupt, wenn man einer großen Masse viel Ferment enthaltsender und in voller Gährung befindlicher Flüssigkeit fortwährend Saft in kleinen Quantitäten zufügen würde, bis zur halben Anfüllung einer Kufe innerhalb 10 bis 12 Stunden.

3) Durch Maceration mit Schläpme 8 gewonnener Saft.

Bei diesem Verfahren wird das Wasser zum Theil durch die bei der Destillation des früher erhaltenen und gekochten Saptes verbleibende Flüssigkeit ersetzt. Was dabei an Wasser erspart wird, ist oft unerheblich; man hat aber den Vorteil, den der Gährung nachteiligen Einfluss gewisser zu viel Gyps enthaltsender natürlicher Wasser zu vermeiden.

Der Hauptvorteil dieses Verfahrens besteht jedoch darin, daß in den an Zucker erschöpfsten Rübenschnitten fast alle oben angeführten höheren Behandhalle und Mineralsubstanzen zurückbleiben, welche dann zur Gährung des Bioes dienen können; durch die Vermischung dieser Ruckstände zu den trüben und sahen Futterarten wird überdies eine Erweichung und gährnende Bewegung derselben eingeleitet, wodurch dieselben leichter verdaulich werden.

Ein anderer Vorzug dieses Verfahrens entspringt aus der Gegenwart von Aepelfdsäure, Pettinsäure, Essigsäure und Milchsaure in der Schlämpe; die beiden ersten sind ursprünglich im Saft enthalten, die beiden andern bilden sich erst bei der Gährung; diese Säuren, indem sie aus die pettinsauren Salze, welche die Zellen zusammenkleben, wirken, machen deren Münde leichter durchdringlich und befördern so das Eindringen der Schlämpe und das Austritten des Zuckersaftes.

Gährung des Sattes.

Diese scheinbaren Widersprüche lassen sich wie folgt erklären: Die Bierhefe sowie die analoge Produkte welche sich während der Gährungsaktes verschiedener Fruktäste bilden und das merkwürdige Verhältnis bilden, den Zucker in Alkohol und Kohlensäure umziehen, sind organisierte Wesen, sehr kleine, vegetablistische, fugeförmige Körperchen, die aus einer doppelten Zellenmembran oder einem sphäroidischen Bläschen bestehen, welches von den organischen und mineralischen Substanzen erfüllt ist, die in allen jungen Pflanzenorganismen vorhanden und in der That für das Leben und die Entwicklung oder für die Reproduction dieser mikrocosmischen Wesen unentbehrlich sind.

Jedes dieser Körnchen, welche in zahllerloser Menge vereinigt, die teigartige Substanz bildet, die man Hefe nennt, hat nicht mehr als ein Hundertst Millimeter Durchmesser. Die näheren Bestandtheile dieser winzigen Pflanzengebilde geben wir nachstehend an, und gegenüber die Zusammenstellung der ebenfalls zu den Kryptogamen gehörenden Weestipilze (champignons du couches); man wird in der Zusammenstellung dieser Pflanzengebilde eine große Ähnlichkeit bemerken.

Zusammenstellung der Hefe und der Weestipilze.

<table>
<thead>
<tr>
<th>Substanzen</th>
<th>Hefe</th>
<th>Pilze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stoffhaltige, eisenhaltige Substanzen, Spuren von Schwefel enthaltend</td>
<td>62,7</td>
<td>52</td>
</tr>
<tr>
<td>Fettsubstanzien, wenigstens zweierlei</td>
<td>2,1</td>
<td>4,4</td>
</tr>
<tr>
<td>Befeuch und andere nicht stoffhaltige organishe Substanzen phosphorsaurer Kali, Falterde, Kali und Kieselerde</td>
<td>29,4</td>
<td>38,4</td>
</tr>
<tr>
<td></td>
<td>5,8</td>
<td>5,2</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Es sind solch dieselben organischen und mineralischen Substanzen in diesen beiden Pflanzengebilden enthalten, zwar nicht genau in denselben Mengenverhältnissen, aber doch in ähnlichen; so kommen in beiden die stichförmigsten Substanzen von allen am reichlichsten vor; nach diesen folgen die mit dem Zellstoff verwandten, stichförmsten organischen Substanzen, dann die phosphorsauren Salze oder mineralischen Stoffe, und endlich die Fettsubstanzen. Mit könnten darzuhin, dass dieselben Verhältnisse in der Zusammenlegung zwischen mehreren rudimentären Pflanzengebilden oder mikrosporischen Pilzen und jungen Pflanzenorganismen (z. B. den ausgeschornten Knospen, welche den Blumenstock bilden) bestehen; es genügt aber hier zu bemerken, dass die Entwicklung der Hefe, wie man sie unter dem Mikroskop beobachtete, mit der Hypothese ihrer vegetabilischen Natur ganz übereinstimmt, sowie mit dem Verlauf während des Verlaufs der geistigen Gährung.

Die Flüssigkeiten nämlich, welche, wie die Geißelwürze, die zur Hefebildung dienen, solgisch zur Entwicklung und Reproduction dieses Ferments notwendigen organischen und mineralischen Stoffe enthalten, zeigen bei gebräucherlicher Dichtigkeit (4, 5, 6 bis 8° Baumé) und Temperatur (13 bis 20° R.) unter dem Mikroskop die Hefetüpfeln, welche durch die erzeugten Gasbläschen in der Flüssigkeit schwebend erhalten werden; dieselben vermehren sich, sehr kleine Kügelchen bildend, die in der Nähe des Endes ihrer großen Nase austreten, Knospen darstellend, welche an Größe zunehmen, bis sie den Durchmesser eines Hunderter-Millimeters erreichen; letztere treiben wieder Knospen und erzeugen eines oder zwei Kügelchen, welche neue reproduzieren. Diese gehörig erwachsenden Thatsachen erklären uns, woher auch, nach Verlauf von zwei bis drei Tagen sechs- bis siebenmal so viel Hefe, als zur Einleitung der Gährung angewandt wurde, gesammelt werden kann.

Wenn zufälligerweise die Temperatur der Flüssigkeit sinkt, oder wenn sie nicht über 50,6 bis 60,4° R. stieg, so scheinen die Hefetüpfeln träge (unwirksam) zu werden; sie setzen sich ab, ohne sich zu vermehren und damit hört die Gährung auf oder ermuttelt.

Bei den meisten Gährungen geht ein Theil dieser letzteren Erscheinungen in der Nähe des Bodens der Kufen vor, wo die Temperatur eine niedrigere bleibt oder unter die gehörige Oränge sinkt; die unter diesen Umständen entstandene, am Boden abgelagerte Hefe ist daher weniger wirksam, als die in der Mitte der Flüssigkeit schwebend gebliebene Hefe.

Daraus folgt auch, dass man mit Recht der schwebenden Hefe (Oberhefe) den Vorzug gibt und den Bodensäg der Kufen herausnimmt, um ihn in die Brennfolßen zu schütten, statt sich seiner als Ferment zu bedienen.
Wenn man die Hefe benutzt um die geistige Gährung in Auflösungen von kristallisierten Zuckern, Traubenzucker oder Stärkepfropf hervorzurufen, so bemerkt man, daß die Nüchternen sich nicht entwickeln; im Gegenteil erscheinen sich deren Substanzen, sie gehen sich ab, nachdem sie an ihrem ursprünglichen Gewicht verloren haben, und ihr Vermögen, Gährung hervorzurufen, hört ganz auf.

Dies ist bei der Zusammenlegung der Hefe leicht begreiflich; denn natürlich kann eine Auflösung von kristallisierten Zuckern oder Traubenzucker in Wasser weder die stickstoffhaltigen organischen Materien, noch die Fettsubstanzen, noch die phosphorsauren Salze und Mineralsalze liefern, welche alle zur Bildung, daher auch zur Entwicklung und Vermehrung dieses Fermentes unentbehrlich sind. In letzterm Falle muß daher die Hefe notwendig ausbrennen zu leben und sich zu reproduzieren; man erhält folglich eine geringere Menge von ihr, als man anwende. Die Analyse derselben ergibt auch geringere Mengen der quaternären, stickstoffhaltigen oder einwasserartigen Materien.

Hinsichtlich der Natur der Hefe und der Umstände welche ihre Thatigkeit sowie ihre Reproduction begünstigen, kann sonach kein Zweifel mehr bestehen, und es ist einleuchtend, daß sich in dem durch Maceration mit Wasser erhaltenen starken Saft nicht so viele einwasserige und Fettsubstanzen, noch die sehr schwerlöslichen Mineralsubstanzen finden können, welche sämtlich die Entwicklung der Hefe befördern.

Chemische Vorgänge bei der geistigen Gährung.

Nachdem wir die physiologischen Vorgänge bei der Thatigkeit der Hefe betrachtet haben, wollen wir noch einen Blick auf die dabei stattfindenden chemischen Reaktionen werfen. Wenn beim Rohrzucker oder Rübenzucker Gährung eintritt, so ist die erste Wirfung die Umwandlung dieses Zucker in Frucht- oder Traubenzucker. Letzterer unterscheidet sich von dem kristallisierten Zucker durch seine chemische Zusammenlegung, er enthält nämlich ein Äquivalent Wasser mehr. Die erste Wirfung der Gährung ist sodann die Färbung der Elemente des Wassers, welche sich mit jenen des Zuckers verbinden, daher eine Gewichtsvermehrung dieselben stattfindet.

Nachdem der kristallisierte Zucker in Fruchtszucker umgewandelt ist, oder wenn man gleich Fruchtszucker anwenden, z. B. den Zucker oder Sirup aus Stärke, Trauben, Gerstenwürze, Honig, so zerstört sich der Zuckerstoff unter desselben Einfüssen; seine Elemente vereinigen sich in anderer Ordnung und bilden zwei neue Verbindungen: Alkohol, welcher
Bayern, über die Gewinnung des Saftes der Rübsenrüben.

fast ganz in der gesättigten Flüssigkeit ausgelöst bleibt, und gasförmige Kohlenäure, wovon eine höchstens dem Volum der Flüssigkeit gleichkommmende Menge ausgelöst bleibt, während der größte Theil dieses Gases entweicht, mit einem mehr oder weniger starken, triebendem Geräusch, welches eine mehr oder weniger lebhafte Gährung bezeichnet.

Der Rübenstoff enthält in der Regel sämtlichen Zucker in dem mit dem Rohrzucker identischen kristallisierten Zustand; dieser Zucker erleidet sonach zuerst die Umwandlung in Fruchtsäure, welcher dann sich in Alkohol und Kohlenäure umwandelt. Folgende Tabelle stellt diese Umwandlungen in Äquivalenten dar.

<table>
<thead>
<tr>
<th>Zusammenfassung des Rübenzuckers</th>
<th>Produkt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlenstoff: 12 C = 72</td>
<td>Alkohol:</td>
</tr>
<tr>
<td>Wasserkoh: 11 H = 11</td>
<td>8 C = 48</td>
</tr>
<tr>
<td>Sauerstoff: 11 O = 88</td>
<td>12 H = 12</td>
</tr>
<tr>
<td>Gesamtwäg. 171</td>
<td>4 O = 32</td>
</tr>
<tr>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

Demnach erzeugen 171 Gewichtsteile kristallisierte Zucker, 180 Alkohol und dieser 92 absoluten Alkohol plus 88 Kohlenäure. Da 171 Zucker 92 Alkohol geben, so würden 100 Zucker 53,8 Alkohol erzeugen. Wenn bei diesen Operationen gar kein Verlust stattfände, so müßten 100 Kilogr. Rübsenrüben, welche 10 Kilogr. Zucker enthalten, bei 12° R. also 5,38 Kilogr. oder 6,70 Liter absoluten, oder 13,40 Liter Alkohol von 50° Erwolles liefern.

Die Destillation hat bekanntlich den Zweck, den bei der Gährung aus dem Alkohol von dem größten Theil seines Wassers zu befreien, welches zur Reaction des Ferments auf die Zuckerflüssigkeit unentbehrlich war.

 Folgende Formeln stellen diese Reaction dar:

\[\text{Rohrzucker} + \text{Wasser} = 180 = \text{Fruchtsäure} = \text{Alkohol} + \text{Kohlenäure}, \quad \text{oder} \quad \text{C}_{12}^{16} \text{H}_{22} \text{O}_{11} + \text{H} = \text{C}_{12}^{16} \text{H}_{22} \text{O}_{12} = 2 (\text{C}_2^1 \text{H}_5 \text{O}_2) + 4 \text{CO}_2. \]
Über Torfgewinnung und Torfsteuerung in besonderer Rücksicht auf die k. bayer. Staatsbahnen; von M. Meißner, k. k. östr. Ingenieur.

Aus der Zeitschrift des österreichischen Ingenieur-Bereins, 1855, Nr. 9 und 10.

2) Zum Einwerfen des Torfes sind aus Eisenblech eigene Schaufeln, Schrotpatronen ähnlich, von circa 2 Kubikfüßt Inhalt angefertigt worden, wodurch die Feuerung wesentlich beschleunigt und erleichtert wird. Von solchen Schaufeln sind gleichzeitig drei Stück in Verwendung, die am Tender, vom zweiten Heizer gefüllt, dem ersten vorgelegt und alle drei rast hinter einander in die Bor ausgeleert werden.

3) Die Dampfspannungen von 80 — 90 Pf. für den Quadratzoll werden bei der Torfsteuerung gleichförmig erhalten, jedoch muss, als wesentliche Bedingung, der Torf möglichst homogen und bis in das Innere gut luftströmen sein, besonders bei Berücksichtigung der ökonomischen Resultate. — Es ergab sich nun als Resultat für die genügenden Züge auf der Münchener-Augsburger Bahn ein Consumo von 13 — 14 Kubikfüßt

4) Als besonders günstig stellte die Wahrnehmung sich heraus, dass bei Verwendung von Torf ohne schädliche mineralische Beimischungen die Feuerboren und Rohre gar nicht angegriffen wurden, während das Gegen teil bei der dort ebenfalls versuchweisen Verwendung von Braunofenheln beobachtet worden seyn soll.

Gesucht auf diese günstigen Ergebnisse bei der Torfzüge wollen wir nun die Möglichkeit der Einrichtung des Betriebes ins Auge sassen. Wie schon an 3) bemerkt worden, stellte sich die Notwendigkeit heraus, den zur Feuerung zu benützenden Torf möglichst homogen und trocken zu erhalten. Dies war bei der landesüblichen Erzeugung, wo die oberen Schichten der Lager, aus lauter Burzeln bestehend, als sogenannter Streichtorf, die unteren Moorschichten als Streichtorf gewonnen wurden, nicht möglich; eben so wenig führte das versuchweise Pressen des Torfes zu günstigen Resultaten. Man wählte daher das Verfahren, beide Lager zusammen auszubegeben, ein gleichförmiges Gemenge daraus zu bereiten, dieses in Model zu streichen und zu trocknen.

Nachdem diese Verfahrenweisweise mit Menschenhänden wohl in zeitlicher Vollkommenheit durchgeführt worden war, so führten doch die Grobstigkeit des Bedarfs und die Füße der zu dieser Arbeit geeigneten Jahrestage dazu, das Geschäft durch Anwendung von Maschinenkraft zu vervollkommnen, zu beschleunigen und sich von Segnungsfolgen unabhängig zu machen.

Die f. bayerische Staatsverwaltung entschloss sich somit, umweite Augsburg an einem der größten Torfmoore, dem sogenannten Haspelmoose, 6 Meilen von München, 2 Meilen von Augsburg entfernt, eine Torfgewinnungsanstalt und Depots mit Verwaltung in eigener Regie zu errichten. Nebstdem wurde die Erzeugung von Modelltorf (Streichtorf) mit besonderen Kontrahenten mittelst Handarbeit ebenfalls dort fortgesetzt und somit der ganze Torfbedarf in einer Station gewonnen und aufgezeichnet, behufs der jeweiligen täglichen Versendung an die Stationen Augsburg, Nördlingen und München. — Der jährliche Bedarf von etwa 4000000 Kubikfuß Torf für die Münchner — Nördlinger Bahntiercke gibt einen Begriff
über den Umfang dieses Geschäfts, indem der größte Teil dieses Bedarfs in Hapelmoose selbst erzeugt und gelagert wird, während nur ein kleiner Teil, an anderen Stationen durch Handarbeit gewonnen, zur Ablieferung gelangt.

Es sind im Hapelmoose, neben einigen kleineren, vier große Magazine von 500 Fuß Länge und 48 Fuß Breite, bei 18 Fuß Höhe mit einem Fassungsraume von 450000 — 500000 Kubikfuß Torf errichtet, in welche der erzeugte und lufttrockene Torf mittels Handbahn gezogen wird. Die Erfahrung hat hierbei gelehrt, dass eine einfache Magazinnung auf die Güte des Torfes einen weSENTlichen Einfluss ausübt, indem die Masse eine Art Gährungsprozess durchgeht und sich in Folge dessen ungleich dichter, trofener und für die Feuerung ausgesehener bildet. Längs aller dieser Magazine liegen mit Vordächern geschützte und mit Ausweichen versehene Bahnen; der Torf wird in gedeckten Wagen nach dem täglichen Bedarfe verladen und durch die Kaffenzüge versetzt.

Die eigentliche Torfgewinnung im Hapelmoose zerfällt in zwei Theile:

1) Die Gewinnung des Torfes mittels Handarbeit allein. Bei dieser Methode werden zwei Gattungen Torf hervorgebracht, nämlich:

a) flärscher Modeltorf aus einer Masse, wo die Fasern gegen das Moorige überwiegend sind; dieser Torf ist leichter, weniger compact als jener der zweiten Gattung, und hat daher einen geringen Preiss;

b) reiner Modeltorf, zum größten Theile aus einer moorigen gleichförmigen Masse, mit geringer Beimischung von faserigen Stoffen, bestehend.

Sodann die Torfsiegel durch Abtrocknen einige Consistenz erlangt haben, stellt man sie auf die Leine. In dem Masse des vorstehenden Trockenwerdens lagert man die Ziegel mit ihrer breiten Fläche in Häufen über einander, welche man sodann in ringsförmige sogenannte Hoblhaufen umwandelt.
Meißner, über Torfgewinnung und Torfeuerung

Bei einem gewöhnlichen Taglohn von 24 Kr. für Weihgen und 36 Kr. rhein. für Männer, der sich bei Berufungarbeil auf 48 bis 60 Kr. rhein. erhöht, stellen sich die Unkosten dieser Erzeugungsmethode für 1000 Stück Torfziegel wie folgt:

- für das Stechen in der ganzen Tiefe und Modeln in den Formen 45 Kr. für das Ausreifen (d. h. Auffanten) 3 "
- für das Hanteln (d. h. in Haufen über einander schichten) 4 "
- für das Herstellen der Hohlhaufen 9 "
- für das Aussortieren der schlechten Ziegel 9 "
- für das Einführen auf Handarbeiten, jedesmal 120 Stück fassend, bei 500 Fuß Distanz, wird geshift 41 "
- für das Ausschichten im Magazine 8 "

zusammen 1 Eld. 59 Kr.

Von diesem Modeltorje gehen 716 Stück auf 54 Kubikfuß; folglich sind die Unkosten für den Kubikfuß \(\frac{119 \text{ Kr.} \times 1000}{716 \times 54} \) oder 3,07 Kr. rhein.

loco Magazin.

Soll dieser Torf verbrannt werden, so ergeben sich hierzu noch die Verladungsfreien für je 530 Kubikfuß 40 Kr., also für den Kubikfuß 0,07 "

Totalbetrag 3,14 Kr. rhein.

Sind die Torßchichten der Art, daß sich die Entwässerung unter der schwier vornehmen läßt, oder es überhaupt mehr flüssige Massen vorhanden, so wird auch nur die erste Cattung flüssiger Modeltorfe erzeugt. Für diesen zahlt man den Contrahenten ins Magazin gesellt für 1000 Ziegel 1 Gulden 48 Kr.

Da von diesem sich weniger in gleichen Raum zusammenthichteten, so gehöre gewöhnlich nur 633 Stück auf 54 Kubikfuß; folglich löset 1 Kubikfuß mit Allem und Jedem \(\frac{108 \text{ Kr.} \times 1000}{633 \times 54} \) oder 3,16 Kr., wovon somit beide Cattungen gleiche Preise haben.
Auf anderen Stationen wird auch flüssiger ordnärer Stichtorf der Kubiffuß zu 2,25 Kr. geliefert, der aber natürlich in Bezug der Dualität bedeutend geringer ist.

Die Unvollkommenheit der Durchmischung der verschiedenenartigen Schichten des Torflagers und die davon herrührende ungleiche Dualität führten zu der unbedingten Notwendigkeit einer innigen Mischung des gewonnenen rohen Materials für die Erzeugung eines gleichförmigen, möglicher dichten Torfes. Zu dem Ende ist ein Maschinenapparat angelegt worden, bestehend aus einer fortlaufenden Reihe eiserner Walzen mit starken Stacheln, wie an den Mörtelmaschinen, die in Kufen arbeiten, in welchen die eingebrachte Torfmasse (flüssige und moorige) zusammen durch Wasserguss verbündet und durch die Walzen zu einem homogenen Brei verarbeitet wird. Man hat nun in Berücksichtigung der lokalen Verhältnisse im Haspelmoor nach Annahme dieser Verfahrensweise nachstehende Einrichtung getroffen:

Vor jeder Walze an der eigentlichen Triebwelle liegt eine andere kleinere Walze mit Stiften behufs der Behinderung der Arbeitsswalze. Die zu diesem Zweck neu konstruierten Maschinen erhielten die Einrichtung, eine jede Arbeitsswalze für sich auslöszen zu können, was früher nicht der Fall war.

Die Walzen machen 50 Umgänge pro Minute, und wenn drei Walzen continuirlich, nämlich 12 Stunden täglich, arbeiten, so liefern sie in jeder Woche ein Materialquantum zu 180000 Stück Torfziegel.

Die von den Kippwagen, entweder von Natur hinreichend feuchte oder mit Beimischung von Wasser gehörig feucht gemachte, in die Arbeitskufen eingebrachte Torfmasse fällt durchgearbeitet von der Maschine wieder in Kippten von 54 Kubiffuß Inhalt und wird auf Hülfsbahnen in
die Modellschlagplätze verführt, wie schon früher erwähnt, dem Torfe in Modellen die Ziegelform gegeben wird.

Der so erzeugte Torf bedarf des Ausstellens auf die hohe Kante nicht, sondern wird nach einiger Abtrocknung sogleich ausgesetzt und im weiteren Verlaufe der Trocknung in Hohlhaufen gebracht, aus denen man sogleich die Verführung auf den Hülsbahnen zu den Magazinen und da selbst die Einführung vornimmt. Auch für diesen Torf ist die Lagerung bis zum nächsten Sommer ein wesentliches Erforderniss; das Sortiren wird gänzlich erspart.

Bei diesem Vorgange in der Erzeugung ergaben sich für je 1000 Ziegel folgende Unterkosten, wobei jedoch sämtliche Arbeiten an einzelne Parteiführer in Accord gegeben waren, nämlich:

für das Graben der Torfmasse und Verladen in die Kippwagen: 18 Kr.
für die Bedienung der schiefen Ebene: Eintäumung in die Walzen: 10 Kr.
Verladen des von den Walzen kommenden Breises und Versführen auf die Torfschlagplätze: 7 Kr.

für das Schlagen in Model: 14 ½ Kr.
Aussetzen: 3 Kr.
Hohlhaufen bilden: 9 Kr.
Einführen und Einfichten ins Magazin mittels der Hülsbahnen: 30 Kr.

zusammen 1 Gld. 31 ½ Kr.

Hierzu kommen die Kosten aus den Maschinen; diese betragen für 15000 Stück:

6 Maschinen taglöhne à 2 Gld.: 12 Kr.
6 Heizer à 1 Gulden: 6 Kr.
2 Mann für den Dienst der schiefen Ebene à 36 Kr.: 12 Kr.
1000 Kub. Torfsabsätze und sonstiges Knippelholz zur Feuerung: 33 20 Kr.

zusammen 52 32 Kr.
gibt 17 ½ Kr.

Summa 1 Gld. 49 Kr.

Von dieser Torfart wurden 1210 Stück auf 54 Kubikfüss; folglich kostet der Kubifikus: 1210 × 109 Kr. = 1000 × 54 = 1210 × 109 Kr. = 2,44 Kr.

Für die Versendung kommen noch die Ausladesosten von 40 Kr.

für je 530 Kubikfüss. (Inhalt eines Wagens) zu zurechnen mit:

1210 × 0,27: 2,51 Kr.

Zusammen 2,51 Kr.
Somit kommt der Maschinentorf, ungerechnet der besseren Qualität, billiger, als der mit Handarbeit erzeugte. Hierbei wurden jedoch nicht in Betracht gezogen:

Die Verinteressung und Erhaltung der Maschinen und sonstiger Einrichtung, die wohl das Gleichgewicht im Preise herstellen dürften, da sie wenigstens ein Capital von 20000 Gulden in Anspruch nehmen und bedeutender Abschlag unterliegen.

Ein weiterer Gegenstand der Erörterung ist die Berechnung der Kosten für eine Melle Fahrbetrieb nach dem Vorhergeschilderten. In günstigen Steigungen betrug, wie schon Eingang erwähnt, für die gemischten Züge das Verbrauchskquantum für die Melle 26 – 28 Kubikfuß Torf; in ungünstigen Verhältnissen, d. i. bei 1/100 Steigung, 48 – 50 Kubikfuß.

Der Durchschnittspreis für alle angefaßten Forschungssachen zu 3,16 Kr., 2,25 Kr., 2,51 Kr. ergibt sich mit 2,64 für den Kubikfuß. Es waren somit die Kosten des Feuerungsmaterials für eine Fahreinheit bei günstigen Verhältnissen 27 Gulden, zu 2,64 Kr. 1 Gulden 11 Kr. rh. bei günstigen Verhältnissen 49 Kubikfuß zu 2,64 Kr. 9,4 Gulden 59½ Kr.

oder auf Conventionsmünze reduziert im ersten Falle 1 " 48 " — Gulden 59½ Kr.

im zweiten Falle 1 " 48 " — Gulden 59½ Kr.

Mit diesen Resultaten den Holzpreis in der Nähe München's in Vergleich gestellt, der für 1 Klafter weißen Holzes in 42jährigen Scheiben auf 12 Gulden rhein. zu stechen kommt, oder, auf 30jähriges in Conventionsmünze reduziert, 7 Gulden 8 Kr. Conv. Münze beträgt, und von welchem legteren für die Fahreinheit, wie bekannt, bei schweren Zügen 0,25 bis 0,4 Klafter benötigt wird, sowie bei dem Umstände, als Kohlen nur aus weit entfernten Gegenden bezogen werden können, muß die Einführung der Torfsteuerung für den Betrieb der Bahnen in Altbayern einen günstigen Erfolg erzielen. 10

MISCELLEN

Maas- und Gewichtseinheit.

Wie bei der Industrie-Ausstellung in München, so ist bei jener in Paris ein Ausspruch zu Gunsten einer Maas- und Gewichtseinheit erfolgt, und zwar in folgender Erklärung: „Die unterzeichneten Mitglieder der internationalen Jury der allgemeinen Ausstellung zu Paris oder Commissar der Regierungen bei dieser Ausstellung erklärten, daß nach ihrer weithin durchsetzten Übereinkunft eine der genannten und die glückliche Annahme aller Nationen durch die Industrie am meisten beschleunigenden Maßregeln in der Annahme eines gleichmaßigen Maas- und Gewichtssystems bestünde. So wäre dies gewissermaßen eine gemeinsame Sprache, die auf allen Punkt der Welt gesprochen und verstanden würde. In Rücksicht auf jeden einzelnen Staat insbesondere glauben sie, daß allen benennigen, die sich mit Induktiv als Chefs von Stabilitäten oder Haushalten, als Ingenieure, Beamte und Arbeiter beschäftigen, eine solide Zeit gewonnen werden würde, wenn dieses gleichmäßige System der Maass und Gewichte auf deutscher Basis begründet wäre, so daß die Theile und die Vielsen einer jeder die Einheiten befriedigend die einen das Zehntausende der anderen seien. Diese Beierparnts würde noch viel größer sein, wenn die verschiedenen, für Längen-, Flächen- und Körpermaße, Gewicht und Münze angenommenen Einheiten von einander abgeleitet wurden gemäß einem von der Zeit behaupten Gründen und Einheit. Sie sind entweder der Meinung, daß die betreffende Gewohnheit der verschieden Zähne, die Einheiten des Gewichts und Maas mit verschiedenen durch die Jahrhunderte bestehenden Benennungen zu bezeichnen, kein Hindernis bilden würde; denn nichts stünde für die mittleren Fälle im Wege die alten Namen der neuen Einheiten beizubehalten. Denn nach glauben sie für andere der Regierungen und aller Aufstellungen, welche Freunde der Civilisation und der allgemeinen Einrichtung der Welt sind, den Gedanken eines gleichmäßigen Systems der Gewichte und Maas auf deutscher Grundlage - legierter sowohl was die Theile, als was die Vielsen, als auch was die Verhältnisse der Gewichts- und Maas einheiten unter einander betrachtet mit Nachdruck empfehlen zu müssen.“ (Gegenbahnzeitung, 1855, Nr. 38.)

Verwendung von Bohr- und Drehspänen.

Anwendung des Kautschuks und der Gutta-percha zu Maschinentheilen, anstatt Holz.

M. G. Newton in London ließ sich am 2. April 1854 die Anwendung von geschweiftem Kautschuk, mit oder ohne Schellack, sowie von geschweifelter Gutta-percha als Material für Maschinentheile patentieren, welche leicht und fest, dabei aber nicht zerbrechlich sein müssen.

Sollen hiernach Spindeln für Vor- und Feinspinnmaschinen verfertigt werden, so gebe er Formen und Methoden, die mit dem Spindelzylinder in Verbindung zu bringen sind, und die erforderliche Stärke der Spindel zu erzielen, wird als Kern ein Eisen- oder Stahlstäbchen in die Form eingesetzt und mit dem plastischen Material verbunden. Um Spindel, Gumm- und andere Walzen für die Vor- und Feinspinnmaschinen zu verfertigen, wird ein Metallkern, welcher die Achse der Walze zu bilden hat, als Kern in der Form eingesetzt.

Zur Erstättung der Schützen für Wechselsäfte ist diese kühle Compositionsform so geeignet, weil an den Enden solcher Platten leicht Metallblechblech angebracht werden kann, so wie oben in der Mitte die Verbindung mit der Spindel für die Gummisäule. Diese Stäbe werden mit der in blassem Zustande befindlichen Composition in die Schützenform gebracht, eine Vereinigung der Composition mit dem Metall ist durch Druck leicht herzustellen.

Für Artikel, bei denen ein Zerbrechen nicht zu befürchten ist, kann man plastischem Composition Rohstoffe, Sagelsäure, Baumwollfasern usw. einverleiben, im Verhältniss von 1 Gewichtsteil aus 2 Gewichtsteilen der Composition.

Um die plastische Compositionsart Kautschuklager anstatt Bronze anzuwenden, werden 75 Prozent oder das gleiche Gewicht Graphit einverleibt; man erhält so eine Substanz welche durch Reibung nicht abgenutzt wird und daher eine hohe Dauer annullirt. Die Lager werden auf obengenannte Weise geformt und nach unten Druck der Hülse ausgeglaubt. (London Journal of arts, Septemb. 1855, S. 199.)

Bonelli's unterfeinschfell Express-Telegraphenleistungen.

Nr. Bonelli soll eine neue Composition unterfeinscher Telegrafenleistungen erschaffen haben, welche deren Kosten beträchtlich (um mehr als die Hälfte) vermindert. — Nach den bis jetzt darüber bekannt gewordenen Notizen werden zweifellos die gewöhnlichen mit einer Einführungshülse versehenen Teile nur an beiden Enden, auf Strecken von 3 bis 4 Seemile von Meer bis Meer, und zwar dann in das tiefe Wasser nur gewöhnliche isolirte Kupferschläuche, zu deren Herstellung er statt Gutta-percha eine braune Masse benützt, welche an der Luft weich ist, im Wasser aber härte. Dadurch würde in der That nicht allein an Material- und Fabrikmachekosten, sondern auch an den Kosten des Transports und der Auslegung erheblich erwartet werden, die feinere beim Herstellen unterfeinscher Leitungen gemachten Erfahrungen sind allerdings nicht geeignet, das Vertrauen in diese Erfindung zu erwecken, indem sie die bisher noch zu unvollkommen bekannt geworden, um über ihren Werth urteilen zu können. (Zeitschrift des deutsch-österreichischen Telegraphen- Vereins, Juli 1855.)
Über einen bedeutenden Arsenisgehalt geringer Papierarten, besonders des grauen Filtrirpapiers (Loschpapiers); von Dr. H. Bořl.

Verfahren, aus den gemischten Geweben die Wolle oder Baumwolle für sich zu gewinnen; von L. Jullian.

Die Zucker- und Spiritusfabrik der Herrn. Robert und Comp. zu Selowig in Mähr.}

Das rechteckige Quadrat von Gebäuden nebst dem unmittelbar zur Fassbierung brauchbaren Lande, umfasst die Fläche von 15 Zehren oder 24000 Quadratfuß. Dem Mißbrauch ist durch Vertrag mit der Gemeinde der Dominanz eine Fläche von 1000 Zehren gewidmet, wovon noch über 200 Zehren eigene geschätzte nach Grünanlage. Umgrenzt der fortfälligen Guille, welche 350—400 Gr. Mühlen pro Zehren liefert, beschäftigt diese flächenhaft quantitativ die Fabrik noch nicht genügend; sie könnte mit der vorhandenen noch für 100,000 Gr. verfeinerte Mühlen beschafften Einrichtung, das ungleich größere Mühlenquantum von etwa 600,000 Gr. oder 90,000 Gr. feiner Mühlen monatlich, während der Baumwolle verarbeitet wurde, konnte neben dem eigenen Mühlen von 20 bis 25,000 Gr. noch sehr leicht 30,000 Gr. Mühlen anderer Fabriken raffiniert werden, ohne Räume und Einrichtung übermäßige Ansprüche zu nehmen.

Das Kesselhaus der Zuckerfabrik, welches in der Länge 150, in der Tiefe 60 m. In, enthält in einer Reihe 12 Dampfsäulen — 900 Pferdekrafte, wovon 12 festwährend für die Fabrik und Brenneri im Gebrauche sind; der Dampf wird nach mannigfältiger und wiederholter Behandlung als Spießwasser in die Kessel zurückgeführt. — Die Kriegszeit ließen 12 Dampfmaschinen von 6—20 Pferdekrafte, wovon mehrere kleine bloß zur Saft- und Bauscheiben dienen.

Endlich 10 Centrifugalmaschinen.

A. v. Neb

Die ganze Fabrik, welche natürlich mit eigener mechanischer Werksstätte versehen ist, wird durch 400 Gasflammen beleuchtet.

In der Zuckersfabrik zu Selowig hat man durch mehrere Jahre die dreireihe Wechseln zur Saftgewinnung durchgeführt; es wird nämlich mit 12 hydraulischen Pressen der getrockneten Rübenbrei gepresst, andererseits werden Rübenstümpfe im grünen Zustande durch Wärme aufgeschlossen und durch hydrostatischen Druck ausgelaugt. Endlich werden in 22 Pressenförmig Rübenstümpfe getrocknet und in den Rektifikationsapparaten während des Sommers ausgelaugt. Weder die durch Vergleichung der drei Wechsel erhaltenen Resultate hat Dr. Florent Robert vor einiger Zeit einer österreichischen Handelskammer Vorgetragen; Dr. Dr. Kreutzberg sieht das betreffende Gutachten in dem oben erwähnten dritten Heft seiner "Beiträge zur Würdigung der Industrie und Industriellen Öfterreichs" mit, so lassen es hier würdig fortsetzen.

Die Küchen, Pressen und die dazu notwendigen Pumpen sind in ihrer Aufstellung fast gleich, großen Vorschriften unterworfen, erfordern zu ihrer Beleuchtung einen bedeuten Aufwand von Dampf- und Menschennutz, nehmen große Summen in Anspruch für Endeblätter, Herren, Safr, u. und machen eine mechanische Werksstätte durchaus unerheblich; da aber jede Press rechte einen gewissen Aufwand an Wasser hat, so ist es daher, dass in der Saftgewinnung allmählich eine Dampfmaschine eingesetzt ist, die einen großen Unterschied macht, die vollkommen genügen, ohne dass sie ein hohes Verbrinungen verursachen.

Die Stärke ist die ständig bekannt, ihre Operationen sind am Tage, und dort sind an die ersten verbraucht, und in der allgemeinen Verbreitung, ihren langen Besitz, ein allseitiges Verbreiten, erreicht bei ihrer Verbreitung, das bedeutende Gefühl eines im unbestimmten Hefft erhaltenen lebendigmachten Dobigs. —

Ebenso ihre Werksfaher widersprechen nicht, dass man damit fertig werden könne! In Verbreitung der, das Gemüt beruhigenden Verhaltungs, wäre es gewagt, vielleicht sogar unverantwortlich, diesen Gläuben untergraben zu wollen. —

den Anforderungen einer wissenschaftlichen Theorie in Anwendung gebracht. — Die vielseitig sind nicht die Klagen beizen, die sich darin ohne Compagnie verucht haben, Nach ihren Anrissen „wird die Masse nicht vollständig ausgelagert, der verwendete Saft nimmt durch seine Verdünnung bei der Verbindung mit Wasser, eine große Verweichung in Aufpruch; seine Läuterung ist ungleich und unvollständig, die daraus gewonnenen Produkte sind geringer sowohl in Quantität als Qualität, endlich sind die Absätze schwerwiegend zum Beglauben."

Es lässt sich nicht verkennen, dass bei einer solchen Manipulation die Klagen vollkommen gegründet sind, während sie bei einer gut eingerichteten und zweckmäßig betriebenen Macerationen sammt und sund in nichts gesellen. Zur Befestigung aller dieser Nachteile ist hinreichend, die Temperatur von 70° M. beim Erwärmen der Masse nicht zu überschreiten, die Gesammtabatte in einer Temperatur von 68° bis 80° M. zu halten; den hydrostatischen Druck so zu regeln, dass der Ausfluss constante, gleichmäßig und so langsam ist, dass das Wasser, welches in den Saft schichtenweise zu verbringen, nicht schneller durch die Masse schiebt, als der fließige Masse saft das Zellengewebe zu verlassen vermag. Bei dem oben angegebenen Zutand der Temperatur wird jede Maceration begünstigt, und bei der Langsamkeit und Regelmäßigkeit der Operation wird nicht nur die Masse vollständig ausgelagert, sondern bei höher grädiger Masse wird dieses Verfahren weniger Wasser dem Masse satte heigemeint, als man gepleget ist auf die Masse die füllen, wenn man den Satz eben so vollständig ansprechen will."

teresse der Landwirtschaft, als in jenem der Zuckersüße selbst, dieses Ver-
sehen um so weniger allgemein zu empfinden sei, als der Kostenaufwand für beide
Operationen nicht unbedeutend größer sei, als für die direkte Verarbeitung der
grünen Mäde, ohne in der Quantität aber in der Qualität des gewonnenen Pro-
duktes eine Einschränkung dafür zu bieten. — Demnach geschieht aber läst sich nicht
übersehen, dass es Fälle geben könne, wo diese Industrie dennoch nicht ohne
Nügen betrieben werden mag. Sie genügt den Vorteil, das ganze Jahr
regelmäßig sortieren zu können, und gestattet durch eine vorzeitige Bemühung
der Anlage Kapital wie des angestelltes Arbeits- und Ausstattungspersonals. — Da
die Mäde im getrockneten Zustande nicht mehr fruchtbar verursacht aus einer Ent-
schärfung von 20 Meilen, als dieselbe im grünen Zustande aus einer Entfernung
von zwei Meilen, so zeigt einem solchen Einfluss eine Ränderliche von 1200
Quadratmeilen zur Verfügung, während dieser Raum auf 12 Quadratmeilen im
zweiten Fall zusammengenommen. Eine solche Anzahl mit großen Kapitalien
ausgerüstet sehe in der Kategorie einer Massenre, kann ebenso gut in der Höhe
einer großen Stadt, und am vortheilhaftesten auf den Kreuzungen der Eisen-
häfen, der Fluss- und Kanalschifffahrt, und den übrigen Communicationsmitteln
gelegert werden."

"Der Zuckerfabrikant aus grünen Mäden ist gewissermaassen an die Technik ge-
bunden; allen Anlässen der Jahreszeiten und der Mutterungsverhältnisse seiner
nächsten Umgebung unvernünftig preisgegeben; er ist allen Wechselsätzen der Witter-
für und Laune einiger Einstelligen seiner Nachbarschaft dienstbar, und bleibt ver-
vertreibt, dem Nübenproducenten, es mag erstlese Groß- oder Kleinbürger sein, als
Rechnungsleute sein. — Der Zuckerzeuger aus trockenen Mäden dagegen hat
gänzlich und unangefochten Provinz zu seiner Verfügung, läst Nüben bauen, wo
Woden und klimatische Verhältnisse dieser Cultur sowohl in Hinsicht der Quantität
as der Qualität zugunsten, und kann noch diejenigen Localitäten wählen, wo der
Preis des Brennmaterials und Arbeitsobliges seiner Realisation entspricht. Eine
unüblicherenfalls vorgeschaltete Unterbrechung in der Fabrikation ist für denselben
nur ein Ersatzlos, ohne Einfluss auf die Qualität des Rohstoffes; während ein
anderer Fall für seiner auf den zwei andern Verheben arbeitenden Nüben ver-
vertreibend sein kann. Eine Trockennachle, welche bei der Vereinigung und
Einsafeheit ihrer Anlagen keine großen Kapitalien an Anpruch nimmt, kann leicht
ohne großen Nachtheil aufgegeben werden und eine andere Befähigung bekommen.
Wert des frischen Mahl der Localität, ihrer Aussicht, kann sie leicht anderswohin
verlegt werden. — Die Ausgabe 2,000,000 Ginter Mäden im getrockneten Zu-
stande auf einem Punkt zu verarbeiten, mag noch leicht zu lösen sein, während
und die Verarbeitung von 500,000 Gintern im frischen Zustande sogar bei den größten
Verhältnissen sehr schwer zu leisten ist. Wenn auch der Vorteil, den die
Verarbeitung der grünen Mäde gewährt, denjenigen obliegt den man aus der
Verarbeitung der grünen Mäden zu ziehen im Stande ist, kann es dennoch für einen großen Capitalisten den Nügen bringend erfreuen, einen ermög-
sen teilweise Gewinn auf ein größeres Quantum übertragen zu können."

"Es ist aber nicht an der Stelle, dass diese Manipulationsmethode in ihrer
Durchführung noch bei Weitem mehr Aufmerksamkeit erfordert, als diejenige
der Marerutation aus grünen Mäden. Die Ausgabe, die Nüben zu schneiden ohne sie
 durch Brücken zu befestigen, und zu trocknen, ohne sie zu zerschneiden, ist bei
Weitem nicht als gelöst zu betrachten, und heisst die Hauptfrage ungelöst."

"Wenn nun auch dieses Fabrikationsverfahren wie es in seiner Unzuverlässig-
heit besitzt, sowohl vom industriellen als wirtschaftlichen Standpunkte aus eine Ver-
sehiedlung zugibt, so legt es doch im Interesse der Staatsökonomie überaus, und
in dem der Landwirtschaft insbesondere, der Verarbeitung der grünen Mäde den
wohlentwickelten Vorgang einzuräumen."

"In der ersten und öfters gesellten Frage über die Vortheile, die der Zucker-
fabrikant aus der einen oder der andern dieser drei verschiedenen Manipulations-
methoden zu gewärtigen habe, um seine Wahl zu bestimmen, sind die Reiten bei
Weitem nicht geschlossen. Localverhältnisse, der Zufall der Landwirtschaft und
Communicationsmittel, die Bildungshufe der Fabrikanter und der zu Gebote stehen-
den Bevölkerung, die finanziellen und technischen Kräfte, die zu Diensten stehen —
finden von grossen Gewichten und öfters allein beruf den Ausstieg zu geben. Eine
vollständige Einigung der Ansichten in dieser Beziehung dürfte eben so schwierig zu erreichen sein, als die Erzielung eines allgemein religiösen und politischen Glaubensbefrinnigtes.

Über die Bereitung des Weingsteuß aus dem Krapp; von Dr. C. F. Walz.

Dass in der Burgel von Rubia tinctorum eine nicht unbedeutende Menge Zucker enthalten ist, war längst bekannt, und gerade dieser Besonderheit war die Ursache, dass man das seitherige Behandeln des Krapps änderte und dasfelben durch Behandeln mit Schwefelsäure und heißen Wasser dampfen in Gamarine umwandeln. An die Gewinnung des Zuckers oder die Benutzung dieselben auf Alkohol, dachte man erst in der neuen Zeit, und namentlich im südlichen Frankreich besonders durch die hohen Branntweinpreise.

Durch Benützung des Zucker aus Alkohol wird das seitherige Verfahren der Gamarinofsibration in etwas abgeändert; es wird nämlich der gemachtes Krapp mit der 3- bis 4faehen Menge Wasser von 18 bis 20° R. in Digitation gebracht, so dass als möglich ausgespült und abgespült. Die Flüssigkeit wird so lange Zeit sich selbst überlassen. Es scheinen sich die mechanisch unterschrittenen Krapptheile am Boden ab und der klare Auszug wird dann in einer höheren Temperatur in Gährung gebracht, entweder für sich, oder, was noch besser ist, durch Zusatz von etwas Eise. Die Gährung geht bei einer Temperatur von 30 bis 34° R. rasch von Statten. Sobald die Gährung aufgeht, wird die Destillation des Weingsteuß vorgenommen. Hierbei hat man darauf Rücksicht zu nehmen, dass der Kraupauszug sehr stark schaumt; so dass man 3 bis bei einem Pisoerwachsenen Dampfdestillationsapparate die Fällung des Sulfis nur zu drei Biertheilen annehmen, weil sonst schwer ein Aderlaufen der Wäsche in dem Verarbeit und Verfechther erfolgt. Der Weingsteüß selbst, von den 30000. 15 Procent von 0.85 spez. Gewicht erhält, beläuft in hohem Grade starken Krappgeruch, der sich durch bis malige Nettification durchaus nicht vermindert, so dass man den Alkohol, wenn keine weitere Einigung vorgenommen wird, nur zu technischen Zwecken und zur Bereitung der Weingsteüßverbindungen verwenden kann.

Der aus diesem Weingsteüß dargestellte Zucker, nicht rein ebenso wie Spiritus nitri dulcis.

Die verschiedenen bis jetzt vorgenommenen Versuche über gängliche Verfechtung des Geruches geben nur teilweise ein Resultat, sollen aber fortgeführt und seiner Zeit bekannt gemacht werden.

Die Ausbeute an Alkohol hängt natürlich ab von der Wechselhaftheit des Krapps; so viel aber ist fest, dass die Gamarine ein besseres Ansehen erhält, wenn man, wie oben angegeben, die getrockneten und gemahlenen Mürzeln vor der Behandlung mit Schwefelsäure, mit Wasser auszieht und die löslchen Theile möglichst entfern. (Neues Jahrb. f. Pharm. Bd. III S. 217.)

Branntwein aus leichten Lämpchen; von Bros. Dr. Herm. Ludwig in Jena.

In öffentlichen Blättern ist in der letzten Zeit viel von der von Arnould empfohlenen Darstellung von Branntwein aus celluloschaltigen Substanzen, wie

Versfahren die Enden der an die Dampftestel-Platten zu befestigenden Röhren zu verstärken, welches sich William Johnson zu Manchester, am 9. März 1854 patentieren ließ.

Aus dem London Journal of arts, Mai 1855, S. 278.

Die Erfindung betrifft ein Versahren, Röhren mit beiden Enden anzufertigen, wodurch sie mit größerer Sicherheit an Kesselplatten oder andere Gegenstände befestigt werden können. Um diesen Zweck zu erreichen, wird die auf gewöhnliche Weise angestanzte Röhre an dem betreffenden Ende dadurch comprimirt, daß man eine gewisse Röhrenlänge in einen kürzeren Raum preßt, wodurch sie an dieselbe zunehmen muß.

Fig. 24 stellt eine für diesen Zweck construirte Maschine im Langenschnitt dar. Ein starkes gußeisernes Gestell a enthält die Träger h, an welchen die Vörmigen Führungsl e angebracht sind. Innerhalb dieser Führungsl, welche sich mit Hüfte der Stellhaken d drehen lassen, befindet sich ein Schieber e, der durch ein Centricium f abwärts getrieben und durch ein Centricium g wieder aufwärts gesucht werden kann. Beide Centricien l und g befinden sich an einer Welle h, welche durch die Räder i, j in Rotation gesetzt werden. Das letztere wird von der Hauptwelle k aus vermittelt eines Getriebes l in Umdrehung gesetzt. Der Schieber e umfaßt vermöge seiner unteren halbrunden Fläche die eine Hälfte der Röhre n, während die andere Hälfte der Röhre in einer an das Gestell befestigten Form o liegt. Beide sind bei p erweitert und bilden dort eine Höhlung, welche dem zu verstärkenden Ende der Röhre entspricht. An dem Gestell a ist eine Führung q befestigt; dieselbe nimmt

einen verschiebbaren Theil r auf, welcher durch eine an der Welle s angeordnete Kurbel in hin- und hergehende Bewegung gebracht wird. Die runden Theile t, u von verschiedenen Durchmessern bilden die Fortsitzung des Zylinders r. Die Theile t, u sind der Länge nach ausgespalten, wo durch der Theil u die Fähigkeit erlangt, räumlich seines Durchmessers sich auszudehnen oder zusammenzuziehen. Auf der Führung q befinden sich zwei Hervorragungen v, v mit einem Stift w. Dieser Stift tritt durch eine in einer freisenden Vertiefung der Theile t, u befindliche Stange x. Letztere ist schwach conisch, indem sie an ihrem äußeren Ende einen größeren Durchmesser hat, und daher den ausgespaltenen Theil u an dieser Stelle auseinandergebreitet hält. An dem einen Ende der Maschine befinden sich zwei Hervorragungen, wovon die eine y sichtbar ist. Zwischen diesen ist ein Querschnitt z angeordnet, welches um einen Bolzen gedreht werden kann, so das es den Raum zwischen den beiden Theilen y offen läßt.

Die Wirkungsweise der Maschine ist nun folgende. Das vorher erhitzte Ende der Röhre ist, wie die Figur zeigt, im Begriff, in der Vertiefung p comprimirt zu werden. Dementsprechend sich in Folge der Kurbeldrehung der Schieber r und führt den Theil t vorwärts. Während dieser Bewegung dehnt sich der auf der conischen Stange x gleitende Kern u aus, und bildet für die Röhre eine innere Stütze. Bevor dieses geschieht, wurde die Form e durch das Centricium s niedergepreßt, um eine Längenbewegung der Röhre zu verhindern. Nachdem das erhitzte Röhrenende durch das Bortrücken des Theiles t in die Formen gepreßt worden ist und ihre Gestalt p, p angenommen hat, geht die obere Form e in die Höhe; zugleich zieht die Kurbel s den Kern u über die feste Stange x zurück, und da der erste über die dünner werdende Stange gleitet, so zieht er sich vermöge seiner Construction zusammen, so das die Röhre nun vom inneren Drude befreit ist und herausgezogen werden kann, um einen andern Platz zu machen.
XX.

Methode die Siederöhren der Dampföfse zu reinigen, welche sich Ellis und James Rowland zu Manchester, am 17. Februar 1854 patentiren ließen.

Mit einer Abbildung aus Tab. II.

Die Erfindung besteht in der Anwendung eines Apparates, mittels dessen ein Dampfstrom mit großer Geschwindigkeit durch die zu reinigenden Röhrren geblasen werden kann. Fig. 27 stellt den Apparat in Anwendung auf die Reinigung der Locomotiv-Siederöhren im Durchschnitt dar. a ist eine Dampfröhre, welche von der Dampfsammer nach dem Ventil b führt. Durch Niederdrücken der Hanfhabe des Hebels c wird das Ventil b aus seinem Euge gehoben, und der Dampf strömt nun aus der Röhre a durch das Ventil b und durch die biegsame Röhre d in die zu reinigende Röhre, deren Reinigung so auf eine wirksame und rasche Weise bewerkstelligt wird. Die Röhre d ist an ihrem Ende mit einem conischen Mündungsstück versehen, welches man in die Mündung der zu reinigenden Röhre steckt. Auf diese Weise können sämtliche Siederöhren nach einander in sehr kurzer Zeit gereinigt werden.

XXI.

Das Backensutter, neu eingerichtet und beschrieben von Hrn. Mechaniker Ludwig Frerk.

Aus den Mitteilungen des hannoverischen Gewerbevereins, 1855, Heft 4.

Mit Abbildungen aus Tab. II.

Die Drehbank ist in neuerer Zeit dem Metallarbeiter und namentlich dem Mechaniker das unentbehrlichste Werkzeug geworden; sie ist sehr vollkommen, ihre Anwendung erweitert. Das schnelle, gute und bequeme Arbeiten auf ihr hängi sehr viel von den angewandten Hilfsmitteln zum Einspannen, Böhren, Fräsen, Stichelschärfen u. s. w. ab.
Eines der wichtigsten dazu gehörigen Werkzeuge ist das sogenannte B a c e n f u t t e r: ein metallenes Futter mit Backen, welche mittels Schrauben das Arbeitsstück festspannen. Es hält sehr fest, erzeugt keine nachtölligen Kniffe und ist namentlich bequem, um Dräht oder sonstige Cylinder einzuspannen, weil deren Achse sich von selbst parallel zur Spindelachse richtet.

Die Schrauben dieses Futters stehen bei dessen gewöhnlicher Beschaffenheit über seinen Umfries vor, und zwar um so mehr, je tiefer das eingezogene Stück ist. Sie sind der Hand hinderlich, wenn man ganz dicht vor dem Futter drehen muß; Anfänger verleihen sich fortwährend die Hände daran, und zwar unter Umständen gefährlich, selbst Gießbeine sind nicht sicher vor einem solchen Unfalke, wenn z. B. der Stichel abbricht; endlich kann man oft den Support oder selbst die gewöhnliche Vorlage ihrerwegen nicht nahe genug an das Arbeitsstück stellen. Dies veranlaßte mich, das im Folgenden beschriebene Futter zu konstruiren, welches alle Vorzüge des bisherigen ohne dessen eben genannte Nachtheile hat.

Fig. 6 ist die Seiten-, Fig. 7 die Vorderansicht des Futters; Fig. 8 der Längendurchschnitt, und zwar die obere Hälfte nach der Linie a a', die untere nach c c' der Fig. 7; Fig. 9 der Querschnitt nach der Linie e e'.

Auf den vorderen cylindrischen Anlauf von A paßt seit der schmiedeerseine Ring B mit einem Boden B', worin ein Loch, welches so groß als b ist. Sowohl die innere Bodenfläche als die hintere Endfläche des Rings liegen auf dem Kopse A (was durch Ausschleifen genau erreicht wird), und werden durch die acht Stahlschrauben e und 1 festgehalten, so daß die Backen nach seiner Richtung wadseln können. Durch den Ring B sind vier Löcher g gebohrt, welche nach beiden Seiten ausgeschnitten sind. Sie nehmen die vier Schrauben h auf, welche ihre Muttern in den Backen c haben.

Stellt man nun auf den vierzifgen Kopf der Schraube h einen Schlüssel, der in der äußeren Senkung i des Ringes Platz findet, und dreht ihn; so wird, da die Schraube auf beiden Seiten gehalten ist, der Backen sich vor- oder rückwärts bewegen, mithin ein Arbeitsstück fest- oder
looszogen; und zwar wird sich der große Anis der Schraube beim Festzogen gegen den starken äußeren Ring pressen, beim Deffnen der Backen aber, wo wenig Widerstand stattfindet, mit zwei Kreisabschnitten gegen den Körper A legen.

Es ist eine Annahme, dass die Backen sich vermöge der Schrauben auch zurückziehen. Bei der alten Einrichtung musste man sie zurückziehen; paßten sie nun sehr fest, so war dies beschwerlich, waren sie aber etwas zu willig geworden, so fielen sie durch ihre Schwere gegen einander. Ein anderer kleiner Vorzug ist es, dass der Ring B mit dem Boden B' aus einem Ganzen besteht. Leichter kann sich selbst wenn das Arbeitsstück festig geschlagen wird (um z. B. frummen Draht gerade zu richten), durchaus nicht verbiegen; er kann dünn sein, und da er vorn conisch ausgedreht ist, so kann man bis dicht vor den Backen drehen.

In Fig. 9 sind drei der Canalle c und entsprechenden Löcher g leer gemacht, nur in dem einen liegt ein Backen d mit seiner Schraube h.

In Fig. 7 sind die vier Backen d dicht gegen einander geschoben; dann bleibt zwischen den vier Angriffsflächen nur ein sehr geringer Raum, und man kann, wenn man die gedachten Flächen schmal genug macht, den freien Draht einz nghìn. Damit die Backen besser halten, sind die Angriffsflächen gleich einer Festle gebaut.

Fig. 10 zeigt die Seiten- und Bóderansicht eines Backens; in letzterer ist der Hieb sichtbar. In Fig. 11 ist eine der Schrauben h gezeichnet. Backen und Schrauben sind von Federstahl, gehärtet und abgebrannt (federhart).

Wünscht man, dass bei einer Drehung der Schrauben nach rechts die Backen angezogen, was namentlich gut ist, wenn man an ein anderes Schraubensutter gewöhnt ist, so müssen die Schrauben linke Gewinde haben.

Man kann, statt vier, auch drei Backen und Schrauben anwenden; doch ziehe ich ersteres vor. Wenn man bei drei Schrauben eine löst und eine anzieht, so folgt das Arbeitsstück weder der Richtung der einen noch der andern; um dies zu erreichen, muss man alle drei Schrauben gebrauchen. Stellt man dagegen bei vier Schrauben an zwei entgegengesetzt, so folgt es der Richtung derselben, bleibt aber in Bezug auf die zweite hierzu rechtwinklige Richtung unverändert.

Das ganze Futter ist sehr kurz gehalten, damit man zur Vermischung der Vibrationsricht recht dicht am Spindelsager dreht. Es ist angemommen, dass die Spindel höchst ist, sonst müsste man um längere Dach, z. B. Draht zu Schrauben, einzupassen, auch das Futter länger machen. Alle
Ecken und Kanten an denselben sind stark verrundet, was zwar nicht schön ausseh, aber für alles Werkzeug sehr zu empfehlen ist.

Fig. 12 zeigt, halb im Durchschnitt, einen sehr bekannten Schlüssel zu dem Futter. Der Theil k, von weichem Stahl, hat das viereckige Loch. Er ist in das achteckige Holzstück eingeschraubt und wird durch einen eisernen Stift l, welcher in der Zange des Hefteis vernietet ist, festgehalten.

Bei einem großen Futter und mehr grober Arbeit ist der Schlüssel Fig. 13 gut. Er ist ganz von Eisen, bei m ist das Loch eingedorn. Die Kugel und die Dauergriffe liegen gut in der Hand, der Stiel n passt in das Loch o im Körper A und dient dazu, das ganze Futter lose zu schrauben, wenn es sich allzu fest gefest hat, was häufig vorkommt. Für schön gearbeitete Futter, die man gern sauber erhält, ist diese Manier nicht gut. Das Loch wird mit der Zeit ganz länglich, und durch Schießen des Schlüssels verbrucht sich die hintere Fläche des Futteres. Besser ist schon der Hebel Fig. 14. Den Zapfen desselben steckt man in das Loch o, und legt bei p seine Fläche auf das Futter. Am zweckmäßigsten, wenn auch etwas mühsamer zu machen, ist die Zange, welche Fig. 15 und 16 in Börder- und Setienanficht zeigen. Sie besteht aus zwei Theilen von Eisen, welche sich um eine Achse drehen wie ein Zirkelscharnier, und unten runde Zapsen haben, welche in zwei diametral einander gegenüber geboherte Löcher des Futteres gesteckt werden.

Sämtliche Figuren sind in der Hälfte der wahren Größe gezeichnet; doch ändert sich diese natürlich sehr nach der Drehbank.

XXII.

Mit Abbildungen aus Abb. 11.

Die Erfindung besteht in der Anbringung eines Mechanismus an Spinnmaschinen, welcher den Spindeln eine Geschwin digkeit erteilt, die
im umgekehrten Verhältnisse zu der Quantität des auf die Spule gewickelten Materials sich ändert, also beim Beginn des Aufwickelns größer ist und mit dem sich anhäufenden Material und der schwerer werdenden Spule sich vermindert.

Die Figuren 25 und 26 stellen zwei zur Ausführung dieses Zwecks dienliche Vorrichtungen dar. a, b, Fig. 25, sind zwei in entgegengesetzter Lage nebeneinander angeordnete conische Trommeln, deren eine mittelst eines Riemens die andere in Bewegung setzt. Die Trommel a ist an die Achse f befestigt und wird mittelst eines Riemens d oder eines geeigneten Räderwerk's in Rotation gelegt, welche sie sofort der an der Achse o befindlichen Trommel b mithält. Wenn nun der Riemen c von dem breiteren Ende der Trommel a verschoben wird, so vermindert sich die Rotationsgeschwindigkeit der Achse c. Dieses geschieht mit Hilfe des Riemensitzers g, g', welcher durch die Schraube t eine Transversalbewegung erhält.

Fig. 26 zeigt die Anordnung eines Differential-Räderwerks, o ist ein Theil der Hauptschleife; 1, 2 sind die durch einen Riemen d getriebenen festen und lösen Rollen. Beide letzteren befinden sich zwar lose an der Achse o, aber das Winkelrad m fällt an der Rolle 1, und das Winkelrad m² an der Achse o fest, welche die ganze durch Vermittelung der Winkelräder m² von dem Winkelrad m ihr mitgeteilte Bewegung aufnimmt. Dieses geschieht, so lange das Rad m³, welches die Achse der Winkelräder m² trägt, fest steht; lässt man dagegen das Rad m³ rotieren, so wird nur ein Theil obiger Bewegung aber auch nach Umständen gar keine Bewegung übertragen. Hält man daher das Rad m³ fest, wenn das Aufspulen beginnt, und lässt dasselbe, während die Spule sich füllt, mit allmählich sich steigernder Geschwindigkeit rotiren, so wird sich die Geschwindigkeit der Maschine in gleichem Verhältnisse vermindern. Das Rad kann mittelst eines belasteten Bremshebels festgehalten und die Steigerung seiner Geschwindigkeit mittelst einer Anordnung, wie die in Fig. 25 dargestellte, bewerkstelligen werden.
XXIII.

Maschine zum Formen der feuerfesten Tiegel, von Hrn. Reynolds zu Pont-Audemer (Cure-Depart.).

Wir haben in Fig. 30 und 31 diesen Apparat dargestellt, dessen Einrichtung leicht erkenntlich ist.

Um zu formen, nimmt man eine Masse präparierten Thon, den man abwiegt und welcher die Consistenz des Kittes hat. Man nimmt die Splinte von dem Deckel A, der sich um Scharniere in zwei Hälften aufklappen lässt, entblößt dadurch den Kreis B, den man auch wegnimmt, so dass die Form gänzlich frei ist. Man schmiert dieselbe und bringt Thon aus dem Boden C, legt den Kranz B wieder auf und verschließt den Deckel A mittels der Splinte.

Die eiserne Stange D geht durch den Thon und der gut geheizte Dorn treibt auf den Thon, wobei er durch die Stange D, welche der ganzen Länge nach durchgeht und ihn gerade führt, in der geheizten Lage erhalten wird. Darauf führt man Schläge auf den Dorn, der in den Thon getrieben wird, so dass derselbe in den leeren Raum V bis zu dem Deckel B tritt, wo er aufgehalten wird.

Mittels dieser Maschine kann ein Formier mit einem Gehülsen 140 bis 150 Stück Tiegel täglich anfertigen.
Hudson's Fabrication von Gläsern zum Messen der Flüssigkeiten.

XXIV.

Fabrication von Gläsern zum Messen der Flüssigkeiten; von
Hrn. H. Hudson zu South Shields.

Mit Abbildungen auf Tab. II.

Es ist sehr unüblich Gläser zum Messen von Flüssigkeiten (für den allgemeinen Gebrauch) zu graduieren, da jedes aus gewöhnliche Art, durch bloßes Bläsen verfestigte Glas einen etwas abweichenden räumlichen Inhalt hat. Hr. Hudson hat aber alle Schwierigkeiten dadurch geboren, daß er die Gläser in einer Form machte, wo auch dieselbe Graduirung für alle in der nämlichen Form verfestigten Gläser passt. Man erlangt dieses Resultat dadurch, daß man die Meßgläser unter Anwendung von Druck verfestigt. Wenn man ein Globenformiges oder ähnlich gestaltetes Glas dieser Art, wie sie gewöhnlich in Apotheken, in Drogerien, MATERIAL- und in Brandweinlädchen angewendet werden, fabriciren will, so muß man eine geteilte Form haben, deren Innere, wenn sie geschlossen ist, genau die äußere Gestalt des Meßglases hat. In diese Form wird die erforderliche Menge flüssiges Glas geoffen und dann der Kern eingeführt, welcher genau die Form und Größe der inneren Räumlichkeit des Meßglases hat. Aus dem Kern wirkt hernach der Druck einer Presse ein und drückt ihn aus einmal nieder, so daß das Glas durch eine einzige Bewegung dargestellt wird. Der Kern wird daraus herausgezogen, die beiden Hälften der Form werden einander genommen und das Glas herausgenommen und abgestellt. Um die Luft aus der Form zu entfeuchten, wendet man am zweckmäßigsten die Luftpumpe an, indem man die Gläser weit dichter und blasenfrei werden. Wenn die Gläser eine einfache zylinderische, oder die Form eines abgestumpften Keilges und seine bervorhenden Theile haben, so kann man aus einem Stück bestehende, geteilte Formen anwenden, weil sich alls die geformten Gläser nach Begegnung des Kerns leicht herausnehmen lassen. Bei geteilten Formen können die Gläser breite Füße und sonstige Ausladungen haben. Auch die Graduirung kann sogleich beim Formen dargestellt werden, so daß die Gläser ganz fertig aus der Form hervorgehen. Dem Füll gibt man in der Form am besten die Gestalt eines umgekehrten Würfers, weil er sich als solcher schärfer formen läßt; darauf macht man ihn warm und streckt ihn zu der flachen Gestalt aus. Jede Größe oder Sorte von Maßgläsern hat
natürlich ihre besondere Form, welche für das gegebene Normalmaß mit größter Sorgfalt angefertigt worden ist; es ist daher jedes Glas genau so gestaltet und so groß wie die Form, und alle bei der Handarbeit unvermeidlichen Unregelmäßigkeiten werden ganz vermieden.

Fig. 22 ist der senkrechte Durchschnitt der vollständigen Form, Mantel und Kern, im Augenblick der Fabrication eines Glases; Fig. 23 ist der senkrechte Durchschnitt eines fertigen Messglas. A ist die geteilte Form des Mantels, die aus Gussisen besteht und deren Innere die genaue Form des äußeren Glases hat. In diesem Mantel befindet sich das flüssige Glas, welches durch den Kern oder Dorn B gestaltet wird, indem dieser die Glasmasse mittels Druck so auseinander treibt, daß das Innere des Glases C dadurch gebildet wird. Die Mantelform A A ist genau in der Mitte geteilt, und es ist diese Theilung wegen des Fusses D erforderlich, der aus schon erwähnten Gründen anfänglich eine becherförmige Gestalt hat und dann erst ausgebreitet wird, wie die Figuren 22 und 23 zeigen. Der Ausguß E des Glases wird entweder sogleich durch die Form oder später mit der Hand gebildet, jedoch während die Glasmasse noch weich ist. Die Graduirung kann schon während des Preßens durch flache Einschnitte in der Mantelform, oder nach Vollendung des Glases mittels eines Demants, nach einer Schablone hergestellt werden; letzteres Verfahren verdient den Vorzug.

XXV.

Neue Schublehre des Hrn. Mechanikers Klinkworth in Hannover; beschrieben von Karl Karmarsch.

Mit Abbildungen aus Tab. 11

Allgemein bekannt und verbreitet sind die zuerst in Frankreich vorsichtig Schublehren mit eingetiefter Messing- oder Stahlstange, einem am Ende dieser Stange feststehenden Stahlbacken und einem zweiten solchen Backen, welcher mittels seiner Hälfte aus der Stange verschubbbar ist. Diese aus den Werkstätten der Mechaniker bis in die Hände der Schmiede übergegangenen Instrumente — welche man durch Anbringung eines Romans noch weiter vervollkommnet hat — sind äußerst bequem zum Messen
solcher Gegenstände, welche zwischen ihre Bäden eingebracht werden können; allein ihre Dienstleistung ist zu Ende, wenn es sich darum handelt, die Länge eines von einer Fläche hervorspringenden Jaspens, die Höhe eines flachenartigen Abhanges oder vergleichbare Meßinhalte zu messen.

Für Zwecke dieser Art hat Dr. Mechaniker Klinworth die Schublehre konstruiert und bereits in mehreren Exemplaren ausgeführt, welche in Fig. 28 in der Seitenansicht und Fig. 29 in der Frontansicht in wirksamer Größe vorgestellt ist.

Die Stange meßt die Stange e, f ist mit einem stählernen Köpfchen a, b und mit einer Teilverziehung b 100 Millimeter versehen. Aus ihr schiebt sich die meßende Hülse k, l, woran der Stahlbaden c, d festhält; die mittels der Schraube g befestigte Feder h, i steigt sich mit einem Ende auf die Hülse, mit dem anderen auf die Stange, und sichert der ersteren eine sanfte Bewegung wie eine genügend sachte Stellung auf jedes ihr angezwiegenen Maß. Von l bis m ist die Hülse ausgeschnitten und auf dem dadurch gewonnenen, nach dem Innern der Stange hin abgedachten Rande ist ein Nonius angebracht, mit dessen Hülse Zehntel eines Millimeters abgelesen werden können. Da in Fig. 28 die Hülse k, l einige Striche der Stangenstellung verdoppelt, so hat man den Nullpunkt bei p durch Punktierung angedeutet; es sind aber auch noch 10 Millimeter über Null hinaus, bis q, ausgetragen, damit der Nonius für Maße von weniger als 1 Millimeter benötigt werden kann.

Die Art, wie von dem Instrumente Gebrauch gemacht wird, bedarf keiner Erklärung. Um die Höhe irgendeines vorstehenden Theiles zu messen, stellt man das Ende a der Stange auf die Fläche, von welcher desselbe hervorragt; schiebt nun die Hülse so, daß der Baden c, d bei e das Ende des Vorstehens berührt; und liest endlich das Maß mittels Hauptheilung und Nonius ab. Hiernach ergibt sich von selbst, daß der Nullpunkt p der Hauptteilung mit dem Nullstriche des Nonius l zusammenfallen muß, wenn die Endfläche a der Stange bis in die Ebene cd des Badens hineingekehrt ist.

Mit einer Abbildung aus Tab. II.

Seitdem an jeder Locomotive zur Beleuchtung der Bahn Lampen angebracht werden, deren Reflektoren aus parabolischen Metallspiegeln bestehen, hat sich das Bedürfniss der genauen Herstellung dieser Spiegel vermehrt, daß es nicht überflüssig ersehein kann, wenn in nachstehender Beschreibung ein überraschend leichtes Mittel zum Zeichnen der Parabel veröffentlicht wird.

Da diese Beschreibung für einen größeren Kreis von Technikern bestimmt ist, so ist dabei eine Form gewählt worden, die auch ohne mathematische Vorwissensnisse zum Verständniss führt; indes hat der Verfasser nicht verfaßt, für Mathematiker den wissenschaftlichen Beweis des Verfahrens hinzuzufügen.

Die Erklärung der Parabel und ihrer wertvollen Eigenschaften glauben wir übergehen zu können, da sie in den Lehrbüchern der Mathematik und Physik zu finden sind. Für Metallsiegel kommt überdies nur die Eigenschaft in Betracht, daß die Lichtstrahlen, welche von einem bestimmten Punkt (dem Brennpunkt) innerhalb des Spiegels ausgehen, sich an der Spiegelfläche sämtlich so brechen, daß sie parallel der Achse ausströmen.

Construction der Parabel.

Ist die Tiefe ab (der Figur 17) und die Höhe cd gegeben, so ist daraus zunächst der Brennpunkt f zu bestimmen.

Die Ermittlung des Brennpunktes vom Scheitel a ergibt sich, wenn die halbe Höhe cb mit sich selbst multiplizirt und das Produkt durch die vielfache Tiefe ab dividiert wird, d. h.

\[
a f = \frac{6 \times 6}{4 \times 5}, \text{also } \frac{36}{20} \text{ oder } 1 \frac{1}{5}.
\]

Bemerkung ist

\[
(af)^2 : (cb)^2 = af : ab \text{ und } uf = 2af; \text{ also } 4(af)^2 : (cb)^2 = af : ab.
\]

\[
af = \frac{(cb)^2}{4ab}.
\]
Parallel mit eb ziehe man durch ab Linien in beliebiger Entfernung von einander, nach dem Scheitel a hin jedoch näher an einander, und so, daß diese Linien eine am Rande gezogene Senkrechte ns mit durchschnitten.

Ferner ist af von m nach o aufzutragen, so daß also m o gleich af wird.

Hiernach wird der Papierstreifen swvn abgeschnitten und der Punkt o (um welchen man einen schmalen Papierrand stehen lassen kann) mit einer seiner Nadel in dem Brennpunkt f befestigt.

Bei Umbiegung des Streifens um den Brennpunkt durchschneiden nun die Linien g, h, i, k u. i. w. die entsprechenden Linien in den Punkten x, y, z, u u. i. w., welche letzteren die Parabel bilden.3

Daß die andere Seite der Parabel durch weitere Umbiegung des Papierstreifens von a nach d gezeichnet wird, braucht wohl kaum noch erwähnt zu werden.

35 So möge hier der Beweis folgen, daß

\[\begin{align*}
\on &= fc \\
og &= fx \\
oh &= fy \\
\end{align*} \]

In dem Dreieck

\[\begin{align*}
(cf)^2 &= (ch)^2 + (hf)^2, \text{ also auch} \\
(ch)^2 &= (cf)^2 + (ab - af)^2 \text{ und} \\
1. (cf)^2 &= (ch)^2 + (ab)^2 - 2ab \cdot af + (af)^2
\end{align*} \]

Ferner ist

\[\begin{align*}
(ch)^2 : (uf)^2 &= ab : af; \text{ mit hin} \\
(ch)^2 &= ab \cdot (uf)^2 \\
2. (ch)^2 &= ab \cdot 4(af)^2 \text{ und} \\
(af)^2 &= ab \cdot 4(af)^2 \text{ und} \\
(af)^2 &= ab \cdot 4af
\end{align*} \]

Die Gleichungen 1 und 2 vereinigt, gibt

\[\begin{align*}
(cf)^2 &= (ab)^2 + 4ab \cdot af - 2ab \cdot af + (af)^2 \text{ und} \\
(cf)^2 &= (ab)^2 + 2ab \cdot af + (ab)^2; \text{ folglich} \\
ef &= ab + af = on
\end{align*} \]

Für xf = og, yf = oh u. i. w. ist der Beweis natürlich beendet.
XXVII.

Versuche mit dem für die Mittelmeer-Leitung bestimmten Telegraphen-Taue; von Charles Wheatstone.

Journal Bd. CXXXII S. 348 beschrieben sind.

Das Tau war 110 engl. Meilen lang, und enthielt sechs Kupferbänder, deren jeder einen Durchmesser von $\frac{1}{16}$ Zoll besaß und durch einen Guttapercha-Ueberzug von $\frac{1}{10}$ Zoll Diise isolirt war. Zwei spiral-förmig umgewundene dicke Eisenbänder umgaben das ganze innere Tau, und bildeten eine vollständige metallische Hülle von $\frac{1}{8}$ Zoll Diise. Ein Querschnitt des Taues zeigt die sechs Leitungsbänder in einem Kreise von reichlich $\frac{1}{2}$ Zoll Durchmesser gelegen, und etwa $\frac{1}{3}$ Zoll von der Innen- seite der eisernen Umhüllung entfernt. 16

Das Tau lag aufgerollt in einem trockenen Brunnen aus dem Fabrikhof, und einer seiner Enden war in den Raum geführt, wo die Versuche

angestellt werden sollten. Die sechs Drähte waren an diesem Ende der Reihe nach mit 1, 2, 3, 4, 5, 6 und am anderen Ende mit 1’, 2’, 3’, 4’, 5’ und 6’ bezeichnet; durch Hülfsdrähte konnten ferner die Enden 1’ mit 2, 2’ mit 3, 3’ mit 4, 4’ mit 5 und 5’ mit 6 verbunden werden, so daß der Strom in der selben Richtung nach einander alle sechs Drähte oder einige derselben durchlief, je nachdem man die Hülfsverbindungen anbrachte, was im Versuchsraume leicht zu bewerkstelligen war.

Als Stromerzeuger wurde eine isolierte galvanische Batterie von zwölf Kästen mit je zwölf Elementen benutzt, welche schon seit einigen Wochen angelegt war.

Erste Versuchsreihe.

Erster Versuch. Das eine Ende der ganzen durch Aneinanderfügung der sechs Drähte gebildeten, 660 engl. Meilen langen Leitung wurde mit einem Pole der Batterie in Verbindung gebracht, während das andere isolirt blieb. Der Draht lud sich mit negativer Elektricität, wenn sein Ende den Zinkpol berührte, und mit positiver Elektricität, wenn das letzte mit dem Kupferpole in Verbindung stand. Ein nahe bei der Batterie eingeschalteter Galvanometer zeigte das Vorhandensein eines Stromes an, welcher anhielt so lange die Ladung vor sich ging, und ausfiel, sobald dieselbe ihr Maximum erreicht hatte. (Ein schwacher Strom, welcher in Folge mangelhafter Isolation anhielt so lange der Draht mit der Batterie in Verbindung stand, ist hier außer Betracht gelassen.) Wenn der Draht geladen war, und seine Entladung durch Verbindung seines Endes mit der Erde bewirkt wurde, so hatte der entstehende Entladungsstrom stets dieselbe Richtung, die Verbindung mit der Erde mochte an dem der Batterie nächstgelegenen Ende, oder an dem anderen hergestellt werden, d. h. der Strom ging in beiden Fällen von dem Drahte zur Erde in derselben Richtung.

Dritter Versuch. Jeder der beiden Batteriepole wurde mit 220 Meilen Leitung in Verbindung gelegt, und zwischen der Batterie und diesen beiden Leitungsfäden (deben andere Enden isoliert blieben) wurden ähnliche Galvanometer eingeschaltet; dann wurde, so lange die Batterie nur mit einer der beiden Leitungsfäden in Verbindung stand, dieser keine Ladung mitgetheilt, sobald aber auch der andere Pol der Batterie mit der Baterie in Verbindung gebracht wurde, so erhielten sofort beide Leitungsfäden, wie die starken Ablenkungen beider Galvanometernadeln erkennen ließen. Wurde dann das freie Ende der einen Leitung mit der Erde verbunden, so wurde nur diese entladen, die andere blieb vollständig geladen.

Zweite Versuchserie.

der Galvanometer an den Enden des Drahtes, also derjenigen, welche gleich weit von den respektiven Polen entfernt waren, augenblicklich und gleichzeitig abgelenkt, während das in der Mitte der Leitung eingeschaltete Galvanometer erst nach einiger Zeit auffielte. War aber die Verbindung in der Mitte der Leitung unterbrochen statt an dem einen Ende, und wurde dann wieder hergestellt, so wurde das mittlere Galvanometer, also das von der Batterie am weitesten entfernte, zuerst abgelenkt, und später erst die Galvanometer an den Batteriepolen.

Die Vergleichung der beiden leitgedachten Versuche (des vierten und fünften nämlich) lehrt, daß die Erde nicht als bloßer Leiter zu betrachten ist, wie oft angenommen wird. Da bei dem ersten dieser Versuche der Abstand der beiden Erdeleitungen von einander nur einige Yards betrug, so hätten, wenn der zwischen ihnen liegende Erdboden als bloßer Leiter wirkt, die beiden Galvanometer an den Enden der Drahtleitung ebenfalls gleichzeitig abgelenkt werden müssen, wie im leitgedachten Versuche, und wie es der Fall gewesen sein würde, wenn die beiden zur Erde führenden Leitungsdrahte durch ein kurzes Drahtstück verbunden worden wären.

Dritte Versuchsreihe.

Es wurde nämlich beobachtet bei Anwendung einer Drahtlänge von: 0 Meilen eine Ablenkung von 0^0
110 " " " " " $6\frac{1}{2}^0$

220 Meilen eine Ablenfung von 12°
330 " " " 18°
440 " " " 23 1/2°
550 " " " 26°
660 " " " 31°

Siebenter Versuch. Darauf wurde das eine Ende der 660 Meilen langen Leitung bleibend mit der Batterie verbunden, das Galvanometer aber nach einander an den verschiedenen Verbindungsstellen der einzelnen Strecken eingeschaltet. Dann verhielt sich die Stärke des vom Galvanometer angezeigten Stromes umgekehrt wie der Abstand des Galvanometers von der Batterie, und wurde Null am entfernten isolierten Ende der Leitung, wie die folgenden Beobachtungen darhun:

Entfernung des Galvanometers von der Batterie: Meilen. Ablenfung des Galvanometerendes:

<table>
<thead>
<tr>
<th>Meilen</th>
<th>Ablenfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>33 1/2°</td>
</tr>
<tr>
<td>110</td>
<td>31°</td>
</tr>
<tr>
<td>220</td>
<td>25°</td>
</tr>
<tr>
<td>330</td>
<td>15°</td>
</tr>
<tr>
<td>440</td>
<td>12°</td>
</tr>
<tr>
<td>550</td>
<td>5°</td>
</tr>
<tr>
<td>660</td>
<td>0°</td>
</tr>
</tbody>
</table>

1. Element eine Ablenfung von 6°
2. Elemente 14°
3. 19°
4. 28°
5. 32°
6. 36°

Hieraus scheint hervorzugehen, daß der mit seinem Ende mit der Batterie verbundene, sonst aber isolirte Draht auf seiner ganzen Ausbreitung bis zu derselben Grade von Spannung geladen wird, welches auch seine Länge sei; so daß, wenn ein anderer isolirter Draht mit seinem freien Ende verbunden wird, dieser derselben Erscheinungen und in derselben Stärke zeigt, wie wenn er unmittelbar mit der Batterie verbunden worden. Dieser Schluß führt auf einige wichtige praktische Folgerungen, die ich gegenwärtig nicht weiter entwickeln mag, weil sich mir seither noch keine Gelegenheit geboten hat, dieselben der Prüfung durch Versuche zu unterwerfen.
XXVIII.

Die Fähigkeit der Leiter, Ströme verschiedener Batterien gleichzeitig aufzunehmen und die Telegraphie; von Dr. H. M. C. zur Redden.

(Schluss von S. 43 des vorhergehenden Heftes.)
Mit Abbildungen auf Tab. II.

12. So eben wurde auf eine in das diesjährige erste Augustheft dieses Journals (Bd. CXXXVII S. 172) übergegangene Abhandlung des Hrn. Dr. Brix ausführlich gemacht, welche das Problem der gleichzeitigen Telegraphie zum Gegenstande hat und durch ihren historischen und wissenschaftlichen Inhalt zu einigen Bemerkungen und Berichtigungen Veranlassung gibt.

Als der Verfasser im Winter 1852/53 in der Eingang Nr. 1 angeführten Weise die Möglichkeit der Componirung von Strömen und ihrer Gesetze zu prüfen begann, wurde er bald in der Anschauung der gleichzeitigen Leitung entgegengefechter Ströme befangen; denn, so sehr auch diese Annahme den einfachsten und darum freitesten Naturgesetzen widerspricht, die fraglichen Erörterungen sind so tanzend und delikat, daß man leicht auch bei ihrer Beobachtung noch mehr Wunderbares zu sehen glaubt als die wunderbare Einseitigkeit jener Gesetze. Im Januar 1853 suchte er sich von der praktischen Einrichtung der preußischen Telegraphen zu unterrichten und zugleich ein Urtheil zu gewinnen über die Möglichkeit der unmöglich Verwendung jener vermeintlichen Superposition bei den üblichen Apparaten nach eigener Auseinandersetzung, die er sich bekanntlich verneinen mußte. Inzwischen führten seine nur selten anzustellenden Berichte, welche die vermuteten Erörterungen ferner bestätigen und, wenn möglich, Gesetze berufen feststellen sollten, mehr und mehr zu zweifellosen Erörterungen, welche durch Streit und Widerspruch, das heißt der Zweifel an dem gleichzeitigen Vorhandenseyn entgegengefechter Ströme sich erneuerten und endlich mit der Gewißheit des Gegenheils endeten. Es gibt nur eine "Kraft", sie wirkt an und für sich von ihrem Angriffspunkt aus nur nach geraden Linien, auf denen sie sich mit gleichgerichteten summiren kann, ihren gleichen Gegenfag aber hebt sie auf und wird von ihm aufgehoben. Ohne Zweifel sind die Gründe bewußt oder unbewußt die Veranlassung gewesen, daß man, wie Dr. Brix bemerkt, der Frage so wenig Aufmerksamkeit schenkte; allein gerade weil auch in dieser schon so bedeu-
tend gewordenen Anwendung des Galvanismus solche Rätsel und Zweiels
sich fort und fort zeigen, muß man darzuthun bemüht sein, daß auch die
Kraft des Galvanismus den allgemeinen Kraftgesetzen überall folgt (2)
und daß die ihnen widersprechenden Wirkungen desselben (3) einseitigen
als Ausnähmen bestehen, die sich nichtwedrigerweise als scheinbar erweisen
müssen. Als dann erst kann man das Gesetz des Leitungsverstandes als
wiederum verwendbar und als Führer in der vorliegenden Frage erkennen,
der dann kann man zu der Antwort derse fel genan, welche wir
ihre (4) gegeben haben.

13. Nach nie hatte der Verfasser von einer Bemerkung über die in
Rinde stehende Gleichzeitigkeit galvanischer Ström in Leitungen anderweitig
gehört, als ihm eine betreffende Mitteilung der Ginns [sic] Beobach-
tungen in den Hamburger neuen Nachrichten und später im polytech-
nischen Journal von 1854 (Bd. CXXIX S. 191) der von Hrn.
Director Ginns aufgestellte erste Apparat bekannt wurde. Principiell war
der Erf. schon damals gegen diesen Versuch eingestanden, ebenso aber
auch gegen den dort angegebenen Mechanismus, welcher sich dann auch
nach dem Inhalte am Ende jenes Aufsages als völlig unzureichend er-
wiesen hatte. Ohne die anerkannten Werke des Hrn. Director Ginns
angreifen, konnte dennoch der Erf. nach jener Mitteilung, wie jetzt
Hr. Dr. Brix, die Frage nicht als thatsächlich und noch weniger als
vollständig gelöst ansehen, und da er zur Zeit der Beendigung seiner
wissenschaftlichen Prüfung durch sorgsältige Nachfrage und Nachweise
in Erfahrung bringen konnte, ob noch weitere oder andere Arbeiten in
dieser Sache vorhanden seyen, setzte er selbst die seitige fort. Der Weg,
welchen der Erf. hiebei gewählt wurde, ist aus den früheren Nummern
klar zu erscheinen, unter denen Nr. 5 und 6 durch ihren Inhalt die Auf-
gabe (4) vollständig lösen. Nach Vollendung derse fel entnehmen er aus
einer, im Uebrigen noch dem eigenen Urtheil des Referenten völlig un-
verständlichen mündlichen Mitteilung von einem bereits auf telegraphischen
Linien erprobten Halßkeff. Apparat die für ihn erprobte Gewißheit,
 daß der Widerstand W bei beliebiger Stärke in bequemer Form bereits
hergestellt sey, und erfaß daraus, daß ein sogenannter geteilter Elektro-
magnet bereits in Anwendung gelommen sein; er muß daher, nachdem (7)
bereits die Gründe angeführt worden, weßhalb ein solcher von ihm empfohlen
wurde, hier noch bemerken, daß er verglichen schon zu Anfang 1853 zur
Prüfung der elektromagnetischen Wirkungen von Strom-Summern und
Differenzen angewendet hatte. Als hierauf bekannt wurde, daß das preußi-
sche Ministerium die Halßkeff. Erfindung nicht abgelehnt habe, erbte
sich der Erf. am 19. Februar 1855 zur Mitteilung der seitigen, welche
indest bis heute nicht verlangt worden ist. Daher schritt es erst jüngst zur Veröffentlichung dieser Abhandlung, mit der Hoffnung auf diesem Wege zur Enthüllung der wahren Verhältnisse der Frage, so wie des Galvanismus überhaupt das Seinige beitragen zu können, und ebendaher schreibt er nach Erscheinen des (12) angezogenen Auflages zur Veröffentlichung dieser Bemerkungen.

Nach den historischen Bemerkungen in dem letzten bleibt nur eine kurze, das Wesen der Apparate von Frisch und Edlund beschreibende Notiz höchst wünschenswert, sowohl zur Förderung der Sache selbst, als im allgemein wissenschaftlichen Interesse.

14. Durch die seinerzeit für die Praxis der einfacheren Orientierung wegen als unveränderlich bestimmte Stellung aller Leitungsbatterien, wonach ihre gleichnamigen Pole mit der Erde verbunden waren, drängten sich bei dem ersten Aufsauchen der gleichzeitigen Telegraphie wie es schon als einziger Mittel zur Lösung der entgegengesetzten Ströme auf; sobald man sich der Schwankung entbunden, aber von der wissenschaftlichen Basis ausging, mußte man auch zur Verwendung gleichgerichteter Ströme gelangen. In Betreff der letzten wird jetzt mitunter die Ansicht ausgesprochen 17, als finde bei solcher Aufstellung eine Summierung der Ströme statt; auch findet man häufig ein solches Durcheinanderwerfen und selbst Verwerfen der Begriffe von Strom-Quantität, Intensität 23, daß es notwendig ist, mit der Berichtigung jener Summenbildung zugleich die Realität dieser Begriffe hier zu vertreten, so weit wir sie in dem früheren gebraucht haben.

Bei der (4) an Fig. 1 Tab. 1 gezeigten Verbindung zweier Batterien summieren sich nicht die Ströme, wie solche Summenbildung (1) nach Fig. 4 (Tab. 1) für gemeinsame Stromzweige einzelner Batterien gezeigt ist, 18sondern es summieren sich nur ihre Spannungen, während das bewegte elektrische Quantum nicht vermehrt wird. Der erhaltene Strom ist daher dort der einer Batterie aus allen vorhandenen Zellen in der häufig folgenannten Intensitäts-Kupplung, folglich von doppelter Spannung als der der einfachen Batterie, und für den vorliegenden Zweck der Kürze wegen und zur Unterscheidung von einer Stromsumme, der kombinierte Strom genannt. Wir werden dagegen die dort vorhandenen Zellen, ihre Gesamtzahl zu n angenommen, in der Quantitäts-Kupplung verbun

17 Briz, a. a. D.
18 Breck, in der Zeitschrift des deut-sch-österreichischen Telegraphen-Bereins, 1853, Heft 3, S. 1 ff.

* Man lese (im vorhergehenden Text) S. 30 3. 10 v. oben: „durch Spaltung der Ströme und vermehrten Leitungswiderstand.“
den, so würde die erhaltene Zelle das nsache elektrische Quantum aber nur die einfache Spannung der einfachen Zelle liefern. Kurz, es würde diese Combination in dem unveränderlichen Schließungsbogen die nsache Stromstärke hervorbringen von der der einfachen Zelle; jene Batterie aber in dem nsachen Bogen dieselbe Stromstärke wie die einfache Zelle im einfachen Bogen. Ein jeder Strom an sich hat immer eine ganz bestimmte Quantität, Intensität, oder Stärke, und man kann nicht von einem Quantitäts-, Intensität- oder Stärke-Strom sprechen. Ein jeder Strom in aber Bewegung und, welcher Art sie auch sei, wie die Größe oder Quantität jeder Bewegung durch das Produkt aus Geschwindigkeit in bewegtes Quantum oder in die Masse dargestellt wird, so seht sich die Stromstärke aus der Spannung und dem elektrischen Quantum zusammen. Der Fehler liegt hier darin, daß man in unrichtigem Verständnis des Stromes die in ihm repräsentierte Größe der Bewegung mit dem in der Mechanik in diesem Sinne nicht anerkannten Ausdruck „Stärke“ bezeichnet hat. Das elektrische Quantum eines Batterie-Stromes bestimmt sich ceteris paribus aus der Flächengröße der metallischen Elemente der gleichen Zellen, die Spannung aus der Anzahl der Zellen. Diese so kurz wie möglich ge fassten Begriffsbestimmungen werden für den vorliegenden Zweck genügen; wir haben bald ausführlicher darauf zurückkommen zu können.

So wenig man nun in der Mechanik der Ponderabilien, wo gleiche Quantitäten der Bewegung sind, auch allseitig gleiche Wirkungen erwartet, sofern sie bald mehr von der Masse, bald mehr von der Geschwindigkeit abhängen, eben so wenig genügt in der Anwendung des Galvanismus zur Erzielung gewisser Effekte die bloße Herstellung gleicher Quantitäten der Bewegung, der Stromstärken beliebig, bald durch Vermehrung der Spannung, bald durch Vermehrung des elektrischen Quantum. Ein solcher Fall ist der von und in Nr. 10 geblend, nämlich die Abgabe derleben Depesche von einer Station gleichzeitig nach n verschiedenen Richtungen, oder die bestimmte Ausgabe für einen in n gleiche Theile gezeigten Schließungsbogen eine Batterie herzustellen, welche auf allen Theilen dieselbe Wirkung hervorbringt, wie eine gegebene Batterie für sich auf einem der Theile. Es wäre aber nicht im Geiste der Nr. 10 gegebenen Lösung, noch der eben gegebenen Begriffsbestimmungen, noch des Ohm’schen Gesetzes gehandelt, wenn man zu dem angegebenen Zweck eine unbeholfene Säule von unmäßiger Fläche konstruierte, in der vielleicht abendin durch Vergrößerung der Flüssigkeitsstärke ein großer Theil der Kraft verloren ginge. Wohl aber verführt man in seinem Geiste, wenn man, die für richtige Besörderung der Depesche auf einer Linie erforderliche Batterie zu m Zellen von der Fläche 1 angenommen, je die ersten, 2ten... mten Zellen der
Batterien in der Quantitätss-Kupplung verbände und die so erhaltenen im Zellen von nacher Fläche zu einer Batterie in der Intensitäts-Kupplung vereinigte. Nie aber wird man bei einer solchen Stromtheilung aus allen Theilen die gleiche Wirkung der einfachen Batterie auf einem Theile erhalten können durch Erhöhung der Spannung derselben, bei unveränderter Quantität.

13. Wir wüßten hiermit die Erläuterung unserer Begriffebestimmungen an der Frage (10) und dieser selbst schließen, als wir am Ende der Eingangs erwähnten Abhandlung die letztere behandelt haben. Obgleich wir bedauertlich auch auf diese Lösung nicht so tief als sie Veranlassung geben könnte, eingehen dürfen und daher des Näheren ihrer selbst auf den Ort verweisen, so bemerken wir doch, daß wenn sie dort zugegebenen Auslegungen und Anwendungen des O. i. S. betrachtet wäre, mit einer für eine beliebige Telegraphen-Linie genügenden Batterie, ja mit jeder einfachen Zelle eine Kraft gegeben wäre, die, nachdem sie sich zur Ausführung einer gewissen Arbeit tauglich erwiesen hätte, dann auch das beliebig Tätigkeit und Genauigkeit in demselben Augenblit verrichten könnte. Die unwiderstehliche Fassung und Lösung, welche der Aufgabe so eben gegeben, dem in Nr. 10 bemerkten leisten Alles, was für jetzt zu leisten möglich ist, indem sie für jede der Linien die arbeitende Kraft geben, welche ihr auch bei einfacher und einfacher Telegraphie zugewendet wird. Sind die konkurrierenden Leitungen vorkommenderfalls nicht von gleicher Länge, so wird man immer besser thun, auf allen gleichen Widerstände heraufsetzen als durch Einhänden der letztenen in Theile der Batterie die Wirkung der ganzen Batterie zu konsumiren. Bei der a. a. O. angenommenen Theilung würde unsere Trachtens der Haupisthe nach der Leitung schwächerer Widerstände einen Strom empfangen von dem Quantum 1 und der Spannung x, und für die übrigen als gleich angenommenen Leitungen eine Stromsumme in dem Nr. 1 bestimmten Sinne zu gleichmäßiger Vertheilung kommen, nämlich, wenn das Quantum der Zelle mit E bezeichnet wird, ein Strom vom Quantum e in der Spannung 60 und ein weiter von dem Quantum E—e und der Spannung 60—x. Daß x selbst wäre durch die für diese Linie bei einfacher Telegraphie erforderliche Zellenzahl gegeben, indem wir die Größe derselben,

19 Vgl. in der Zeitschrift des deutsch-österreichischen Telegraphen Vereins, 1855, Heft 4, S. 1 79 ff.
wie am angezogenen Orte vorausgesetzt, als gleich der aller gewöhnlich daneben üblichen annehmen.

Sollte es wirklich nach unserer Erfahrung der Aufgabe und Lösung noch jemand rätselhaft erscheinen, daß vielleicht mit einer für die einfache Richtung üblichen Batterie mitunter nach zweiern oder mehreren Richtungen richtig gleichzeitig Depeschen gegeben sind, so ist zu erinnern, daß die Zellengröße für die einfache Correspondenz, beträchtlicher als theoretisch geboten obgleich praktisch gerechtfertigt ist. Im Allgemeinen kann übrigens die Ausführung dieser Telegraphie mit allseitiger Sicherheit um so weniger erwartet werden, je länger die Linien über je größer die Breiten, die durchschnittliche Terrain ausgedehnt ist, da dann um so weniger eine unversehrte Befähigung aller Leitungen zu erwarten ist. Wird auf einer oder mehreren Linien die Leitung versehentlich, so kommt dies allen übrigen zu Gute und hört nur die Depeschen-Abgabe auf jener. Wird aber auf einer oder mehreren Linien die Leitung durch Nebenschlüsse versperrt, so bringt dies allen übrigen Kraftverlust und kann im schlimmsten Fall selbst verheerlich für jene werden. Der Zinsverbrauch ist überall den elektromagnetischen Wirungen proportional.

16. Alle Apparate, welche bisher zur Ausführung der gleichzeitigen Telegraphie aus dem Endstationen eines Drahtes in entgegengesetzten Richtungen bekannt geworden sind, bedürfen, welche Einstellung der arbeitenden Batterien man auch gewählt haben mag, einer Ausgleichung der Wirkung des abgebenden Stroms auf das eigene Rels der Station. Geht ihr Strom ungehindert zur oberen Leitung, so wird die Ausführung einer besonderen Ausgleichsbatterie und ihrer Leitungen empfohlen, also eines vollständigen zweiten Apparates, dessen erster Bestandtheil noch eine stete besondere Aufhängung verlangt, neben derjenigen, welche auch leider denjenigen Verschraubungswesen bleibt, bei denen jene Ausgleichung von der Leitungsbatterie selbst durch eine Stromtheilung bewirkt wird. Der größeren Einfachheit des Betriebes wegen möchten daher diese letzteren vorzüglich sein. Jene Ausgleichung geschieht in beiden Fällen durch einen Strom, dessen Wirkung derjenigen des zum Telegraphieren entsendeten Stromes entgegengesetzt ist; da aber dieser wegen nicht zu beherrschender fremder Einflüsse 20 auf die obere Leitung veränderlich ist, so bedarf es einer

weiteren Ausgleichung zwischen den Stärken der Ströme oder einer Regulierung des Ausgleichstromes. Die Hauptausgleichung wird durch Einschalten eines veränderlichen Widerstandes oder Rheostaten ermöglicht auf der Zweigeleitung oder der Leitung der besonderen Ausgleichungsbatterie, und nachdem auf diesen der Strom dem telegraphirenden Strom momentan gleich gemacht ist, werden die Schwankungen in ihren Wirkungen indirekt durch die eigentlich nur zum Abreiben des Ankers bestimmte Feder bei s zum Theil unmerklich gemacht, allein es bleibt eine Unsicherheit, wonach der schwankende Feder jede Größe erreichen kann. Dieser Fehler ist bei dem von uns in Nr. 7 und 9 für Theilung des abgehenden Strömes vorgeslagenen Relais unter allen Umständen auf die Hälfte reduziert, dadurch daß der Strom schon vor der Theilung zur Ausführung der halben erforderlichen Ausgleichung benutzt wird.

So viel die Beschreibung des Hrn. Dr. BRIR von dem Halbleiterschen Apparat ohne Umhärtung eines solchen zu unterscheiden gesatt, würde man diesen Fehler an demselben namentlich bei doppelter Ankerumwicklung in noch größerem Maasse unsichtbar gemacht glauben, wenn nicht zwei Umfänge Bedenken erregten. Den Hauptangelpunkt für die Tüchtigkeit des Apparates scheint zunächst die Drehbarkeit seines Ankerscheibens zu bilden, die wir in einer horizontalen Welle bei vertikalen Schenken ruhend annehmen müssen, und diese scheint bei der Masse des Eisenkerns samt seiner Umwicklung nicht mit der Leichtigkeit erreichbar, das Unregelmäßigkeit nicht zu befürchten wären. Je mehr die Drehung der Ankermagneten Kraft erfordert, desto mehr fehen die abfließenden gleichen Kräfte auf und der Ueberschuß wird als Anziehung wirksam. Daher siete Anker und Regulierung! Der zweite Punkt ist der, daß so wie der auftommende Strom bei einseitiger Telegraphie, so auch die Einwirkung jeder dem abgehenden Strom entgegengepaarten atmosphärischen Induktion durch die Einrichtung des Apparates vorzugsweise begünstigt ist, daher wir nach dem Vorliegenden den Apparat seine so zuverlässige Funktion zutrauen können, als es auf den ersten Blick scheint.

Wir finden endlich im 1sten Augustheft dieses Journals (Vol. CXXXVII S. 166) auch die Beschreibung der in Nr. 11 berichteten genialen G ö t t i s c h e n Erfindungen wieder; wir beharren im Allgemeinen auf der früher ausgesprochenen Ansicht, so bald die Ausgleichungsbatterie eine solche Stellung hat, daß sie sich mit der sprechenden zu einer von vermehrter Spannung vereinigen kann und überzieß mit ihr gleiche Zellengröße hat. Möglich ist, daß die Regulierung beim elektromagnetischen Apparat erleichtert ist, da, wie es scheint, die Polarisation eine Unterbrechung in der sonst überall statt findenden Steifigkeit von Widerstandsverwirkungen hervorbringt,
allein die Regulirung bleibt, wie wir hier bemerken müssen, unentbehrlich; nur wird der Fehler in denselben, so lange er innerhalb der Gräßen dieser Widerstandsgroße bleibt, ohne Einfluß sein.

17. Nachdem so eben nachgewiesen, daß alle bekannten Apparate nach gegebener momentaner Haupt-Ausgleichung der konkurrierenden Stromwirkungen mehr oder weniger einer steten Regulirung bedürfen werden, scheint diese vollständig nur möglich, wenn die Stromstärken zu einer Selbstrregulirung gezwungen werden könnten. Ein solcher Selbstregulator zweier Ströme würde ein viel weitergreifendes Interesse, als das der alleinigen Telegraphie bestehend, es kann in mannichfachen Fällen darauf ankommen, zwei Ströme während der Dauer einer Arbeit oder Beobachtung in unveränderlich gleicher Stärke wirken zu lassen, ohne ihnen eine feste Aufmerksamkeit widmen zu müssen, daß wir uns bei der Andeutung (11) nicht berühren, sondern um für die Sache eine größere Aufmerksamkeit zu erregen, in den Figuren 4 und 5, Tab. II, eine Horizontal- und Verticalzeichnung von einer Vorrichtung geben, welche nur eine Idee veranschaulichen soll, wie die Frage vielleicht gelöst werden könnte. In Fig. 4 ist AB ein gleicharmiger um C leicht beweglicher Hebel, mit dem die weiblichen Eisen A und B fest verbunden und daher in ihrer Entfernung von den feststehenden gleichen Eisen E und F bei Drehung des Hebels veränderlich sind. Es sind w, w ist Gefäße mit einer Flüssigkeit, die mit den seiten Drahtverbindungen d, d' und den durch den Hebel beweglichen Drähten o, o' den punktierten Linien in den Gefäßen nach, eine einzige zusammenhängende, und bei Drehung des Hebels sich verflüssigend oder verlängernde Leitung bildet, so nachdem die Drehung in einem oder in dem entgegengesetzten Sinne erfolgt. Die Eisenpaare A und E, B und F werden nun so ausgestellt, daß bei der mittleren Lage des Hebels die Eisen des ungefährten Spiel des Hebels mit den Drähten in den Gefäßen gesätten. Jedes Paar erhält im allgemeinen gleichviel gleichgerichtete Drahtwindungen, so das die mit ungleichnamigen Polen sich gegenüberstehenden Eisen sich einander antreffen. Genauer ist dann die Windungszahl jedes Paares so zu reguliren, daß wenn der linke Strom alle vorhandenen Windungen gleichzeitig durchfließt, der Hebel die mittlere Lage einnimmt, wie ein solcher Regulator bei der Telegraphie einzuschalten, ergeben die Bemerkungen an den Figuren, von denen Fig. 5 fehler weiterer Erklärung bedarf. Wäre der Widerstand der Flüssigkeitsfäße bei einem Querschnitt wie die benötigten Gefäße fest und einer Länge gleich der aller Gefäße, etwa dem Widerstand der ganzen oberen Leitung gleich, und dieser Regulator nach der Stromspaltung aus der Leitung eingeschaltet, so würde er, nachdem sein Hebel durch den Rheostaten in die mittlere Ruhelage.
gebracht wäre, mit einem Widerstande, welcher der halben oberen Leitung gleich ist, sich stärken oder schwächen können. Es kommt bei jedem Instrumente diesem ähnlich darauf an, daß die Veränderungen in der Stromstärke, veranlaßt durch die Veränderung in dem Wege durch die Flüssigkeit, sehr bedeutend sind gegen die Veränderungen, welche die wechselnde Entfernung der Elektromagnete auf ihre Ziehungskraft ausübt, mithin aus Verwendung vieler Gefäße und einer schlecht leitenden Flüssigkeit, wozu sich das reine Wasser empfiehlt, wenn es wirklich 27 Millionenmal schlechter leitet in runder Zahl als Eisen. 21 Wintelshebel, Wassergemische, capiläre Substanzen z. werden sich bei einem Regulator sicherlich immer empfehlen; wir müssen mit dieser Anregung schließen, der wir die erfolgreichste Auswahlsfähigkeit wünschen.

Geschlossen den 11. October 1855.

XXIX.

Leichtes Verfahren, um die auf Glasplatten mittels Collodium dargestellten Lichtbilder auf Wachsteinwand zu übertragen; von den Hrn. Sire, Brun und Chapelle.

Aus den Comptes rendus, Sept. 1855, Nr. 10.

Um ein Lichtbild leicht auf Wachsteinwand übertragen zu können, muß jenes trocken seyn, d. h. man darf es erst becoming sechs Stunden nach dem letzten Waschen übertragen; auch muß das Austrocknen desselben an einem gegen Staub geschützten Ort stattgefunden haben. Das Bild wird nun schwach enträndert, indem man mit dem feuchten Finger über die Ränder des Glases hinißt. Andererseits nimmt man ein Stück Wachsteinwand, welches vollkommen eben und glatt, aber etwas weniger groß als die Glasstafel ist; diese Wachsteinwand reibt man schwach mit einem Baumwollbälchen, indem man den Atzen auf sie richtet in dem Raabe als man reibt. Hieraus ergießt man das Glas an einem seiner Ecken, und gleich auf das Bild eine gewisse Menge Weingels von 40 Grad Cartier; man neigt das Glas in verschiedenen Richtungen, damit es ganz mit Weingels überzogen wird; endlich neigt man es so, daß

21 Buff, Grundzüge der Experimental-Physik S. 350.

XXX.

lieber zwei photographische Verfahrensarten des Hrn. Dr. Taupenot; Bericht von Prof. Chevreul.

aus den Comptes rendus, Juni 1855, Nr. 10.

Das erste Verfahren besteht in einem Mittel, dem negativen Lichtbild auf mit Collodium überzogenem Glase eine Dauerhaftigkeit zu erteilen, welche ihm sonst nur mittels eines Kirmsisses gegeben werden könnte, der aber nicht seine Nebenstände hat, daher seine Ergebung wünschenswert ist.

Das zweite Verfahren betrifft die Darstellung eines Lichtbildes aus trockenem einweih haltigem Collodium. Da dieses Bild in trockenem Zustande seine Empfindlichkeit mehrere Tage lang behält, so ist dieses Verfahren bei Entdeckungsreisen und in allen Fällen wo man die flüchtigsten Bilder aufnehmen will, willkommen.
Chevreul, über Taupenot's photographische Versuchsarten.

Hr. Taupenot beschreibt seine Versuchsarten folgendermaßen:

Erstes Verfahren. — Die negativen Bilder auf Colloidium müssen gebräunt werden, damit man sie zur Darstellung vieler positiver Bilder benutzen kann. Die verschiedenen Erfahrungen welche man bisher hierzu benutzt, sind mehr oder weniger losigkeit, ihre Anwendung erfordert eine gewisse Geschicklichkeit und Vorsicht, auch Nachtheiligen sie die Bilder welche man mit ihnen überzieht. Hr. Taupenot er schlägt sie durch eine Substanz von sehr geringem Gewicht, welche leicht anwendbar, überall zu haben ist, und die den Bildern eine große Dauerhaftigkeit verleiht, ohne deren Durchsichtigkeit oder die Reinheit der Linien im geringsten zu beeinträchtigen. Diese Substanz ist das Eigeweiss.

Man könnte reines Eigeweiss (ohne Jodkalium) anwenden und es einfach durch Essigäure gerinnen machen, abends ist aber die Abhärzung geringer; es können sich auch Blätter bilden und die Operation ist überflüss nicht einfach als die vorher beschriebene.

So gebräunte Lichtbilder, welche bei der Darstellung positiver Copien Flecke bekomen hatten, konnten durch längeres Verweilen in einem Bad von concentrirtem unterschwelzig-saurern Natron vollkommen wieder hergestellt werden; letzteres löste die Flecken auf, ohne das negative Bild, welches auf seiner Oberfläche durch das dünn Eigeweisshäutchen geschützt war, anzuragen.

Zweites Verfahren. — Der beschriebene Erfolg leitete Hrn. Taupenot auf ein neues Verfahren Lichtbilder auf trockenem einweiss-haltigen Colloidium darzustellen, welches einen großen Vorzug vor allen bekannten Methoden hat; es gibt nämlich Glasplatten welche ihre Empfindlichkeit einen Tag lang und darüber behalten, so dass man sie am Abend für den folgenden Tag präpariren und Operationen an entfernten
Orten vornehmen kann, ohne ein Zelt, Schalen, Flaschen u. mitzu-
nehmen.

Die Manipulationen sind bei diesem Verfahren überflüssig nicht kom-
plicirt; die Platten lassen sich viel schneller und leichter präpariren als
diesen mit bloßem Eiweiss und als die trocknen Bapiere.

Man verfährt auf folgende Weise:

Auf die mit Collodium überzogene, durch das Silberbad genommene
und mit destillirtem Wasser gewaschene Glasplatte gießt man ein wenig
Eiweiss, welches 1 Procent Jodkalium enthält; dann lässt man sie in der
Dunkelheit abtropfen und trocknen. Auf diese Weise präparirt man nach
einander so viele Platten als man will. Sie conserviren sich wenigstens
vier bis fünf Tage gut. Um sie anzuwenden, nimmt man sie durch das
gewöhnliche Bad von essig-salpetersaurum Silber, welches 10 Procent
Essigsäure und 10 Procent salpetersaure Silber enthält. Man lässt sie
in diesem Bad 10 bis 20 Secunden, wäscht sie mit destilliertem Wasser
und verwendet sie, entweder unmittelbar feucht, oder trocken, an dem Tage
wo man sie präparirte, oder selbst am folgenden; ihre Empfindlichkeit
bleibt sich gleich. 22 Nachdem sie den Lichteinfall empfangen haben, kann
man einen Tag warten, wenn dies notwendig ist, ehe man das Bild
zum Vorstecken bringt. Hierzu benützt man entweder Gallussäure oder
Pyrogallussäure; erstere 23 entwickeilt das Bild langsam und macht nicht
so leicht Flecken. Die Pyrogallussäure kann in verschiedenen Quantitäten
angewandt werden, mit 3 Procent salpetersaurem Silber versegt, oder
nicht; wenn man sie mit salpetersaurem Silber gemischt anwendet, reichen
einige Minuten hin, um das Bild zu entwickeln; man hat dann aber
Flecken zu befürchten, und man muss beforgt gewesen sein das Bad von
essig-salpetersaurem Silber, welches den Platten ihre letzte Empfindlichkeit
gibt, kurz vor seiner Benützung zu füllen.

Folgerungen. — 1) Das Eiweiss kann sehr vorteilhaft anstatt der Jernissäure angewendet werden um den Lichtbildern auf Collodium
die erforderliche Dauerhaftigkeit für die Darstellung positiver Copien zu
ertheilen.

22 Bei allen seinen Versuchen fand Herr Taupenot diese Empfindlichkeit
stäts gleich denjenigen des Collodium welches zum Präpariren der Platte gebräuch
hatte, wenn er es für sich allein auf gewöhnliche Weise anwendete; dies war selbst
beim Bedarf der Platten welche am Abend zuvor präparirt worden waren.

23 Geäthert und mit einem oder zwei Tropfen frischem essig-salpetersaurem
Silber versegt.
2) Wenn man irgend ein Colloïdium mit Eiweiß übersetzt, so behält es seine Empfindlichkeit einen Tag lang und darüber, was auf ein neues Verfahren führe, Lichtbilder auf trockenem einweichaligen Colloïdium darzustellen, welches große Dienste bei Entdeckungsreisen leisten wird, wo man starke Platten bereit haben kann, um so gleich eine Gegend, eine Pflanze, eine Person zu aufnehmen. Da man sich leicht eine beliebige Anzahl solcher empfindlichen Platten darstellen und mit diesen nothigenfalls fünfzig Lichtbilder in einer Stunde aufnehmen kann, so ist man in Stand gesezt alle Entwickelungen eines großen militärischen Manövers, sogar einer Schlacht abzubilden, was eine merkwürdige Anwendung der Photographie wäre; solche Bilder, welche man nach den bisher bekannten Verfahrensarten nicht herzustellen vermögen, würden sehr nützliche historische Dokumente liefern.

XXXI.

Apparat zum Reinigen des Steinoehlengases mittelst Thon; von W. R. Rowditch.

Aus dem Practical Mechanic's Journal, Juni 1855, S. 63.

Mit einer Abbildung auf Tab. II.

Der aus dieser Weise vorbereitete Thon wird in dem Reinigungsgefäß, 2 bis 6 Zoll hoch in Trögen, groben Sieben oder Platten aus-

Auch hat es sich als sehr zweckmäßig erwiesen, das Gas durch einen Rot zu lassen, der zwischen dem Condensator und den Reinigungsgäßen angebracht ist, und auf welchem die Trübe und Fixe mit Thon stehen; man kann dabei den Thon allein oder im Gemenge mit Kohlenstoffe oder einer anderen leeren Substanz benutzen, welche den Durchgang des Gases erleichtert. Das Gas kann auch durch ein Gefäß von ähnlicher Beschaffenheit geleitet werden, welches an der Stelle angebracht ist, wo das Gas aus der Hauptschüssel die Höhe des Condensator gehen; eine solche Vorrichtung entfernt alle Unreinigkeiten, welche durch die ersten Reinigungapparate nicht beseitigit würden und eine nachtheilige Einwirkung auf die Schönheit des Lichtes haben können.

Der benutzte Thon wird aus dem Reinigungsgas herausgenommen und an der Luft ausgetrocknet, durch deren Einwirkung ein Theil der absorbierten Unreinigkeiten mittels Verschüttung wieder entfernt wird, so daß der Thon ein zweites, ja auch noch ein drittes Mal benutzt werden kann.

Man wendet auch bei diesem Verfahren den Thon ganz auf dieselbe Weise an, wie das trockne Kalkhydrat. Wird aber nasser Kalk oder Kalkmilch zur Reinigung des Gases benutzt, so vermischst man auch den Thon mit Wasser, bis er einen dünnen Brei bildet. Der Thonbrei wird dann auf dieselbe Weise angewendet wie die Kalkmilch, beide abwechselnd. Die Menge der erforderlichen Kalkmilch ist ganz dieselbe wie bei dem gewöhnlichen Reinigungsprozeß.

Man hat auch den Vorschlag gemacht, das aus gewöhnliche Weise bereits gereinigte Gas vor seinem Verbrauch, am Verbrauchsort selbst, nochmals zu reinigen und nannte einen solchen Apparat den "Haustrüngiger." Fig. 33 ist ein senkrechter Durchschnitt desselben; er besteht Dingler's volls. Journal Bd. CXXXVIII. S. 2. 8
aus Eisen oder einem andern zweckmäßigen Material. Wird nur Thon
allein benutzt, so kann es in der in der Figur dargestellten Art und Weise
geschehen; A ist die innere Büchse mit dem Siebboden B, aus welchem
die reinigende Substanz liegt. Unten sind die Wände des Gefäßes A
verlängert, wo bei C zu sehen ist, um eine hydraulische Abspernung
herzustellen. Das Gas tritt aus der Hauptröhre durch die Zweigrohre D
in den Reiniger, und zwar hat die Mündung letzterer Röhre eine Deck-
platte E; von hier aus tritt es durch die reinigende Schicht B. Uber
letzterer bildet das Gefäß ein Reservoir für das gereinigte Gas, welches
durch die Röhre G ausströmt.

Bei der vorliegenden Anordnung ist vorausgesetzt, daß das Gas in
der Anfalt durch abwechselnde Raff- und Thonrückichten gereinigt wurde,
und es zieht nun auf seinem Wege zum Conventum bloß durch eine
Thonrückichte. Ist aber das Gas in der Fabrik nicht durch abwechselnde
Thon- und Raffrückichten gereinigt worden, so muß man den Haudeiniger
mit den nötigen Trögen und Sieben für beide Substanzen versehen,
damit der Conventum ein gut gereinigtes Gas erhält.

Der gebrauchte und aus dem Apparat geschlagene, mit Unreinigkeiten
gefäßigte Thon ist ein guter Dungmittel; zur Verwendung als Solches
wird er zuerst getrocknet, dann pulverisiert und auf den Acker verbreitet.

XXXII.

Chemische Mittheilungen, von Dr. L. Müller.

Es wollen diese Mittheilungen vorzugsweise als Ergänzungen und
Zusätze zu dem von demselben Verfasser herausgegebenen Buche über Pa-
piersfabrication 24 betrachtet werden, und machen daher nicht den Anspruch
überall etwas vollkommen Neues oder in wissenschaftlicher Hinsicht Wichti-
ges zu enthalten.

1) Prüfung der Salzsäure. — Die beiden in genannten Werke
deschriebenen Beurtheilungsmethoden leiden an so viel Fehlerquellen,
 daß sie selbst für den Techniker keinen hinreichenden Grad der Scharfe
beheben. — Das Verfahren von Bill und Fresenius, welches über-

24 Die Fabrication des Papiers, von Dr. L. Müller, 2te Auflage. Berlin
1855.

Es fehlt nun zwar nicht an außerordentlich genauen Methoden den Gehalt einer Salzsäure an Chlorwasserstoff säure zu bestimmen, und möge hier namentlich auf die von Dr. Fr. Mohr in dessen „Lehrbuch der chemisch-analytischen Titrimethode“ S. 84 beschriebene hingewiesen werden; allein für alle dieselben welche gleichzeitig häufig Soda- oder Potaschensäuren vorzunehmen haben, dürfte folgende zu technischen Zwecken mit hinreichender Genauigkeit begabte und außerordentlich leicht mit der einmal vorhandenen Natron- oder Kali-Probesträglichkeit vorzunehmende mit Recht empfohlen werden.

Wir nehmen an, daß die vorhandene Probesträglichkeit, gleichviel ob dieselbe aus Schwefelsäure oder Drallsäure beziehe, für Natron titriert sey, also 100 Alkalimetergrade 100 Gran Natron neutralisiren, so hat man behufs Prüfung der Salzsäure nur nötig 100 Gran einer wässer unter- sucht, möglichst reiner Sodal an der Luft getrocknete reinen Kohlen- säuren Natron in Wasser auszulöschen, der Lösung 100 Gran der zu untersuchenden Salzsäure unter der Vorricht, daß die Entwicklung der Kohlen- säure nicht zu heftig erfolge und Sprüchen verursache, zuziehen und daraus die Sträglichkeit unter den bei Prüfung der Sodal a. a. D. Seite 58 angegebenen Versuchsmassregeln zu analysiren.

Enthält die Sodal a Procent Natron und waren mithin a Alkalimetergrade zur Neutralisirung der 100 Gran Sodal durch Probesträglichkeit allein erforderlich, so würden, wenn nach dem Zulaß von Salzsäure noch n Alkalimetergrade zur Neutralisirung gebraucht würden, a — n Gran Natron durch die Salzsäure neutralisirt worden seyn und die Proportion
gibt unmittelbar den Gehalt der unterrichten Salzsaure an Chlorwassersstoff-
saure in Procenten.

Enthält die Salzsaure, wie das meistens der Fall ist, Schwefelsaure, so ist es leicht dieselbe zur genauen Bestimmung der Chlorwassersstoffsaure unbedingt zu machen oder auch sie in Procenten zu bestimmen. Man hat nämlich nur nötig, der mit Wasser verdünnten Salzsaure vor dem Zulauf zur Sodalösung etwas Kohlensaure Barsterde hinzuzufügen, worauf man wie oben verfährt. Die Schwefelsaure wird durch die Barsterde gebunden und das erhaltene Resultat bezieht sich nur auf die Chlor-

wassersstoffsaure.

Will man auch die Schwefelsaure bestimmen, so operirt man erst ohne und dann noch einmal mit Zulauf von kohlensaurem Barsterde; das plus der Alkalimetergrade, die im letzteren Falle verbraucht wurden, gibt die Quantität Natron an, die im ersten Falle durch Schwefelsäure neutralisiert wurde, und wird das plus mit d bezeichnet, so gibt:

\[
\frac{389,729 - 500,75}{389,729 - d} = \frac{d}{x}
\]

Wird nun die Prozentszahl der Salzsaure an Schwefelsaure.

Beim Abwieg der Salzsaure tritt man gut, dieselbe in eine Gay-

Lussacische Bürette oder Pipette überzufüllen und aus dieser in das
tarierte Gläsern zu gießen. Einmal kann man dann sehr bequem einzelne
Tropfen zugießen und leicht das richtige Gewicht treffen, dann aber erhält
man dadurch auch die unterste Schicht der Säure, die durch Verflüssigung

des salzsäuren Ocles nicht geschwächt ist. Diese Flüssigkeit macht aber

schnelles Arbeiten überhaupt wünschenswerth.

2) Zur Prüfung des Braunsteins. — Vielfältig mit Prü-

fung von Braunsteinarten befristigt, habe ich immer mehr die Uber-

zeugung gewonnen, daß, ohne den von Wünsen und Mohr angegebenen
Methoden zu nahe treten zu wollen, insbesondere für Techniker die in
meinem Buche über Papierfabrikation S. 113 beschilderte, was Leichtig-
keit der Ausführung und schnelles Erhalten eines genauen Resultates an-

25 Befindet man sich im Besitz einer Kalis-Probengewichte, so hat man dem

Mittlungsgewichte des Narrens nur das des Kalis zu substituieren.
betreffs, unbedingt vor allen anderen den Vorzug verdient und ihr nur
die Streng'sche Methode, jedoch bedeutend modifiziert, an die Stelle ge-
stellt werden kann. — Ich habe nur anzuführen, daß die Zinnchlorür-
auflosung nicht immer die angegebene Besändigigkeit besitzt, sondern sich
allerdings in den meisten Fällen so veränderlich zeigt, daß jedesmal unbe-
dingt ihre Prüfung mit der Eisenchloridauflösung der eigentlichen Analyse
vorangehen muß. Ich verwahe gegenwärtig diese Auflosung, nachdem
sie behufs Entfernung alles Sauerstoffes bis zum Kochen erhitzt worden,
in einer Flasche, die mit einer Ramschberg'schen Bürette und einem
Wassersofts-Apparat verbunden ist, und erfreue mich dadurch eines fast voll-
ständig konstanten Titref's.

Die Destillation des Chlors hat den einzigem Nebenstand dafs, nach-
dem die Flüssigkeit zum Kochen gelangt, beim Herausziehen des Leitung.
rohrs aus der Zinnsolution, ein Theil dieser leicht in den Entwicklungs-
aparat übersteigt; inbes dafs man das nicht zu befürchten, wenn man die
Erhitzung des Kolbens im Delbade vor nimmt und nach beendeter Chlor
entwicklung das eingeschlossene Leitungstrohr lüftet.

Die Streng'sche Methode, so wie sie in meinem erwähnten Buche
S. 122 beschrieben ist, ist wegen des festen Gehaltes des Braunsteins
an Eisenpyr und der dadurch bedingten Bildung von Eisenchlorid, wel-
des durch die Zinnsolution in Eisenchlorür übergeführt wird, vollständig
unbrauchbar. Zerlegt man jedoch den Braunstein mit Sälsäure und
leitet das sich entwickelnde Chlor in eine bestimmte Menge einer vorher
mitgeta Chen Lösung untersuchten Zinnchlorürlosung, und untersucht nach-
er wie viel von dieser unverändert ubrig geblieben, so fallt die bei der
Streng'schen Methode anzuwendenden Manipulationen vollkommen mit
den bei der unerwähnten zusammen. Bei gleicher Scharfe
nun würde ich keinen Anstand nehmen, der Streng'schen Methode den
Vorzug zu geben, da die Anfertigung einer titrirteten Auflosung von Eisen-
chlorid zwar mit seinen Schwierigkeiten verknüpft, aber jedensfalls etwas
complicirter ist, als die Anfertigung einer eben solchen Chlorlösung.
Allein die Streng'schen Methode hat den Nebenstand, daß erstens das
Reaktionsende nur bei einem sehr starren Zug auf das Krystallum mit Sicher-
heit erkannt wird, zweitens das je nach dem Concentration'sgrade der
Zinnchlorürlosung mehr oder weniger Chlorlösung nöthig ist um die
blaue Farbe hervorzurufen, woron der Grund, wie mehr nachgewiesen,
in dem Sauerstoffgehalt des Wassers liegt. Von diesen Nebenständen
ist die Anwendung des Eisenchlorids frei, daher ich dieser unbedingt den
Vorzug gebe.
3) Entwicklung des Chlors aus Braunstein, Schwefelsäure und Kochsalz. — Wie Mitscherlich bereits früher nachgewiesen, bildet sich bei der Einwirkung von Schwefelsäure auf Chlornatrium steigend zunächst saures schwefelsaures Natron; hat man daher beide Substanzen in dem einfachen Verhältnisse ihrer Mischungsgewichte zusammengebracht, so wird zunächst unter Bildung von saurem schwefelsaurer dem Natron nur die Hälfte des Chlornatriums zugelegt. Erst bei sehr hoher Temperatur setzt sich die Zersetzung fort und wird neutrales schwefelsaures Natron gebildet. Wo man daher, wie gewöhnlich, die Entwickelungsgefäße durch Dämpfe erhitzt, deren Temperatur nicht über 100 — 120° C. geht, wird man wohl thun, Braunstein, Kochsalz und Schwefelsäure in einem solchen Verhältnisse zu mischen, daß saures schwefelsaures Natron und schwefelsaures Manganonbydul das Endresultat des Prozesses sind. Es entsteht aber aus:

\[\text{MnO}_2, \text{NaCl, 3 SO}_3, = \text{MnO + SO}_3, \text{NaO + 2 SO}_3, \text{Cl} \]

A. d. Red.
In der Sitzung des bergmännischen Vereins zu Freiberg am 6. Februar d. J. theilte Sr. Plattner ausführlich die Resultate mit, welche er bei seinen Versuchen über die Ursachen des bei der Nötigung silberhaltiger Erze und Hüttenprodukte wöchentlich stattfindenden metallischen Silberverlustes erlangt hat. Wir lassen dieselben nach der Berg- und hüttenmännischen Zeitung, 1855 Nr. 33, hier folgen:

tallischem Silber, schwefelsaurum, arsenaurem und antimonsaurem Silberoxyd. (Alle Substanzen völlig sein zertheilt.)

Die $\frac{3}{4}$ bis $\frac{1}{2}$ Stunde lang gerösteten Proben wurden wie gewöhnliche Erzproben auf trockenem Wege auf Silber probirt. Um aber gleichzeitig zu erfahren, wie viel von der angerösten Quantität des betreffenden silberreichen Verzehmittel bei einer solchen Probe, die bekanntlich stets einen geringen Verlust an Silber als „Kapellenzug“ verursacht — metallisches Silber zu erlangen sey, wurde auch eine ebenso große Quantität des Verzehmittel entweder mit der Substanz, wenn dieselbe selbst etwas Silber enthielt, oder ohne dieselbe, wenn sie frei von Silber war, bei Anwendung von einer gleichen Gewichtsmenge Probirbleis, wie zu den gerösteten Proben, auf Silber probirt; aus der Gewichtsdifferenz der ausgebrauchten Silberkorner ergab sich dann der Silberverlust, welcher bei der Röstung entstanden war.

Die Resultate dieser zur Befriedigung des ersten Theiles der gestellten Frage vorgenommenen Versuche weisen nach:

1) daß der betreffende Silberverlust hauptsächlich auf chemischem Wege entsteht;

2) daß eine Verflichtigung von Silber eintritt, wenn das im Ofen befindliche Silber entweder aus seiner Verbindung mit Schwefel in den metallischen Zustand übergeht, oder als bereits gebildetes Dryd in Verbindung mit Schwefelsäure wieder eine Zersetzung erleidet. Der Silberverlust steigt am höchsten bei locker liegenden Substanzen, deren einzelne Theile wenig Zutreffenhang zeigen und auch nicht genugend sind zu fünten, weil dieselben von der atmophäischen Luft leicht durchbrochen werden können;

3) daß der Silberverlust mit der Länge der Röstzeit steigt, wenn zugleich die Temperatur zuminnt;

4) daß der Verlust an Silber zuminnt, wenn Gisenerord-Drydul oder Nupserorydul Gelegenheit finden, auf schwefelsaures Silberoxyd zerlegend einwirken;

5) daß der Silberverlust höher ausfällt, wenn das Silber als schwefelsaures Silberoxyd mit freien Metallpyriden in Berührung einer längeren starken Röstthege ausgezogen wird, als wenn es als arsenaure oder als antimonsaures Silberoxyd vorhanden ist. Der Grund hiervon ist der: daß das schwefelsaure Silberoxyd eher zerlegt und in metallisches Silber umgeändert wird, als die anderen beiden Salze, und vorzüglich eher, als das arsenaure Silberoxyd; obgleich das Verhalten in höhre Temperatur in so ferne ein anderes ist, als das antimonsaure Silberoxyd sehr räuh und die beiden anderen Salze nur langsam zerlegt werden.
Was nun den zweiten Theil der gestellten Frage betrifft: in welchem Zustande wird das Silber flüchtig? so wurden darüber ebenfalls Versuche im Kleinen angestellt, und zwar folgende:

1) wurden 3 Gramm feinzerriebenes Silber dem Volumen nach mit gleichen Theilen fein gemahlener Quarzeis in einem Glasmörser sorgfältig gemengt, dieses Gemenge wurde in eine ½ Zoll weite und circa 20 Zoll lange Glashöhre von schwer schmelzbarem Glas gebracht und, nachdem die Stelle der Glasöhre, an welcher sich das Gemenge befand, des gleichförmigen Erhitzens halber, noch mit Platinblech umgeben worden war, über einer Spiritusstange mit doppeltem Luftzug bis zum mässigen Röthglühen (angehend stärker Röstheife) erhitzt, während zugleich aus einem Gasometer trockenes Wasserstoffgas ganz langsam darüber weggetríumt. Obgleich der Verlust in der angegebenen Weise eine ganze Stunde lang fortgeleist wurde, so konnten aber Zeichen, die eine Verflüchtigung von Silber verriessen hätten, durchaus nicht wahrgenommen werden.

2) Ein ganz auf dieselbe Weise mit Kohlenoxydgas angestellter Versuch führte zu denselben Resultaten. Als aber

3) ein solches Gemenge mit Sauerstoffgas behandelt wurde, entstand sehr bald in der Nähe des Gemenges, nach dem offenen Ende der Glasöhre hin, ein schwacher matter Beischlag von graulichtweiser Farbe, der sich nach und nach verstärkte und einige Zolle weit in der Rohre hinzog; später bildete sich derselbe Theil des Beischlags, welcher dem Gemenge am nächststen war, zu einem ringförmigen Metallspiegel aus. Als nach Beendigung des Versuches, zu welchem ebenfalls, wie zu den ersten beiden Versuchen, eine Stunde Zeit verwendet worden war, ein Theil des entstandenen Beischlags im Abatmörser zerrieben wurde, gab er sich als metallisches Silber zu erkennen, was auch eine Prüfung auf naßem Wege behäftigte. Die Stelle der Glasöhre, wo das Gemenge gelegen hatte, war sowohl unten als oben, und sogar links und rechts, noch ein wenig darüber hinaus von außen genommenem Silberoxyd hell- bis dunkelgelb gefärbt worden; auch erschienen die untersten Partien des Quarzes getrünt und schwach gelb gefärbt.

4) Ein Gemenge von rein zerrichtetem Silber und gegliöstem Zinkoxyd auf dieselbe Weise, wie bei dem vorhergehenden Versuche mit Sauerstoffgas behandelt, gab im Allgemeinen dieselben Resultate; nur war der metallische Silberspiegel nicht ganz so auffällig.

5) Metallisches Silber in seindernheitlichem Zustande für sich mit Sauerstoffgas behandelt, gab ebenfalls einen Beischlag von Silber; auch zeigte die Glasöhre nach Beendigung des Versuches an der Stelle, wo das un-
verändert gebleibene Silber lag, von aufgenommenem Silberoxyd eine
gelbe Farbe.

Aus den Resultaten vorgenannter Versuche ist daher der Schluss zu
ziehen: daß derjenige Theil des Silbers, welcher bei einer oxydirenden
Röstung neben dem im Röstsaube befindlichen Silber stündig wird, nicht
als metallisches Silber, sondern von einem gewissen Temperaturgrade an,
ber schon mit einer schwachen Rothglühhiz he begimnt, sich als Hyd aus
dem Röstgute entfernt, welches in freiem Zustande seinen Sauerstoff zwar
sehr bald in einer niedrigeren Temperatur abgibt und sich wieder in me-

tallisches Silber verwandelt, aber, da dasselbe in fast unendlich sein zer-
theiltem Zustande in den gasförmigen Verbrennungspodukten des Brenn-
materials und den gas- und dampfförmigen Döpfprodücken vertheilt ist,
von denselben auch leicht in die Atmosphäre mit übergeführt wird.

XXXIV

Versuche zur Bereitung der Fettssäuren für die Herzen- und
Seifensfarkation, von Hrn. Tilghman; patentirt in

Aus dem Bulletin de la Société d'Encourage ment, August 1855, S. 476. 37

Mit Abbildungen aus Tab. II.

Behufs der Zerlegung des neutralen Fettes in Fett säure und in

Glycerin, unterziehe ich es der Einwirkung des Wassers bei hoher Tem-

peratur und unter Druch, so daß ich eine Glycerinlösung und freie Fett-
säuren erhalte.

Ich mische das Fett mit dem Drittel oder der Hälfte seines Volums
Wassers und bringe das Gemisch in ein geeignetes Gefäß, worin es der
Einwirkung der Wärme, nämlich einer helausig dem Schmelzpunkt des
Staues gleichkommennden Temperatur ausgesetzt werden kann, bis der
Zweck erreicht ist. Um den erforderlichen Druch zu erzielen und die Ver-
schüttung des Wassers zu verhüten, muß man natürlich in einem ge-

schlossenen Gefäß operiren.

Das Verfahren lässt sich rasch und in ununterbrochener Weise ausführen, indem man das Gemisch von Fett und Wasser durch ein Rohr circulirten lässt, welches auf die erwähnte Temperatur erhitzt ist. Fig. 20 ist der senkrechte Durchschnitt, Fig. 21 der Grundriß des dazu dienenden Apparats.

Ich bringe das neutrale Fett im flüssigen Zustande in das Gefäß a, und vermische es mit dem Drittel oder der Hälfte seines Volums heißen Wassers; der mit einer großen Anzahl kleiner Löcher durchbohrte Kolben b, welcher im Innern des Gefäßes a in rasche Bewegung gesetzt wird, bewirkt eine innige Vermischung der zwei Substanzen. Eine Druckpumpe c, ähnlich der bei den hydraulischen Pressen gebräuchlichen, treibt das Gemisch durch ein langes und sehr starkes schmiedeisernes Rohr d, d, d, welches mehrmals schlängenförmig umgebogen, in dem Dfen e, e angebracht ist und durch den Feuerdrum f aus den Schmelzpunkt des Bleies erhitzt wird. Beim Austritt g aus den Heizrohren zieht das Gemisch, welches schon in freie Fettläufe und in Glyzerin umgewanbelt ist, durch ein anderes schmiedeisernes Schlängenrohr h, h, h, welches in Wasser getaucht ist. Auffolgernem Wege küßt sich das Gemisch ab, und seine Temperatur sinkt auf 212° Fahr. (100° C.); es entweicht dann durch das Entleerungsventil i und fällt in einen geeigneten Behälter.

Das Entleerungsventil i wird so belastet, daß wenn die Heizrohren die gewünschte Temperatur haben und die Pumpe nicht in Tätigkeit ist, es durch den inneren Druck nicht geöffnet werden kann, daß folglich, wenn die Pumpe nichts in den Apparat treibt, aus demselben auch nichts entweicht, vorausgesetzt daß die Temperatur nicht zu hoch ist. Wenn aber die Druckpumpe durch die Drosselung j eine gewisse Menge neuen Gemisches treibt, so öffnet sich das Ventil i und läßt durch das schlängenförmige
Kühlohr h, h eine entsprechende Menge behandelter Gemisches entweichen. Eine Anhäufung von Luft oder Dampf in den Heizröhren muss so weit als möglich vermieden werden. — Obgleich die Zersetzung des neutralen Fettes durch das Wasser bei der erhöhten Temperatur mit großer Schnelligkeit erfolgt, so ziehe ich es doch vor, den Gang der Druckpumpe im Verhältnis zum Inhalt der Heizröhren so zu berechnen, daß das Gemisch dieser Temperatur beinahe jedes Mal in geringen Zeitraum ausgesetzt bleibt, bevor es in das Kühlohr h, h übergeht.

Das heiße Gemisch von Fett säure und Glyzerinlösung wird durch Decantieren getrennt; die Fett säure wird mit Wasser gewaschen, die Glyzerinlösung abgedampft und auf bekannte Weise gereinigt.

Die so bereiteten Fett säuren verwendet man, je nach ihrer Qualität, zur Kerzen- und Seifen fabrication; man kann sie durch Destillation oder auf sonstige Weise noch bleichen und reinigen.

Es ist zweckmäßig, die neutralen Fette vorher von ihren Unreinigkeiten zu befreien, weil diese die Fett säuren färben könnten; wenn man aber letztere durch Destillation reinigen muß, so ist diese Vorsicht unnötig.

Wenn man eine Säure angewandt hat, um das neutrale Fett zu bleichen, hart zu machen oder zu reinigen, so muß man von jener die geringsten Spuren sorgfältig beseitigen, bevor man das Fett in den Apparat gibt. Einige Fette, hauptsächlich die unreinen, erzeugen während der Operation eine gewisse Menge Essigsäure oder andere auflosliche Säuren, welche die eisernen Röhren angreifen können; in diesem Fall sehe ich dem Gemisch von Fett und Wasser eine entsprechende Menge Alkali zu, bevor ich es mittels der Pumpe in die Röhren treibe.

Die bei dieser Reaction frei werdende Kohlen säure entweicht durch dieselbe Offnung wie die Seife; wenn man nur sehr wenig Wasser angewendet hat und die Seife rein genug ist, so kann man sie sogleich in den Formen erharren lassen; man kann sie aber auch in Kesseln hießen lassen, vom gebildeten Glyzerin trennen und nach den gewöhnlichen Ver fahrungsarten fertig machen.
XXXV.

Verfahren zur Fabrication der Fettsäuren, von G. F. Welsens, Professor der Chemie zu Brüssel; patentirt in England am 18. December 1854.

Wir Abbildungen auf Tab. 11.

Meine Erfindung besteht in der Anwendung von reinem oder schwach gesäuertem Wasser in einem auf 340° bis 400° C. (171° bis 204° Celsi.) erhitzten Kessel, zum Verfeisen der thierischen und vegetabilischen Fette, d. h. zur Abzweigung des Glycerins und der Fettsäuren aus denselben.

Beschreibung des Apparats. — Fig. 1 und 2 zeigen den Durchschnitt und Aufbau eines Apparats dar, um die Fettsäuren mittels reinen oder gesäuerten Wassers bei einer Temperatur von beinahe 400° Fahr. in Freiheit zu setzen. A, A ist der Hauptkessel, welcher beinahe 50 Gallons geschmolzenen Fettes nebst etwa 25 Gallons Wasser fassen kann, so daß noch ein Raum für 20 bis 30 Gallons leer bleibt. Dieser Kessel ist aus Eisenblech oder Messing von der erforderlichen Stärke angefertigt und kann nöthigenfalls innen mit einem andern Metall gesüttert werden. Sein vorderer Theil hält durch eine ausgeschraubte eiserne oder messingene Platte a, a geschlossen; ein Raumploch e dient zum Einbringen von Talg oder sonstigem Fett in festem Zustande.

Der Kessel A, A muß für einen Druck von 10 bis 12 Atmosphären konstruirt sein, und ist mit folgendem Zugehör versehen: einem Sicher-
heisventil S, S'; zweii Röhren, wovon jede einen Thermometer k enthält, von welchen der eine in das Wasser, der andere in das Fett gesteckt wird, um deren Temperatur anzugeben; einem Manometer M; zwei Glaströhrchen N, N, wovon die eine den Stand des Wassers, die andere den des Fettes zeigt; endlich zwei Reinigungshähnen R, R'.

Der Kessel B, B hat ein Füllung vom Innthal des Kessels A, A; die Kessel sind mittels vier Röhren C, D, E, F verbunden, wovon jede mit einem Hahn, c, d, e, f, zu dem nachstehenden angegebenen Zweck versehen ist. Aus dem Betrieb der Hähne c, d, e, f, V und q, welche von Hand bewegt werden, beruht die ganze Wirkung des Apparats. Das Rohr D ist rechtwinklig mit einer horizontalen Röhre d, e versehen, welche sich über den ganzen Obertheil des Kessels erstreckt; diese Röhre ist auf ihrer ganzen Länge mit kleinen Löchern versehen, um eine bessere Vertheilung der hindurchgehenden Substanzen zu sichern.

Um den Betrieb des Apparats zu erleichtern, will ich eine Operation mit rohem Talg beschreiben. Nachdem man in den Kessel A, A Wasser bis zum Niveau n, n' und Talg bis m, m' gebracht hat, erhitzt man das Ganze allmählich bis der Thermometer beinahe 400° Fahrenheit anzeigt, wo dann die Wirkung des Wassers auf das Fett beginnt und fort- und nach Belange einer gewissen Zeit muß man die Reaction durch Vermehrung und Erneuerung der Berührungssächen verstärken, wo ich mittels der vier Röhren C, D, E, F und des Mahns V folgendermaassen operiere:

Nachdem der Hahn d geöffnet ist, entweicht der Dampf aus demselben in den Kessel B, B; und durch Drüsen des Mahns V entweicht dieser Dampf in die Atmosphäre und zwar von allen Punkten des Kessels A, A aus; es entsteht ein ungeheuer wasserhaltiger Dampfstrom, welcher durch die Talgschicht m, m' zieht und eine erste Berührung zwischen den zwei Flüssigkeiten veranlaßt; einige Minuten darauf sprit man die Hähne d und V ab, und der Kessel B, B erkalten; nötigenfalls kann das Ab- fließen dadurch beschleunigt werden, daß man kaltes Wasser auf ihn sprit, wodurch ein heisswisses Vakuum entsteht. Wenn man dann die Hähne s und t abwechselnd und gleichzeitig öffnet, so wird eine Mischung von geschmolzenem Talg und Wasser in den Kessel B, B hinausgetrieben; schließt
Melsens' Verfahren zur Fabrication der Fettsäuren.

man hierauf die Hähne c und l, und öffnet die Hähne c und d, so wirkt der durch das Rohr C eingeschachte Dampf auf das Wasser und den Talg im Speisekessel B, B und treibt sie durch die Nörsen D, d, d in den Hauptkessel hinauf; die beiden Flüssigkeiten fallen in Tropfenform auf die Oberfläche des Talgbades, durch welches nur das Wasser aus seinem Wege zum Boden des Kessels A, A zieht; in Folge dieses doppelseitigen Stroms, welcher in entgegengesetzter Richtung wirkt, muss das Wasser in dichte Verbindung mit dem Talg kommen. Dieser doppelseitige Strom muss so oft erneuert werden, als es erforderlich ist um das Glycerin von den Fett säuren freit zu machen; jenes löst sich im Wasser auf, sobald es von den Fettsäuren getrennt ist.

Damit die Temperatur die erforderliche Grösse nicht überschritten kann, construie ich den Kessel so, dass die heißen Gase dem Kesselschloß schnell entzogen werden können, der auch mittels eines Luftstroms abgeführten werden kann: Fig. 3 zeigt die hiesi biende Anordnung.
XXXVI.

Untersuchung einiger Braunkohlen des Westerwaldes in Hinblick auf die Produkte, welche sie bei der trockenen Destillation liefern; von Professor Dr. R. Fresenius.

Aus den Mitthenlungen des nassauischen Gewerbevereins, 1855, Nr. 13 u. 14.

Im Auffrage des herzogl. nassaulichen Finanzkollegiums habe ich die Braunkohlen der Dominalgruben Nassau, und Dranien, welche mir in Stück-, Brocken- und Leerkohlen übergeben worden waren, in Betreff der technisch wichtigen Produkte untersucht, welche sie bei der trockenen Destillation liefern.

Die ganze Arbeit zerfällt in folgende Abschnitte:
I. Die trockene Destillation der Kohlen.
II. Die Destillation des Theers, d. h. seine Verarbeitung zu Rohprodukten.
III. Die Reinigung der bei der Destillation des Theers erhaltenen Rohprodukte.
IV. Die Bestimmung der Heizkraft der Kohle.
V. Die Bestimmung des Ammoniaksgehaltes der bei der Destillation erhaltenen wässrigen Flüssigkeiten.
VI. Schlussbemerkungen.

I. Trockene Destillation der Braunkohlen.

Zur Destillation der Braunkohlen diente ein eigens erbauter kleiner Retortenofen. Die angewandte eiserne Retorte war im Lichten 3 Fuß lang, 5,6 Zoll breit und 5 Zoll hoch.

An ihrem hinteren Ende befand sich ein eisernes Rohr, welches mitsamt seinem kupfernen Vorrohre mit einem durch ein Kühlgefass geführten Bleirohre in Verbindung gesetzt wurde. Die Theerdämpfe wurden in diesem schon sehr vollständig verdichtet; die noch unverdichteten traten mit dem Gase mit dem verdichteten Wasser und Theer in eine Wassertub-

Dingler's polyt. Journal Bd. CXXXVIII. S. 2. 9
haltende Vorlage von Zinkblech nahe am Boden ein, woselbst vollständige Verdichtung aller verdichtbaren Produkte stattfand, während die Gase durch ein im oberen Theile der Vorlage befindliches Rohr in die Feuerung geleitet wurden; sie verbrannten mit schwach leuchtender Flamme. Die untere Öffnung des Ringefabses war, wie bereits bemerkt, beständig durch eine 2 bis 3 Zoll hohe Wasserschicht gesperrt; das sich ansammelnde Theerwasser (dessen Stand an einem Wasserstandsgießer zu sehen war) wurde von Zeit zu Zeit mittels eines kleinen Hahnes abgelassen. — Die Destillationen wurden ganz langsamer betrieben und so lange fortgesetzt, bis keine Gase mehr kamen und die ganze Retorte lebhaft rot glühte. Nach jeder Operation ließ man den Ofen, bei noch geschlossener Retorte, erkalten.

Man erhielt bei der Destillation:

a) Kohls in der Retorte,
b) Theer,
c) wasserige Flüssigkeit (Theerwasser),
d) Gase.

Nach diesen allgemeinen Bemerkungen gehe ich über zur Darstellung der Resultate.

A. Grube Dranien.
I. Leskohlen. 28

Es wurden mit denselben folgende 5 Destillationen vorgenommen:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7430</td>
<td>2200</td>
<td>29.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7590</td>
<td>2410</td>
<td>31.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7685</td>
<td>2520</td>
<td>32.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7160</td>
<td>2300</td>
<td>33.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8105</td>
<td>2620</td>
<td>32.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>37970</td>
<td>12140</td>
<td>31.97</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

28 Die Leskohlen stellen ein Gemenge dar von kleinsten Stückchen und Splittern bis zur Größe von 2 — 3 Männertäfeln; die kleineren Stücke wogen etwa 25, die größten 300 — 400 Gramme.

29 Die Mittelzahld ist die wirksame, erhalten durch Vergleichung der Gesammtmenge der Kohlen mit der Gesammtmenge der Kohle.
II. Stück Kohlen.

Es wurden ausgeführt 5 Destillationen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Verwendete Kohlen in Gramm</th>
<th>Erhaltene Kohle</th>
<th>100 Theile Kohlen lief. Kohle</th>
<th>Theerwasser</th>
<th>Theer</th>
<th>Gase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9285</td>
<td>2565</td>
<td>30.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9720</td>
<td>2520</td>
<td>29.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10585</td>
<td>3175</td>
<td>30.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11475</td>
<td>4305</td>
<td>41.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10310</td>
<td>4245</td>
<td>41.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sum.</td>
<td>17910</td>
<td>34.86</td>
<td>100 Theile Kohle liefen 40.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NB. Der bedeutende Unterschied in der Ausbeute an Kohls bei 4 und 5 rührt daher, daß die bei diesen Destillationen verwendeten Kohlen sehr auffallend waren.

B. Grube Nassau.

I. Lebkohlen.

Es wurden ausgeführt 5 Destillationen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Verwendete Kohlen in Gramm</th>
<th>Erhaltene Kohle</th>
<th>100 Theile Kohlen lief. Kohle</th>
<th>Theerwasser</th>
<th>Theer</th>
<th>Gase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7820</td>
<td>2530</td>
<td>32.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7740</td>
<td>2580</td>
<td>33.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8305</td>
<td>2360</td>
<td>28.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7740</td>
<td>2470</td>
<td>31.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7770</td>
<td>2375</td>
<td>30.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sum.</td>
<td>12315</td>
<td>31.28</td>
<td>100 Theile Kohle liefen 43.69</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NB. Der bedeutende Unterschied in der Ausbeute an Kohls bei 4 und 5 rührt daher, daß die bei diesen Destillationen verwendeten Kohlen sehr auffallend waren.

II. Stücksolen.

Ausgeführt 5 Destillationen. — Um den Einfluß eines langsamen Austrocknens auf die Beschaffenheit der Kohles zu ermitteln, wurden zwei Destillationen mit lufttrocken, zwei mit 1 Tag lang bei 120 — 150° C. getrockneten und eine mit 2 Tage lang bei 120 — 150° C. getrockneten Kohlen vorgenommen. — Da der Theer jeder einzelnen Destillation nicht besonders gewogen werden konnte, so mußte auf die Bestimmung der Gase aus dem Verluste bei dieser Versuchsreihe verzichtet werden.

1) Destillation mit ungetrockneten Kohlen.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Verwendete Kohlen in Grammen</th>
<th>Erhaltene Kohle</th>
<th>100 Theile Kohlen liefern Kohle</th>
<th>Theerwasser</th>
<th>Theer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9450</td>
<td>3025</td>
<td>32.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8600</td>
<td>2610</td>
<td>30.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum.</td>
<td>18050</td>
<td>5635</td>
<td>31.22 im Mittel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) Destillationen mit 1 Tag lang getrockneten Kohlen, wobei 27,5 Procent Wasser entwichen.

<table>
<thead>
<tr>
<th></th>
<th>Gramm. getrocknet</th>
<th>Gramm. lufttrocken</th>
<th>Ergebnisse</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6015</td>
<td>8296</td>
<td>2300</td>
<td>27.72</td>
</tr>
<tr>
<td>2</td>
<td>5700</td>
<td>7862</td>
<td>2325</td>
<td>29.57</td>
</tr>
</tbody>
</table>

3) Destillation mit 2 Tage lang getrockneten Kohlen, wobei 37 Procent Wasser entwichen.

<table>
<thead>
<tr>
<th></th>
<th>Gramm. getrocknet</th>
<th>Gramm. lufttrocken</th>
<th>Ergebnisse</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6750</td>
<td>10714</td>
<td>3355</td>
<td>31.31</td>
</tr>
<tr>
<td>Sum.</td>
<td>44922</td>
<td>13615</td>
<td></td>
<td>30.31 im Mittel</td>
</tr>
</tbody>
</table>

31 Berechnet man aus dem Theer der 5 Destillationen die Portion, welche von den beiden ersten stammt, so ergibt sich für diese eine Gasmenge von 4125 Gram. im Ganzen = 22,8 Proc.
C. Lignite aus beiden Gruben.

Die Lignite wurden durch Auslesen der Lehm- und Brockensohlen erhalten und nur solche zur Destillation verwendet, die ihre Holzstruktur vollkommen bis in die kleinsten Theilchen beibehalten hatten und nicht durch Insuffizienz schwerer geworden waren. Ein Theil davon wurde durch Zerschlagen der Brockensohlen und Stücksohlen erhalten, in welchen sie ganze Aderen bildeten.

Es wurden ausgeführt sechs Destillationen, und zwar drei mit ungetrockneten, drei mit bei 120—150° C. getrockneten Ligniten.

1) Destillationen mit ungetrockneten Ligniten.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6640</td>
<td>2125</td>
<td>32,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6290</td>
<td>2285</td>
<td>36,33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5865</td>
<td>2020</td>
<td>34,44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum.</td>
<td>18795</td>
<td>6430</td>
<td>34,21 im Mittel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) Destillationen mit völlig (3 Tage lang) bei 120 bis 150° C. getrockneten Ligniten, wobei dieselben 22,5 Proc. Wasser verloren.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4445</td>
<td>2145</td>
<td>37,40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4345</td>
<td>2105</td>
<td>37,55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5370</td>
<td>2480</td>
<td>36,13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum.</td>
<td>14160</td>
<td>6730</td>
<td>36,42</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zusammenstellung: 100 Theile lufttrockene Kohlen liefern:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dranien</td>
<td>Leesohlen</td>
<td>5</td>
<td>31,97</td>
<td>44,72</td>
<td>5,37</td>
<td>1,043</td>
<td>17,94</td>
<td></td>
</tr>
<tr>
<td>Dranien</td>
<td>Stücksohlen</td>
<td>5</td>
<td>34,86</td>
<td>40,77</td>
<td>3,19</td>
<td>0,952</td>
<td>21,17</td>
<td></td>
</tr>
<tr>
<td>Raffau</td>
<td>Leesohlen</td>
<td>5</td>
<td>31,28</td>
<td>43,69</td>
<td>3,78</td>
<td>1,064</td>
<td>21,29</td>
<td></td>
</tr>
<tr>
<td>Raffau</td>
<td>Stücksohlen</td>
<td>5</td>
<td>31,22</td>
<td>43,07</td>
<td>3,86</td>
<td>1,041</td>
<td>22,80</td>
<td></td>
</tr>
<tr>
<td>Dranien</td>
<td>Lignite, ungetrocknet</td>
<td>3</td>
<td>34,21</td>
<td>42,83</td>
<td>5,61</td>
<td>1,079</td>
<td>17,35</td>
<td></td>
</tr>
<tr>
<td>Raffau</td>
<td>Lignite, getrocknet, auf lufttrockene berechnet</td>
<td>3</td>
<td>36,42</td>
<td>5,88</td>
<td>1,072</td>
<td>12,60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Die Destillation des Theers, d. h. Verarbeitung desselben zu Rohprodukten.

1) Verfahren.

Der vom Wasser mittels eines Scheidetrichters möglichst befreite Theer wurde in einer kleinen kupfernen Destillierblase bei anfangs geringem, allmählich gesteigertem Feuer erhitzt; die übergehenden Dämpfe leitete man durch einen Kühlapparat.

Die bei ganz geringer Hitzezufluss übergehenden Tropfen hatten einen hochgeistartigten Geruch; bald wurde die Menge des Destillats bedeutend bei einer Temperatur, bei welcher der Inhalt der Refrakte nicht förbar focht — der Geruch des Destillats wurde jetzt unangenehm empypreutatisch. Die nicht verdichtbaren Gase und Dämpfe reagierten alsfältisch und entstellten viel Schwefelammoniumdämpf. Es ging nunmehr längere Zeit Wasser über mit etwas Del, dann bei wenig verstärktem Feuer reichlich und raff dünnes Del; die entweichenden Dämpfe reagierten fortwährend alsfältisch, schwärzten Bleipapier und rochen höchst unangenehm. Sobald das Del bieß wurde, wechselte man die Vorlage und fing das nun übergehende, mit dem immer noch Wasser überdestillerte, gefördert auf. Die Destillation wurde fortgesetzt, bis bei starkem Feuer nichts mehr überging. Die zuletzt übergehenden Tropfen erstarnten butterartig; das dicke Del zeigte viel Paraffinswirklählichen. — Man trennte jetzt das leichte, wie das schwere Del von dem mit übergangenen Wasser und wog jene wie dieses befon-
ders; ebenso wie man die in der Retorte gebliebenen harten, pulverisier-
barren, asphaltartigen Rückstand, den ich der Kürze halber Asphalt nennen
will.

2) Resultate.

A. Theer von der Grube Dranten.

a. Von den Leskohlen.

Der Theer war ziemlich dickflüssig, von 1,043 spec. Gewicht.

<table>
<thead>
<tr>
<th>1900 Gram. Theer lieferten:</th>
<th>100 Tlbe. liefern:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dünnes Del.</td>
<td>580</td>
</tr>
<tr>
<td>bides Del.</td>
<td>145</td>
</tr>
<tr>
<td>Asphalt</td>
<td>256</td>
</tr>
<tr>
<td>Wasser und Gase</td>
<td>919</td>
</tr>
<tr>
<td>1900................</td>
<td>100,00</td>
</tr>
</tbody>
</table>

b. Von den Stückschichten.

Der Theer war dickflüssig, von 0,952 spec. Gewicht.

<table>
<thead>
<tr>
<th>1540 Gram. Theer lieferten:</th>
<th>100 Tlbe. liefern:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dünnes Del.</td>
<td>410</td>
</tr>
<tr>
<td>bides Del.</td>
<td>290</td>
</tr>
<tr>
<td>Asphalt</td>
<td>210</td>
</tr>
<tr>
<td>Wasser und Gase</td>
<td>630</td>
</tr>
<tr>
<td>1540..............</td>
<td>100,00</td>
</tr>
</tbody>
</table>

B. Theer von den Kohlen der Grube Nassau.

a. Von den Leskohlen.

Der Theer war ziemlich dickflüssig, von 1,064 spec. Gewicht.

<table>
<thead>
<tr>
<th>1320 Gram. Theer lieferten:</th>
<th>100 Tlbe. Theer liefern:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dünnes Del.</td>
<td>644</td>
</tr>
<tr>
<td>bides Del.</td>
<td>164</td>
</tr>
<tr>
<td>Asphalt</td>
<td>320</td>
</tr>
<tr>
<td>Wasser</td>
<td>157</td>
</tr>
<tr>
<td>Gase (aus dem Verlust) ...</td>
<td>35</td>
</tr>
<tr>
<td>1320</td>
<td>100,00</td>
</tr>
</tbody>
</table>

b. Von den Stückkohlen.

Der Theer war ziemlich dickflüssig, von 1,041 spec. Gewicht.

<table>
<thead>
<tr>
<th>1153 Gram. Theer lieferten:</th>
<th>100 Tlbe. Theer liefern:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dünnes Del.</td>
<td>429</td>
</tr>
<tr>
<td>bides Del.</td>
<td>105</td>
</tr>
<tr>
<td>Asphalt</td>
<td>205</td>
</tr>
<tr>
<td>Wasser</td>
<td>367</td>
</tr>
<tr>
<td>Gase (aus dem Verlust) ...</td>
<td>47</td>
</tr>
<tr>
<td>1153</td>
<td>100,00</td>
</tr>
</tbody>
</table>
C. Theer von den Ligniten beider Gruben.

Der Theer war dünnflüssig, von 1,072 spez. Gewicht.

1010 Gram. Theer lieferten: 100 Tlhe. Theer lieferten:
dünnes Del 518 51,29
dickes Del 200 19,80
Asphalt 200 19,80
Wasser und Gase 92 9,11

\[\frac{1010}{100,00} \]

Man ersehnt aus dem ersten Blick, daß die ausfallende Ungleichheit in der Ausbeute an Theer darin begründet ist, daß die verschiedenen Theere ganz ungleichen Wassergehalt haben; ich stelle daher im folgenden nochmals die Kohlen zusammen mit den Mengen an Delen und Asphalt, welche ihr Theer lieferte.

100 Theile lufttrockene Kohlen lieferten:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dranien</td>
<td>Leßkohlen</td>
<td>5,37</td>
<td>1,64</td>
<td>0,41</td>
<td>0,72</td>
<td>2,77</td>
</tr>
<tr>
<td>Dranien</td>
<td>Stückkohlen</td>
<td>3,19</td>
<td>0,85</td>
<td>0,60</td>
<td>0,44</td>
<td>1,89</td>
</tr>
<tr>
<td>Nassau</td>
<td>Leßkohlen</td>
<td>3,78</td>
<td>1,84</td>
<td>0,47</td>
<td>0,92</td>
<td>3,23</td>
</tr>
<tr>
<td>Nassau</td>
<td>Stückkohlen</td>
<td>2,86</td>
<td>1,06</td>
<td>0,26</td>
<td>0,51</td>
<td>1,83</td>
</tr>
<tr>
<td>Beide Gruben</td>
<td>Lignite (getrocknet zurück)</td>
<td>5,88</td>
<td>3,01</td>
<td>1,16</td>
<td>1,16</td>
<td>5,33</td>
</tr>
</tbody>
</table>

III. Verarbeitung der in II. erhaltenen Rohprodukte zu verfaulter Wäere.

Von den in II genannten Produkten dient das dünne Del in gereinigtem Zustande als Leuchtöl und kommt unter dem Namen Mineralöl im Handel vor; das dicke Del wird im gereinigten Zustande als Maschinen- und Scheueröl oder auch in Gasfabriken zur Verbesserung schwach leuchtenden Gases benutzt; auch läßt sich daraus Paraffin, aber nur in verhältnismäßig geringer Menge abscheiden.

Die Reinigung der Dele ze. ist kein Geheimnis mehr. Es liegen viele Abhandlungen vor über diesen Gegenstand, welche fast alle darauf hinauslaufen, daß die Dele zuerst mit Schwefelsäure und chromsaurem
Kali, dann mit Natronlauge behandelt und zulest durch nochmalige De-
stillation gereinigt werden. Man kann rechnen, daß man von 100 Theilen
rohen Deis 70 Theile reines erhält.

Ich wandte bei der Reinigung der Dele im Wesentlichen die Vor-
schriften von Brown an (polytechn. Journal, 1854, Bd. CXXXII S.
430), wonach man die Dele mit 5 — 10 Procent Schwefelsäure und
2½ — 5 Procent saurem chromsaurem Kali behandelt, und stellte so die
drei Dele dar, welche Wagenmann (polytechn. Journal Bd. CXXXV
S. 138) als Handelsartikel bezeichnet, nämlich:

1) Mineralöl (Photogène);
2) Solaröl (zum Brennen in Argand'schen und Carel-Lampen
geeignet);
3) Maschinenschmieröl (lubricating oil).

Das Mineralöl ist klar, anfangs fast farblos, allmählich gelb wer-
bend, dünnflüssig von 0,9397 spez. Gewicht, von mäßig starrem, nicht be-
onders unangenehem Geruch, brennt leicht mit stark rauschender Flamme,
gibt in geeigneten Lampen verbrannt eine nicht rauschende, sehr helle
Flamme.

Das Solaröl, ähnlich, aber doch etwas anders riechend als das
Mineralöl, ist anfangs fast wasserhell, wird allmählich braunlich; es fließt
wie dünnflüssiges Del, sein spez. Gewicht ist 0,9692; es brennt erhitzt,
mit rauschender Flamme, läst sich in gut siebenden Lampen sicher mit Er-
folg brennen.

Das Maschinenschmieröl geht schon bei der Destillation nicht farblos
über; es nimmt allmählich eine braungüte schillernde Farbe an, fließt
wie dickes Del, steigt in der Kälte viele seine Paraffinfarbstoffen ab; es
richtet schwach, nicht eben unangenehm, sein spez. Gewicht ist 0,9775.

Aus einem Theile des dicken Deis schied ich das Paraffin mittels
Weingeist ab; daselbe war, nach dem Reinigen, blendend weis, die Aus-
beute sehr gering.

Der bei der Theebdstellung im Küchlande bleibende Asphalt scheint
ähnliche Verwendung finden zu können, wie der aus Steinkohlenteer
gewonnene.

Die flüssigkeit, welche man beim Schütteln der rohen Dele mit ver-
dünnter Schwefelsäure erhält, entwickelt mit Kalthydrat gemischt einen
ammonialalischen, sehr stechenden Geruch; sie enthält eine Reihe flüchtiger
Balen, welche ich noch nicht näher untersucht habe.
IV. Beschaffenheit der Kohls und Bestimmung ihrer Heizkraft.

Die Beschaffenheit der Kohls von den Kohlen beider Gruben stimmt so sehr überein, daß ich im Folgenden die sämtlichen Kohls zueinander besprechen kann. Wie die Kohlen selbst, so sind auch ihre Kohls sehr verschieden. Die vollkommenen Lignite liefern Kohls, welche bald mattglänzend schwarz, bald glänzend dunkelgrau sind und, abgesehen davon, daß sie sich nach der Richtung der Fasern leicht spalten lassen, guten Zusammenhang zeigen. Sie sind etwas leichter als Wasser, enthalten nur ungefähr 1 Procent Asche und reduciren, mit überschüssiger Bleiglätte geschmolzen, fast soviel Blei als Holzkohle, so daß sie in ihrem Brennverthe nur wenig von dieser abweichen. — Bei vorgenommener Prüfung reducirten 3 Gramm 93,3 Blei. Somit entwickelt 1 Pfund beim Verbrennen soviel Hefe, daß man damit 70,4 Pfund Wasser von 0° auf 100° C. erhitzt kann, oder ihr Brennwerth ist, wenn man den reinen Kohlenstoff gleich 100 setzt, 90,2.

Die in der Zersetzungs vorgebillerten Kohlen dagegen liefern Kohls, welche wenig Zusammenhang haben und nicht wohl transportabel sind; sie sind zum Theile leichter als Wasser, zum Theile viel schwerer als 1,8 spec. Gewicht. Ebenso sehr schwankt ihr Aschengehalt, etwa von 10—30 Procent, und ihr Brennwerth, der sich — den des reinen Kohlenstoffes gleich 100 und somit den der Holzkohlen etwa gleich 94 gesetzt — auf 60 bis 78 berechnet. Bei der Prüfung reduciren 3 Gramme eines leichten Kohlsstückes 80,5; 3 Gramme eines schweren Stückes dagegen 60,9 Gramm Blei; letzteres Stück entrölt 10,3, legertes 32,6 Procent Asche. — Es gelang nicht, durch Trocknen der Kohlen vor der Destillation zusammengängendere Kohls zu erhalten, wodurch der Einwand beseitigt wird, daß vielleicht durch zu raffches Eröden die Kohlen von den Wasser dampfen auseinandergepreßt würden. Schon beim vorzüglichen Trocknen verlieren die Kohlen viel von ihrem Zusammenhang; bei den Kohls zeigt sich diese unangenehme Eigenschaft dann in erhöhtem Grade.

Sämtliche Kohls brennen gut, die der Lignite ausgesetzt, sie lassen sich ganz wie Holzkohlen verwenden. Bei dem Brennen der Kohls der gewöhnlichen Kohlen ist ihr großer Reichthum an Asche sehr hinderlich und beschwerlich.
V. Bestimmung des Ammoniakgemisches der bei der Destillation der Kohlen erhaltenen wässerigen Flüssigkeiten.

Zur Feststellung des Gehaltes an Ammoniak wurden abgemessene Mengen mit Natronlauge destillirt, das übriggebliebene ammoniakalische Wasser in verdünnter Schwefelsäure von bekanntem Gehalte ausgefangen, und die noch freie Schwefelsäure mit dest. Natronlauge von bekanntem Gehalte festgestellt. Es ergab sich aus dieselbe Weise, daß 100 Theile Theerwasser enthalten:

\[
\begin{array}{ccc}
\text{Ammoniak} & \text{entsprechend} & \text{Salmiak} \\
\text{von den Kohlen der Grube Dranien} & 0,214 & 0,663 \\
\text{von den Kohlen der Grube Nassau} & 0,264 & 0,818 \\
\text{von den ungetrockneten Ligniten beider} & & \\
\text{Gruben} & 0,094 & 0,291 \\
\text{Gruben} & 0,145 & 0,449 \\
\text{Somit liefern 100 Theile lufttrockene Kohlen:} & & \\
\text{Ammoniak:} & \text{Salmiak:} \\
\text{von der Grube Dranien} & 0,092 & 0,285 \\
\text{von der Grube Nassau} & 0,113 & 0,352 \\
\end{array}
\]

Ich versäume nicht zu bemerken, dafs es aus den oben genannten Wassen gewonnene Ammoniak kleine Mengen jener stärkten Basen enthält, in denen Wasserdampf durch Alkoholradicale erzeugt ist.

VI. Schlußbemerkungen.

Nachdem nun die vorliegende Arbeit die wesentlichsten Grundlagen geliefert hat, welche erforderlich sind bei Beurtheilung der Frage, ob trockene Destillation der Braunkohlen, in grösserem Maßstabe betrieben, zu einem gewinnbringenden Industrieweg auseinander werden könne, ist es zur definitiven Entscheidung noch erforderlich, sich zu helfen, ob die Kohls gut verwendbar sind, und zu welchem Preise sie verwerthet werden könnten. Würde diese Frage in günstiger Art entschieden, so könnte davon die Rede sein, die Braunkohlen in geschlossenen, von außen geheizten Räumen zu verföhlen und die Destillationsproducte als Nebengewinn zu betrachten;

XXXVII.

Verfahren zur Destillation des Terpenthins und anderer Harze, ferner zur Fabrication trocknender Ole, welches sich Thomas Keates am 15. März 1854 patentiren ließ.

Aus dem London Journal of arts, August 1855, S. 86.

Mit einer Abbildung auf Tab. II.

Die Erfindung betrifft 1) die Destillation des Terpenthins mittels überhitzten Dampfes ober heißer Luft, anstatt der gewöhnlichen direkten Feuerung; 2) die Darstellung des trocknenden oder geheizten Dels mittels überhitzten Dampfes oder heisser Luft.

Was den ersten Theil der Erfindung anbelangt, so kommt der überhitzte Dampf oder die heisse Luft nicht mit der zu destillirenden Substanz in direkte Berührung, sondern streicht durch eine in der Destilliergefah angeordnete Schlangenröhre, und heizt dem in der Blase befindlichen Material auf diese Weise seine Wärme mit. Diese Wärme aber ist für die
Zwecke der Destillation hinreichend. Der Erfinder wendet Dampf von nicht mehr als 4 bis 5 Pfund Druck per Quadratzoll an, weil die Temperatur des Dampfes in der Röhre nicht von seiner Spannung, sondern von dem Umstand abhängt, daß er in Dampfform überhitzt worden ist. Fig. 32 stellt eine derartige Destillatblase im senkrechten Durchschnitt dar. a, a ist die Blase; b der Helm, von welchem das verdampfte Produkt in den Kondensator übergeführt wird; c, c die rings um den unteren Teil und den Boden der Blase angeordnete Schlangenrohre. In diese Röhre strömmt der überhitzte Dampf oder die heisse Luft durch die Röhre d nach der Richtung des Pfeiles. Nachdem der Dampf die ganze Röhre durchströmmt und dem Inhalt der Blase seine Wärme mitgeteilt hat, entweicht er aus der Röhre e. Bei Anwendung von Dampf als heizendes Agens muß zum Ablauf des Kondensationswassers aus dem Schlangenrohr die geeignete Vorkehrung getroffen werden. Nachdem der Destillationsprozeß beendet ist, kann der Rückstand der Blase durch die Röhre f abgelassen werden.

XXXVIII
Mabru's Verfahren zum Conserviren der Milch; Bericht des Hrn. Herpin.

Mit Abbildungen auf Taf. II.

Die Conservierung der Milch ist stets ein Stein des Anstoßes in der Kunst des Aufbewahrens der Lebensmittel gewesen.

Appert dampfte die Milch ab und concentrirte sie, ehe er sie seinem Verfahren unterwarf; er setzte Eiboter hinzu.

Hr. v. Lignac concentrirte die Milch ebenfalls in grossen und flachen Schalen; er setzte eine bedeutende Menge Zucker zu, um die Conservierung der eingedickten Milch zu sichern. Um solche abgedampfte Milch zu benutzen, muss man ihr etwa ebenso viel Wasser zusetzen, als ihr durch die Abdampfung entzogen ist.

Verschiedene Conserver's-Fabriksanten setzten der Milch salzige Substanzen zu, z. B. doppelt-kohlensaures Natron usw., wodurch jedoch der Geschmack und die Eigenschaften dieses Nahrungsmittels mehr oder weniger verändert werden.

Unverändert aller dieser Vorsichtsmaßregeln ist dennoch die nach den älteren Verfehlungssarten präparierte Milch noch häufig dem Verderben unterworfen.

Sein (bereits im polytech. Journal Bd. CXXXIII S. 449 besprochenes) Verfahren besteht darin, die in offenen metallenen Büchsen oder Flaschen enthaltene Milch bis auf eine Temperatur von etwa 50° C. zu erhöhen und sie dann abzukühlen, wobei jedoch ihre Verhürtung mit der Luft fortwährend abgehalten werden muss.

Die von Hrn. Mabru angewendeten Mittel sind eben so einfach als feinreich. Die die Milch enthaltenden metallenen Büchsen oder Flaschen müssen voll gehalten werden und oben mit einem senkrechten und engen Hals von Blei- oder Zinnblech, etwa von 1 Centimeter (3 Linien) innerem Durchmesser, verrieben sein. Diese Nähre steht mit einem oberen Behälter in Verbindung, der ebenfalls Milch enthält und in welchen die in den Flaschen zuein enthaltene Milch, wenn sie von der Wärme aus-
Mabru's Verfahren zum Conserviren der Milch.

143

dehnt wird, übergeht. Die Oberfläche der in diesem Behälter enthal-
tenen Milch ist mit einer dünnen Lage von Olivenöl bedeckt.

Man kann sich eine richtige Vorstellung von dem Apparat des Hrn.
Mabru machen, indem man sich eine Flasche mittels einer senkrechten
bleirenen, 1 Fuß hohen Röhre geschlossen denkt, welche oben in einen
Trichter endigt. Die Räumlichkeit der Flasche, so wie die senkrechte Röhre
und der Trichter, sind gänzlich mit Milch angefüllt, deren Oberfläche mit
einer Delschicht bedeckt ist.

Zwölf oder fünfzehn Flaschen werden zusammen in ein großes ver-
schlossenes Gefäß gesetzt, in dessen Innenwasser dampfleotter, die
in einem Kessel erzeugt worden sind.

Die in dem Innern der Flaschen enthaltene Milch wird durch den
Dampf auf 75 oder 80° C. erwärmt; der durch die Ausdehnung der Flüssig-
keit veranlasste Unterfluß geht in den oberen Behälter über den Trichter,
is aber hindurch gegen die Berührung der Luft durch die Delschicht auf seiner
Oberfläche geschüttet. Die Milch bleibt auf diese Weise etwa eine Stunde
der Einwirkung der Wärme ausgesetzt. Während dieser Zeit entbindet
sich die der Milch mechanisch beigemischte aber auch in ihr gelöstes Luft,
welche nicht selten das Verderben der nach dem Apparat'schen Verfahren
präparierten Conserven veranläßt, vollständig durch die senkrechte Röhre
und den Trichter, indem sie durch die Delschicht dringt.

Wenn alle in der Milch enthaltene Luft daraus entwichen, und der
Prozeß auf die erforderliche Zeit ausgedehnt worden ist, so läßt man das
Gange langsam bis auf 20° C. abkühlen, indem man das Eintömen des Dampfes in den Apparat abstellt. Die Milch, welche sich in der
Wärme bedeutend ausgedehnt hatte, verdichtet sich durch das Abkühlen
und zieht sich zusammen; sie füllt den Raum der Flasche und der dar-
über befindlichen Röhre gänzlich aus.

Es bleibt weder Luft in der Milch noch in der Flasche zurück; es
definden sich kein leerer Raum im Innern der Flasche, welch die Flüssigkeit,
welche sie enthält, dem Druck einer Säule von 3 bis 4 Decimetern (1
Fuß Höhe) unterworfen ist.

Als dann drückt man mittels einer Zange die Bleirohre unmittelbar
über der Flasche zusammen und verschließt darunder die letztere vollständig,
schneidet die Röhre über der Zusammendrückung ab und verlost die ge-
gliebene Spalte mit Zinnloch.

Wie man sieht, ist die Milch erwärmt worden, ohne daß sie mit der
atmosphärischen Luft in Berührung kam; sie ist von der Luft, welche sie
enthalten konnte, vollständig gereinigt.
Da die Flasche völlig gefüllt ist, so kann keine atmosphärische Luft eindringen; auch ist in derselben kein leerer Raum vorhanden, so daß die Flüssigkeit im Innern nicht schaukeln und eine Absonderung der Butter veranlassen kann.

Die Erklärung hat gezeigt, daß mittels des beschriebenen Verfahrens die natürliche Milch während mehrerer Monate, selbst mehrere Jahre lang aufbewahrt werden kann, ohne daß man irgend einen Zusatz fremder Stoffe anwendet.

In Gegenwart einer Commission der Société d'Encouragement wurden mehrere Metallschalen mit Milch, welche acht Monate vorher im Beisein derselben Commission préparirt worden war, geöffnet. Eine andere Flasche, die im Juli 1853 préparirt und damals gehörig verfestigt worden war, wurde ebenfalls im April 1855, nach ihrer Rückkehr von Brasilien, wo sie sechs Wochen geblieben war, geöffnet.

Die in diesen Gefäßen, besonders in dem ersten enthaltene Milch, wurde allgemein als vollkommen conververt anerkannt; sie hatte einen guten Geschmack und Geruch, es hatte sich daraus keine Butter abgeschieden, sondern nur etwas Rahm an dem obem Theil des Gefässes angesetzt, welcher sich aber leicht abgelöst und mit der Milch wieder vermischt ließ.

Obgleich die Milch in der einen Flasche fast zwei Jahre aufbewahrt worden war, so glaubte sie doch in jeder Beziehung frisch gemolcener und erdärmter Milch; sie ließ sich gut heben und verhielt sich überhaupt wie frische Milch.

Man hat gegen den von Hrn. Mabrü angewendeten Verschluß einen Einwand gemacht, welcher auf den ersten Blick sehr wesentlich erscheint; er besteht in dem möglichen, daß selbst wahrcheinlichen Zerstörungen der ganz mit Flüssigkeit anfüllten Gefäße, wenn dieselben in einer mittleren Temperatur aufbewahrt werden sollen, welche viel höher als diejenige unserer Breite ist.

Das Mittel zur Vermeidung dieser Unfälle ist sehr einfach; es besteht darin, die Flaschen in einer Temperatur zu verschließen, welche der mittleren desjenigen Landes gleich ist, wodin die Gefäße bestimmt sind. Eind warme Länder die Punkte ihrer Verblendung, so verschließt und verlötet man sie, wenn die Temperatur der Flüssigkeit, die sie enthalten, 25 bis 60° C. beträgt; sollen sie in Frankreich oder in einem andern Lande der gemäßigten Breiten bleiben, so läßt man sie bis auf 20° erkalten.

Aus den hier mitgetheilten Thatsachen geht hervor:
1) daß Hrn. Mabrü in der Kunst die Nahrungskonferenzen zu präpariren, besonders aber hinsichtlich der Aufbewahrung der Milch, sehr
wichtige Vervollkommnungen eingeführt hat, welche, indem sie dieser Industrie einen neuen Weg eröffnen, in der Folge zahlreiche mögliche Anwendungen veranlassen werden.

2) Das Hr. Mabru die besonders hinsichtlich der Conservierung der Milch von der Gesellschaft gestellte Preisaufgabe sehr genügend gelöst hat.

Beschreibung der Abbildungen.

Fig. 13, Aufsicht des Apparates.
A der Dampfgenerator und sein Dsen.
I die Röhre welche den Dampf zum Apparat führt.
R Behälter, in welchem die Flaschen stehen. Derselbe ist eine Art Dsen, welcher durch einen Deckel verschlossen ist, den man, wie Fig. 18 zeigt, mittels eines Systems von Stangen und Rollen handhaben kann.
T Thermometer zur Angabe der inneren Temperatur des erwähnten Dsens.
C Gefäß, in welchem sich die überflüssigen Dämpfe verdichten und welches auch als Sicherheitsventil dient.
Entleerungsabahn.

Fig. 19, senkrechter Durchschnitt des eigentlichen Apparates, nach der Ahsle des Behälters.

b, b, b Milchflaschen, deren Anzahl 12 bis 15 beträgt und die auf einer Schale P, P stehen, welche mittels Stangen seit an dem Deckel des Apparates hängt.

E conischer, mit Milch gefüllter Trichter, welcher der Flüssigkeit, während ihrer Ausdehnung durch die Temperatur-Äröhungen, Raum gibt. Über diesem Trichter ist eine Röhre mit einem Becher G angebracht, der eine geringe Delmenge enthält, welche alle Verbindung mit der äußeren Luft abschließt.

V ist eine Röhre, durch welche die Stange des Schwimmers niedergeht und durch welche die Luft ausströmmt, die sich während des Erhögens der Milch aus letzterer entwickelt.

XXXIX.

Aus den Comptes rendus, Mai 1855, Nr. 22.

Die von ihm verlangten Coons sind im vergangenen Winter angekommen; die aus der Reihe nicht umgekommenen wurden in die ihnen zuträglichen Umstände verlegt, und nachdem ich solche nach Algier, nach Italien und der Schweiz verbracht hatte, wurde der größte Teil der in Frankreich verbliebenen von der erwähnten Gesellschaft mir übertragen, um das Ausleiten der Schmetterlinge, ihre Besichtigung und Eierlegung befördern zu befördern.

Schon sind einige Männchen ausgebrochen, und ich lege der Akademie der Wissenschaften hiermit zwei Varicäten derselben vor. Diese, in gewissen Theilen China's so gemeinen Schmetterlinge bilden eine neue Species, welche jedoch niemals nach Europa gebracht worden zu sein scheint, da sie weder in wissenschaftlichen Werken noch in öffentlichen oder Privatsammlungen vorkommt. Ich beschreibe sie hier zum erstenmal und glaube sie dem Missionär P. Perny widmen zu müssen, welcher sie schon im
Yahr 1851 in Frankreich eingeführt. Dass damals kein Gebrauch davon gemacht wurde, ist nicht seine Schuld, denn ihm ist es durch große Mühe gelungen, mehrere Hunderter dieser lebenden Cocons nach Lyon zu schaffen, von denen man einige Schmetterlinge erhielt, die man aber nicht zum Uetlegen bringen konnte.

Dieser Nachtvogel steht dem Bombyx mylitta von Fabricius (Papilia, L. in.), welcher in Bengalien die Tussah-Seide liefert, sehr nahe, und man möchte sich verleicht fühlen, ihn bloß als eine örtliche Varietät dieser Species zu betrachten, wenn man nur die geringen Verschiedenheiten zwischen den vollkommenen Insecten in Erwägung zöge. Aber die größten Verschiedenheiten, welche in der Gestalt, dem Geäuge und der Aehnlichkeitsweise der Cocons zu bemerken sind, lassen bei dem jetzigen Stand unserer Kenntnisse, die Species des nördlichen China, welche auf verschiedenen Gießenleb, nicht als eine bloße Abart des Bombyx mylitta betrachten, der von heissem Gegenland Indiens angehört und auf fünf oder sechs verschiedenen Familien angehörenden, Pflanzen lebt. Die schon ausgeschlüpften Männchen des Bombyx Pornyi unterscheiden sich von jenen des B. mylitta zuwider, bedeutend durch den Schmitt der Flügel, besonders des zweiten Baares, deren hinterer Rand vielmehr zugerundet ist; ferner durch die pflauenäugigen Flecken, welche sich etwas weiter von der Basis entfernt befinden, weil ihr durchsichtiger Theil durch das scheibenartig-ellensförmige Nerven, welches sich sehr nahe am inneren Rande dieses glasigen Theils befindet, nicht gleich geteilt ist; dann durch den äußern Drei- oder der vier Flügel, welcher gerader und gewöhnlich minder wellensförmig läuft, vom äußern Rand entfernter und viel weniger demselben parallel ist; besonders aber auf den innern Flügeln viel näher beim pflauenäugigen Flecken vorbeizieht, als beim Rand; endlich durch den grauen Theil der Kuppe des ersten Flügelsbaares, welcher über die Mitte ihrer Länge hinausgeht.

Ubrigens gehört dieser neue Bombyx in eine Gruppe sehr zahlreich der Species die einander sehr nahe stehen, oft aber sehr variiren und sehr schwer von einander zu unterscheiden sind. Selbst wenn es sich später herausstellen sollte, dass diese Insecten nur eine Abart des Bombyx mylitta sind, so müsste diese, vom Typus besonders durch ihr Cocon so ab-

Ich brauche mich nicht näher darüber zu verbreiten, wie wichtig die Einführung des Eichenseidenwurms wäre, dessen Vaterland hinsichtlich des Klimas dem mittleren und nördlichen Frankreich ganz analog ist und dessen Raupen man nur aus Eichenschläge zu bringen braucht, um die unnützen Eichenblätter in eine sehr fleise und bauerschaft Seide umzuwandeln. Die Einführung dieser Species würde in Europa Erzeugnisse liefern, welche die Production der ausgezeichneten Seide von unserm gewöhnlichen Seidenwurm auch nicht mehr beeinträchtigen würden, als sie es in China thun.

XL.

Über die ersten Cocons, welche im Jahr 1855 bei der Zucht der aus China erhaltenen Seidenwurmeier gewonnen wurden von Hrn. Guérin-Mèneville.

Aus den Comptes rendus, Juni 1855, Nr. 23.

Bogen Papier mit Tiern bedeckt, welche unter 58 französischen und auswärtigen Seidenzüchtern verteilten, damit unter verschiedenen Umständen Versuche damit angestellt werden. Denelben wurde zugleich eine Instruktion übergeben und eine Reihe von Fragen, welche eine hierzu ernannte Commission zu redigiren mich beauftragte — eine Maßregel, wovon interessante Resultate zu erwarten sind.

Diese Cocoons, in welchen sich noch die lebenden Puppen befinden, gehören verschiedenen Rassen an, sind aber von guter Beschaffenheit, haben einen feinen Faden, ein dichtes und festes Gewebe mit wohlbeschaffenen und harten Enden. Bei ihrer Zucht sind keine erbselgrossen Krankheiten eingetreten, und es ist daher zu hoffen, daß man mit diesen Cocoons gute Eier erhalten wird, unter denen man eine sorgfältige Auswahl treffen wird, um diesen auszuschießen, welche minder schönen Rassen angehören, wie die grünen, die gelblich gefleckt weisen us.

XLI.

Über den industriellen Werth des Bombyx Cynthia; von

Hrn. Hardy.

Aus dem Comptes rendus, Juli 1855, Nr. 1.

Diese verschiedenen Sendungen gestatteten die Zucht fortzuführen, welche sich immer besser machte, so dass die dritte, vom Februar bis Mitte März, mit 9 Unzen Gier gemacht werden konnte; dieselbe lieferte mir über 60 Unzen Gier, von denen ich an mehrere Personen abgeben konnte, die solche wünschten, während noch eine vierte Zucht ermöglicht war, die gegenwärtig fortgeführt.

Es fragt sich nun, wie sich die Kosten dieser Zucht stellen. Dazu muss der Werth des Wunderbaums ermittelt werden. Wenn die Cultur des Wunderbaums rationell betrieben wird, so dass sein Blatt dem Landwirth nichts kosten, und nur unter dieser Bedingung kann die Zucht des Bombyx Cynthia industriell mit Vorteil betrieben werden, da sein Cocon als nicht abhafpselbar betrachtet und als Gallerfeibe liefernd classifizirt wird.
Der Wunderbaumkern enthält sehr viel Öl, nämlich 58 Procent seines Gewichts. Eine Hektare Wunderbäume in vollem Ertrage (diese Pflanze hält bei und 7 bis 8 Jahre aus) liefert jährlich 3230 Kilogr. Samen. Dieser Same, wovon der metrische Centner 45 Francs gilt, würde sonach per Hektare eine Summe von 1440 Francs abwerfen. Durch den Samen werden also die Kulturkos ten hinreichend gebettet, selbst wenn das Produkt durch das Abfallen der Blätter des Baumes etwas vermindert werden sollte.

Die anderen Kosten der Zucht bestehen im Arbeitslohn und in der Heizung.

Eine Person war 32 Tage nach einander damit beschäftigt; dieselbe hatte aber zu einer Zucht von doppeltel Belang recht gut hingereicht. Ich sehe daher den Arbeitslohn mit 32 Francs an und die zum Heizen verwendete Steinohle zu 8 Francs, zusammen also 40 Francs.

Über eine Sinnenäusserung psychologischen Ursprungs: von H. Denzler.

Der bekannte Versuch mit einer Flügel, die zwischen zwei über einander greifenden Finger ein mehrfach gebogenes Papier gehalten wird, zeigt die Wirkung des Wechselwirkungsschlickes auf den Sinn des Gesichtes. Ein ähnlicher, wissenschaftlich noch niegetes erwähnter Versuch beweist, dass auch der Sinn des Gesichtes durch eine auf Gewöhnung basierte Schicksal folglich aufgetäuscht werden kann.

Man erinnert sich, wie viel größer der aus- oder untergehende Mond als der noch am Stellen hinende erscheint. Es ist aber auch bekannt, dass die visuelle Läusigung sich so vollständig ausbleiben würde, je enger der Ausschnitt (z. B. die hand, ein Finger u. s. w.) ist, durch die den Mond betrachtet. Die zeigt zu besprechender Erhebung dürfte noch ausgehoben sein, sofern man nicht die Grundlagen des Verhältnisses selbst entfernt will.

Beobachtet man durch ein verhalltunfähig stark vergrößertes Fernrohr die Freiheitsansicht eines regelmäßigen Gegenstands, genau vor gelegte, diejenigen Theile eines solchen, welche in der Nähe der perspektiven Verhältnisse unterworfen sind (z. B. Linole, Schach, Würfel u. s. w. in Zimmer; regelmäßige gebuchte Häuser, Straßen u. s. w. im Freien), so werden die entfernten Theile eines durchweg gleichmässigen Gegenstandes um so viel größer als die näher erscheinen, je näher verhalltunfähig die angewendete Vergrößerung ist. Werden die beiden Dimensionen gemessen, so zeigt es sich natürlich, dass die großer erscheinende entferntere im Fernrohre selbst die kleinere ist.

Die Erklärung dieser, oft sehr großen Läusigung, deren Wahrnehmung man schon in der Naturwissenschaft zu verbanden hat, darf wohl mit Grund in den Umständen gesucht werden, dass durch die Vergrößerung des betrachteten Gegenstandes, respektiv durch das scheinbare Nähern sich, in seiner Form keiner Veränderung bewirkt wird, was gegenüber stehende müsste, wenn wir selbst dem Gegen- stände in gleicher Richtung näher kämen. Da also die entsprechende perspektive Veränderung fehlt, so bleiben wir unwillkürlich auf größere Dimensionen der ferneren Theile. Dieser Läusigung durch Schicksal ist es allein möglich zu erklären. Es versteht sich von selbst, dass der reguläre Gegenstand im Fernrohre ganz übersehbar sein und, sobald möglich das ganze Geäst selbst einnehmen müsste, wenn die Läusigung möglichst ausschließlich vorhanden sein soll. (Mitteilungen d. naturforsch. Gesellsch. in Zürich, 1864, S. 8, S. 216.)

Über die Darstellung der Chlorsinslöschung, als Reagens für mikroskopische Untersuchungen; von Dr. l. Radlkofer.

Radlkofer in Zena theilt über die Chlorsinslösungen, die Prof. Schulze in Hombuff zur Verwendung mikroskopischer Objekte vorzüglich, das folgende mit.

Diese Lösung verdünnt man so weit mit Wasser, bis ihre Dichte 1,8 ist. Hat sie ursprünglich die Dichte 2,0, so braucht man dazu 12 Gewichtsprozent Wasser auf 100 Gewichtsprozent Lösung. In 100 Theilen dieser Flüssigkeit löst man dann unter geringem Erwärmen 6 Gewichtsprozent Jodsalz und erwärmt dieselbe mit einem Überschusse von Jod, bis dieses nicht gelöst wird und über der Flüssigkeit violetten Dämpfe bemerkbar werden.

Das Meagens hat die Konstanz der concentrierter Schwefelsäure, vollkommene Klärheit und eine hell gelbbräune Farbe. Es entleert den phanastischen Zellstoffmembranen eine violette oder blaue Farbe, ohne sie allmählich zu lösen. Die Hefe der rosen Baumwolle wird dadurch blauviolett gefärbt, das Parchymum des Alveoblatens rein und tief blau.

Daß das Brauchbare dieser Flüssigkeit ist es notwendig, die mikroskopischen Objekte zuvor mit Wasser zu durchfeuchtet. Die Lösung selbst muß gut verschlossen aufbewahrt werden, weil sie anbrennbar ist und verliert. Verdünnung mit Wasser hat den Erfolg, daß die Färbungen mehr violett ausfallen. Größere Menge von Jodsalz und Jod bindet mehr die braunen Farben, die Jodlösung allein hervorruft. Es kommt also darauf an, wenn die Wirkung des Meagens konstant sein soll, die oben veranschriebene Concentration möglichst genau einzuhalten. Die Dichte der Überständesflüssigkeit soll nie 1,9 übersteigen und unter 1,75 sinken. (Kislig's Annalen der Chemie und Pharmacie Bd. XCVI. S. 332.)

Kieselsäure	72,80
Maurene	18,40
Glycerin	2,50
Kalk	3,30
Magnesia	0,30
Natron	1,84
Kali	0,65

99,79.

Das Sauerstoff-Verhältnis der Basen RO, der Basen RO₃ und der Kieselsäure liegt den Zahlen 1:6:24 so nahe, daß die Zusammenstellung des Nymphenburger Porzellan durch die Formel

\[(\text{K}O, \text{Na}_O, \text{Ca}_O, \text{Mg}_O) + 2\text{SiO}_₃ + 2\text{(Al}_₂\text{O}_₃, \text{Fe}_₂\text{O}_₃) + 3\text{SiO}_₃\]

ausgedrückt werden kann.

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kieselsäure</td>
<td>71.340</td>
</tr>
<tr>
<td>Kaolin</td>
<td>23.703</td>
</tr>
<tr>
<td>Eisenoxyd</td>
<td>4.743</td>
</tr>
<tr>
<td>Kalk</td>
<td>0.568</td>
</tr>
<tr>
<td>Magnesia</td>
<td>0.192</td>
</tr>
<tr>
<td>Kalk</td>
<td>2.001</td>
</tr>
<tr>
<td>Gesamt</td>
<td>99.607</td>
</tr>
</tbody>
</table>

Die Masse, aus welcher der Dresdner Porzellanfabrik die Brennkapseln gefertigt werden, dient auch daselbst zur Aufstellung kleinerer und größerer chemischer Öfen, die namentlich im südlichen Deutschland sehr verbreitet und mit Richtigkeit als solcher erachtet werden. Ich habe auch diese Masse analysirt, und heisst das Ergebniss davon mit, weil es vielleicht manchem Beifuss solcher Öfen interessiren mag.

100 Theile der Kapselmasse (Bruchstück eines nicht gebrauchten chemischen Öfens) enthielten:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kieselsäure</td>
<td>68.95</td>
</tr>
<tr>
<td>Kaolin</td>
<td>27.71</td>
</tr>
<tr>
<td>Eisenoxyd</td>
<td>4.15</td>
</tr>
<tr>
<td>Kalk</td>
<td>0.74</td>
</tr>
<tr>
<td>Magnesia</td>
<td>2.17</td>
</tr>
<tr>
<td>Wasser</td>
<td>1.25</td>
</tr>
<tr>
<td>Gesamt</td>
<td>99.97</td>
</tr>
</tbody>
</table>

(Wittstein's Bierteljahreschrift für praktische Pharmacie. 1855. Bd. IV S. 553.)

Über Prüfung der Zündmasse der sogenannten Glühmühlöschern; von Leopold Stahl.

Um zu erfahren, an welche Säure daselbe gebunden, wurde aus einem anderen Theil des wässerigen Auszuges das Blei mittels Schwefelwasserstoffgas niedergespiegelt, das überschüssige Gas durch Gewärmen entfernt, das Filtrat mit kochen saurer Kalilösung neutralisirt, und die Lauge zur Trocke abgedampft. Es hinterblieb eine flüssige Menge eines Säulges von bitterlich fühlendem Geschmack, welches auf glühende Kohlen geworfen, verpuffte. Nachdem daselbe in Wasser gelöst und

32 Quaterly Journ. of the Chem. Soc. II. 154.
mit 1/4 concentrirter Schwefelsäure versetzt war, brachte man noch in die erhitzte und weiter erhitzte Flüssigkeit einen Krystall von schwefelfluorgewandten. Es zeigte sich bald, daß der Krystall eine braunfaserige, gefärbte Fäule, welche für die Ausführung des Verfahrens von Salpetersäure konstatirt, die Fäulefarbung einfach dadurch, daß die Salpetersäure durch Abgeben von Sauerstoff an das Eisen-Iron reduzierte, welches sich mit dem noch vorhandenen Schwefel aus dem Eisen-Iron zu braunen, in der Flüssigkeit löschlichen Verbindungen vereinigte. Die Hölzer waren dann nach einer Lösung von salpetersaurem Blei-

Reinigung des Copals zur Firma bereitung; von L. Hennebutte.

Sehr schnell trocknender Anstrich.

Der "Houvier" der Vereinigten Staaten berichtet folgendes. "Nach mehrere Jahre fortgesetzten Untersuchungen gelang es Gabriel Blot in eine neue Art Anstrich zu erfinden, dessen Vorteile vor dem Oilstrich ihm bald allgemeine Anwendung verliehen dürften. Die Delfarbe hat, wie bekannt, unter mehreren anderen Wirkungen auch den, daß sie mit einer Langzeit trocknet, welche die Anwendung bisheriger Lagen erst nach einem Zwischenraum von einigen Tagen möglich macht; die Anwendung des Terpentins erlaubt keine Gefahr, die Gesundheit ebenso wenig das aldbaldige Bemohn von der Körper. Durch die neue Gem-

155

Missellen.
Anstich mit Dösarde oder Gesetz festet. Versuche die man im großen Maßstabe in einem Zimmer der Strafe la ferme, wo man um 7 Uhr Morgens anhebt und zur Speisekunde ausfährt, ferner in Knecht's eigenem Haute in der Straße Heidenfried, die man immer anfahre, liegen nichts zu wünschen übrig, ungeachtet jetzt 18 Jahre verlaufen sind. Da es möglich wäre, das Blut in Knechts's Vorsachen auf der Sturz wäre, so wollte letzterer sie hier mitteilen.

Man nimmt Gafsein, oder wenn es kalt ist und lässt ihn eine Viertelstunde in einem eisernen verglasten Topf mit Brunnenwasser liegen, indem man dreimal so viel Wasser als Gafsein nimmt; dann gibt man es auf sein reines Stück, indem man es noch einmal mit kaltem kalt bester Wasser auswascht, um ihm alle Säure zu entscheiden, und bringt es in einer Serviette oder sonst einem reinen Tuche aus, bis es nur noch feucht ist. Nachdem es gewogen, nimmt man den vier ten Gewichtsteil seiten ungelöschen Kaf's, den man mit Wasser zu Kalsmilch löst; indem man dreimal so viel Wasser nimmt, als das Gewicht des trockenen Kaf's beträgt, erhält man so viel Kalsmilch als Gafsein. Diese beiden Stoffe mischt man zusammen; das Gafsein wird so verdünnt und billigt einen festen, fliessenden Schleim mit, welchem man die mit Del oder Wasser angereiachten Fäden anführt. Alsobald man die Fäden, Banne, Gänge, Treppen u. s. w., kurz alles von Stein, Gyps, Zin aufstreichen, will man die Farbe auf Holz oder einen alten Delantifisch auftragen, so mischt man ein Zehntel Klein zum. Die anzuwendenden Gegenstände werden wie gewöhnlich hergerichtet.

Um das Gafsein aufzubewahren, bereitet man es auf einem Flechtiwer oder einem Tuch an und lässt es dann an der Luft an der Sonne trocknen. Die Kalsmilch enthält sich in zugeschmolzenen Flaschen. Ehe man das trockene Gafsein anwendet, lässt man es 24 Stunden in weichem Wasser erweichen; dann bringt man es ans, die man den Dösk aufsucht. Wäre, der Schleim zu dick, so kann man Wasser oder Del hinzufügen, je nach der Arbeit, die gemacht werden soll. Es bestehen nur buntere Fäden anwenden; die härteren Fäden würde der Dösk gleich verändern. Dür, Tafeln, Chormergel, Berlinerblau, Indigo, Lack, Landsbrom, Weis- und Linke u. s. w. lassen sich gut anwenden. (Prof. L. Förster's Allg. Bauzeig.)

Rectification des Gisgathers; von W. Engelhardt.

Dieses Verfahren gründet sich auf die Löslichkeit des chloraliums in wässriger Weingeist, und der auf diese Art rectifizire Gisgäther entspricht den Anforderungen der Pharmaceuten vollkommen. (Neues Jahrbuch für Pharmacie Bd. III S. 203.)
Ueber die Entfärbung der mit Pikroinäure gels gefärbten Seide und Wolle.

Ueber das Färben der sogenannten wilden Seiden Sorten, namentlich vom Eichenseidenwurm.

Ueber Reinigung des Honigs; von A. Hoffmann.

Zur Klärung des Honigs hat man bis jetzt Papierbrei, Kohlenpulver, Zwiebel, Gerbstoff empfohlen. Die drei ersten Mittel können offenbar nur mechanisch wirken, indem sie die trüben Materie anziehen und einhüllen, so dass sie mit den Mitten selbst nachher entfernt werden können.

Der Gerbstoff (Tannin) dagegen scheint chemisch zu wirken. Seine Wirkung kommt nach dem Verfasser daraus zurück, dass der Gerbstoff von den tierischen Stoffen, der in bald größerer, bald kleinerer Menge im Honig enthält ist, niederschlägt. Der Nieder schlag, der auf diese Weise entsteht, hält die trüben Materien ebenso ein, wie das Zwiebel, indem es coaguliert. Das Klären des Honigs mittels Gerbstoff gelingt bisweilen nicht; der Verfasser erklärt dies auf dem Umstand, dass der Ei genschaft des Honigs nicht konstant ist, häufig wechselt er ganz, und in diesem Falle verlagert die Anwendung des Gerbstoffes als Clarierungsmittel, weil sich jener Nieder schlag nun nicht mehr bilden kann.

Die Conservierung großer Getreidevorräthe durch Drainierung.

Der größte Feind der Conserverung des Getreides ist bekanntlich die Selbstvergiftung, welche namentlich im Frühjahre enttritt, die Ausbildung und Erntemangel gewisser, Insektenlarven bedingender und fortgeleiteter Unmärchen unmachbar macht. Man konnte manche Vorsichtsmaßregeln, die dem Getreidekanten quer durchbreiten, eine gleichmäßige, oft selbst niedrigerer Erträge als an freiliegendem Fornwurzem fördern und die Parosten vertreiben, so hätte man die Erhaltung des Getreides, wenn auch nicht für immer, doch für längere Zeit erreicht.

Von diesem Gedanken erfüllt, bewog ich jemand im „Landw.-Handelsblatt“ eine solche Versuche an: Im Frühjahr 1854 hatte ich auf einem kleinen Bauer einer, welcher alle Getreide durchgearbeitet wurde, und hatte man die Getreidekanten quer durchbreiten, und er entwickelte sich ein starkes Schimmelschimmeln, gegen Wandel an Raum entdeckte ich den Haber nicht immer aufschnüren, und es wurde durch das Umarbeiten immer nur ein gewisser Teilt von der Blüte befreit. Ich war dann vor der Drainierung eines Großplages befreit, und das Gerät, das der Energie auf die Seile, der Puder die legte, ich ihm in gewissen Entfernungen schöne in die Böden und erlangte mit ausgeübtem und gewandtem Meisterkraft die erwünschte Fruchtigkeit, hierauf nun schüttete ich den Haber leicht auf die Nährböden (ungesät) hoch, und machte die Bodenfläche leicht. Ob das Meister, legte ich hierauf einen neuen Strang Nährböden auf vier neuen Böden befreit, über welche ich eine zweite Tage Haber schüttete und dabei sehr trug, die zweite Unkehr fruchtete über die erste zu legen, und das so nach und nach hierauf von Nährböden ab, denen legte ich Haber befreit war. Das Getreidekanten wurde nach und nach einem Getreide gebauten sterile, wie man es auf den Straßen sieht, auf der anderen Seite gaben die Mangelung der Nährböden heraus und das Ganze hatte das Ansehen einer kleinen Arzneibatterie. Der Haber war warm und Torchäster; den anderen Tag war er nur noch laut, den dritten Tag war er schon falt. Der nasse Gras durch die Gleichheit vereinigte sich miteinander und war nach vierzehn Tagen ganz verkommen. Ich habe ihn so länger als drei Monate während des ganzen Sommers liegen lassen, ohn ihn umzuschneiden.

des Ausschüttens des Haufens die Deffnungen zu verschließen, da doch unvermeidlich immer einige Körper in die Höhern fallen.

Ueberhaupt hat wohl die Drainage ihr legtes Wort in der Desonomie noch nicht geschrieben; die Höhern können vielleicht auch beim Günsbohern des Heus und Getreides in nassen Jahren Dienste leisten. Nichts ist leichter, als den Mittelpunkt von Höhern des größten Quaders zu bilden und nach innen sein charakterns- fürmig während des Günsbohrens vier oder abt Lagen von je einem Meter Höhe zu bilden, welche Erpigsung und das Schimmuschenigen, sowie die so häufig vor- kommenden Selbsteinigungen verhindern würden. Endlich würden sie, zwischen Getreidehiffen, welche man oft zu mehreren Metern hoch ausschichtet, eingesagt, ähnliche Dienste leisten. (Austria.)

Iieber ietterpropheseziehung durch Thiere, Iinseeten und Pflanzen; von W. B. Thomas in Cincinnati, Ohio.

Folgende Beobachtungen würften als Beiträge zu den Mitteln, das Weiter vorbeifragen zu können, Interesse gewähren.

Wenn ein Wanderwurzel-Paar im Frühling ansäumt, so genen sie sogleich für den Bau ihres Nestes, indem sie den Platz sorgfältig reconnitiren und den Cha- rakter der bewohnten Ritterung beobachten. In dieselbe lätt sich das Getreide und die Blätter in den Inneren des Nestes, zwischen die Zwischen und die Schützung des berühlt. Ist das Weiter sehr weit, so nehmen sie kiefernweise Zweige und binden das Nest fest an den Mann, indem sie alle kleinen Zweigen noch durch ihren Speichel anlegen. Besticht sie das Berühmte nenniger Ritterung, so bauen sie ihr Nest so, daß es vor dem Weiter geschützt ist; bei freundlichen Betten aber bauen sie es im Freien, ohne eine dieser besonderen Vorrichtungsregeln zu besorgen.

Die besten Mittel zur Bestimmung des Weiters geben uns aber unsere Insekten und kleiner Thiere an die Hand.

Die II. solitaria, zaleta, abalobris und thyroidus geben nicht durch Ausschwimmen von Flugigkeit Zeichen, sondern auch durch Poren und Hervorragungen. Von den Körpern der zaleta und thyroidus fahren große Leuten nach. Diese Leuten beginnen schon vier Tage vor dem Regen, welche sie anzeigen, zu er- scheinen; außerdem jeder solchen Leute befindet sich eine Rose. Vor Regenzeit er- langen diese Leuten mit den geschlossenen Poren die größte Ausdehnung, um Wasser in sich aufzunehmen. Auch zeigt sich einige Tage vor dem Regen bei II. thyroid- ius eine große Verziehung, welche am Kopf, zwischen den Fühlhörrnern, anlangt und an der Verbindung mit der Schale (dem Haus) auffällt. Die II. solitaria und zaleta frischen ein paar Tage vor Anfang des Regens auf die bewohnten am meisten ausgesetzte Seite eines Hugels, wo sie, wenn sie vor dem Regenfall an-

Die N. hirsuta ist nach einem Regen sehr von Farbe, vor demselben aber braun und rings um die Ränder des Tieres blau gezeichnet. Die füßförmigen sind mit Querstreifen versehen, und ein paar Tage vor dem Regen ist auch eine Verfettung wahrgenommen, welche mit Annäherung des Negens immer tiefer wird; diese Schnecke schwärt auch Flüssigkeit aus, doch nicht mit Farbenwuchset, wie die oben erwähnten.

Durch Wespen und andere Insekten kann das Wasser ebenfalls vorbeigefegt werden.

Die Blätter der Bäume sind ebenfalls gute Barometer; die meisten werden für einen kurzen, schwachen Regen so aufgegeben, daß sie sich mit Wasser ansüßen; für einen anhaltenden Regen aber werden sie gefaltet, so daß das Wasser abgeleitet wird. Der Tisch, die Krone und der Lobkasten sind ebenfalls Regenveränderungen; denn, da sie kein Wasser trinken, sondern dasselbe in ihrem Körper absorbiert, so kann man sie zu der Zeit wo sie Regen erwarten, sicher finden. Auch die Heuflerötre und die Griffe sind gute Anzeiger eines Negens; einige Stunden ehe es regnet, findet man sie unter dem Laub der Bäume und in den hohen Stämmen. (Edinburgh new philosophical Journal, October 1854.)

Mittel gegen die zu große Sterblichkeit der Blutmiegel.

In zu engen Gefäßen auszubreiten, sterben die Blutmiegel im Sommer in Folge der faulen Bäderung der im Wasser enthaltenen organismischen Substanzen oft zahlreich hin. Apostelfer Gautier bringt die Blutmiegel, wenn sie fast bei ihm ankommen, in ein wechselvolles Gefäß und setzt ihrem Wasser täglich 1 Gramm (16 Gramm) Kochsalz per litro (Kilogramm) zu, liebe gesagt als raffiniertes Salz. Nach einigen Tagen sind sie wieder hergestellt und nur einige gehen verloren. Von dem Salze wird allmählich nur noch ein Viertel genommen, so lange die stete Jahreszeit dauert. (Journal de Chimie médicale, Sept. 1855.)

Buchdruckerei der J. C. Tolla'schen Buchhandlung in Stuttgart und Augsburg.
Helling's patentirtes Sicherheitsventil für Dampfkessel.

Mit Abbildungen auf Tab. III.

Die mehrfach beobachtete, durch Versuche festgestellte und auch in diesem Journal öfters besprochene Erscheinung, daß die Dampfspannung in einem Kessel, trotzdem das und während des Ventil gehoben ist und der Dampf abläuft, durch anhaltendes Feuer zunehmen sonne, veranlaßte zu dem Versuche, ein Ventil zu construiren, welches beim Eintritt der gefährlichen Ueberschreitung der zulässigen Spannung eine größere Deffnung für die Dampfausströmung bietet und sich selbst wieder schließt, sobald die reguläre Spannung wieder eingetreten ist.

Im Besentlichen besteht die Vorrichtung zur Erreichung des vorstehenden Zweckes in zwei in einander gesetzten Ventilen, von denen das innere auf dem äusseren ruht und deren Gesamtbelastung der Summe des Querschnitts beider Ventile für einen bestimmten Dampfdruck entspricht. Die Belastung des äusseren Ventiles dagegen für sich allein ist eine verhältnismäßig geringere, als die des inneren Ventiles. - Sobald nun die Spannung des Dampfes im Kessel größer wird, als die dem Querschnitt beider Ventile entsprechende Belastung, so wird sich das äussere Ventil und mit ihm das auf ihm aufliegende innere Ventil heben. Steigert sich nun die Dampfspannung trotz des AbbläSENS und erreicht eine Stärke, welche der Belastung des inneren Ventiles entspricht, so wird sich dieses allein für sich heben. In Folge dessen wird aber das äussere Ventil, weil es hierdurch entlastet wird, der aufsteigenden Bewegung des inneren Ventiles augenblicklich folgen und zwar so lange, bis die Deffnung genügend groß ist, um den Dampfe den erforderlichen Abzug zu gestatten und bis wieder die Normalspannung eintritt.

An einem Beispiel sey es erlaubt die Wirkung der Vorrichtung näher zu erläutern. Es sey z. B. die Summe des Querschnitts beider Ventile 18 Quadratzoll, die Spannung, bei welcher ein Heben der Ventile eintritt, 3 Atmosphären; so wird die Summe der Belastung beider Ventile 810 Pfd. betragen müssen. Der Querschnitt der Ventile sey gleich, so daß jedes Ventil 9 Quadratzoll enthält, die Belastung der Ventile dagegen so verteilt, daß die Belastung des äußeren Ventiles nur der Spannung von 2 3/4 Atmosphären entspricht, mithin nur 371 1/4 Pfd. betrage, so wird für die Belastung des inneren Ventiles 810 - 371 1/4 = 438 3/4 Pfd. verbleiben, welches Gewicht einer Spannung von 3 1/4 Atmosphären bei 9 Quadratzoll Querschnitt entspricht.

Es kann nämlich die Steigerung der Spannung beim Auströmen des Dampfes aus den gewöhnlichen Ventilen nur darin ihren Grund haben, daß der Dampf unter einer starkenPressung entwich, welche infolge dieselbe bleibt. Bei den angegebenen Doppelventilen dagegen ist die Belastung des inneren Ventiles bedeutend geringer als die Spannung im Kessel, und mithin auch die Pressung, unter welcher der Dampf entwichet, eine verhältnismäßig geringere, so daß die Spannung nicht größer werden kann, als die Belastung des inneren Ventiles beträgt, mithin in dem angeführten Beispiel nicht mehr als 3 1/4 Atmosphären erreichen, dann aber wieder sinken wird.

Die Zeichnung Fig. 11 bis 13 wird keiner besonderen Erläuterung bedürfen.
Über den Brennmaterialverbrauch bei Farcot's Dampfmaschinen.

XLIII.

Erfahrungsresultate über den Brennmaterialverbrauch bei den Dampfmaschinen des Hrn. Farcot.

Nachdem man ihre Leistung wiederholt durch einen Dynamometer bei dem Druck und bei der Expansion, wie sie genau dem normalmäßigen Betrieb der Fabrik entsprechen, ermittelt hatte, bestimmte man den Brennmaterialverbrauch durch zwei achtständige Versuche.

Die angewendeten Steinkohlen waren von Mons und von dem gewöhnlichen Hausen genommen, mehr als zur Hälfte aus kleinen Kohlen bestehend, einen starken Rauch entwickelnd und 8 Procent Asche hineinspendend.

Der Heiser besorgte drei Feuer, und da zwei von den drei Diesen die vorhergehenden Monate allein im Betriebe gewesen waren, so enthielten sie viel Ruß und Flugasche. Dazu kam noch, daß der Druck, anstatt nach dem Stempel der Kessel auf 5½ Atmosphären zu bleiben, nur 4½ betrug.

Unberührt dieser ungünstigen Umstände ergab sich der Kohlenverbrauch für die Stunde und per Pferdekraft zu 1,20 Kilogr.

Dieses Resultat besträgt diejenigen, welche Hr. Farcot früher bei Maschinen von 30 bis 40 Pferdekräften erhalten hatte, von denen die eine horizontal, die andere mit zwei Cylindern und mit Balancier versehen war. Bei diesen, Tag und Nacht mit guten Kohlen von Charleroi im Betriebe stehenden Maschinen, deren Diesen im besten Zustande als diejenigen zu Dürschamp waren, betrug nämlich der Verbrauch 1,10 bis 1,15 Kilogr. 33

Über den Brennmaterialverbrauch bei Farcot's Dampfmaschinen.

Eine Maschine mit zwei Cylindern wurde zu Durrcamp nur aus dem Grunde gewählt, weil die Spinnere eine Vorliebe für dieses System haben; allein mehrere von Hrn. Farco és machte Versuche berechtigen ihn zu dem Ausdrucke, daß er mit seinen einzylinderigen Maschinen dieselbe Regelmäßigkeit erlangt hat wie mit den zweizylinderigen, und daß der Kohlenverbrauch bei beiden gleich ist.

Dieser Verbrauch ist gering, wenn man in Betracht zieht, daß diese Versuche mit Maschinen angestellt wurden, deren Umgießflute sich nur auf 13 Pferdekrafte belaufen, und daß das Speisewasser so schlammlag war und soviel Kesselstein absetzte, daß der Betrieb eingestellt und dann anderes Wasser zur Kesselspeisung genommen werden mußte. Bei Maschinen von dreifacher Stärke, die er jetzt zu Bordeaux auffüllt, hofft er günstigere Resultate zu erlangen.

Ein Vorteil der horizontalen Maschinen besteht darin, daß man das Wasser leichter aus verschiedenen Höhen heben kann, ohne das Verhältniß der Expansion zu verändern, als das bei den senkrechten Maschinen der Fall ist, und daß ihre Ausrüstung weniger kostet als die der letztern. Der Kohlenverbrauch wurde noch der Effektivkraft oder der Leistung berechnet.

Über das Heizen der Dampfmaschinen-Defen; von dem Ingenieur R. Armstrong zu London.

AUS dem Civil Engineer and Architect's Journal, August 1855, S. 286 und September S. 318.

I. Instructionen für die Heizer solcher Dampfmaschinen-Defen, welche ihren eigenen Rauch verbrennen.

1) Zuvorderst müssen die Heizer begreifen, dass sie sich nicht ein Geschäft aus dem Stochern machen dürfen, sondern es für die Zeiten aufsparen müssen, wo derrost von Schlacken und Asche gereinigt wird, was dreis- bis viermal täglich zu geschehen hat, wenn man mit Kohlen von mittlerer Beschaffenheit feuert. Man wählt dazu die Zeitpunkte, wo geringere Dampfnengen erforderlich sind.

2) Des Heizers erster Geschäfte, ehe noch die Feuerthür geöffnet wurde, besteht darin, sich zu überzeugen, dass die Kohlenstücke aus dem Haufen vor der Thür nicht größer als eine Faust und dass die Staubkohlen befeuchtet sind; auch muss in dem Aschenfall etwas Wasser vorhanden sein. Dann beginnt er in den hinteren Theil des Ofens zu schäumen, etwa auf ein Drittel der Länge des Rostes von der Brücke ab, indem er so rasch als möglich 12, 20 bis 30 Schaufeln voll Kohlen einwirft, die dann eine Bank bilden, welche die obere Fläche der Brücke fast oder gänzlich erreicht, wovon die Feuerthür so lange geschlossen wird, bis alle anderen Defen — wenn deren noch vorhanden — auf dieselbe Weise bedient sind.

4) Niemals darf der Rost einige Zeit an irgend einem Punkte unbedeckt mit Kohlen bleiben, sondern es muss jedes entstandene Loch sofort mit einer Schaufel voll Kohlen bedeckt oder geschlossen werden; der Heizer darf nie vergessen, dass drei bis vier Schaufeln voll Kohlen rasch auf einander oder auf andere glühende Kohlen geworfen, nicht mehr Rauch machen, als nur eine. Alles hängt aber dabei von reich schnellem Einschütten ab; es ist dies ein Hauptpunkt um die Bildung von Rauch zu
vermeiden und dadurch wesentlich an Brennmaterial zu ersparen. Runde Heizer werfen nur drei Schaufeln voll aus, während andere vier Schaufeln voll in den Ofen werfen und dadurch 20 Procent Dampf mehr erlangen.

5) Der Heizer muss beim Schüren stets dahin sehen, die Kohlenbank an der Feuerbrücke zu erreichen und sie hoch genug zu erhalten. Ist diese Bank gänzlich durchgebrannt, oder ist sie sehr niedrig und ist die Kohlen- schicht auf dem Rost überhaupt dünn, so schiebe man mit einer Krage die ganze vordere glühende Kohlenmasse bis auf eine Entfernung von 12 bis 18 Zoll von der Brücke zurück und werfe frische Kohlen auf die seeren Stellen der vorderen Seite des Rostes, wie beim ersten Einschüren.

Eine auf diese Weise bediente Dampfkeefel-Feuerung verbrennt ihren eigenen Rauch ohne alle Schwierigkeit, vorausgesetzt dass man eine mässige Luftmenge an der Brücke einströmen lässt (welche zur Genübung des Kessels vorher erhitzt werden sollte). Dies ist eine sicherere und wohlseilere Art den Rauch zu vertilgen, als wenn man kalte Luft durch die Feuerbürren einströmen lässt, wodurch der Rauch zwar verdünnt, aber nicht verbrennt wird.

II. Instruktionen für die Heizer solcher Dampfsmaschinen-Ofen, welche nicht besonders zur Verhinderung oder zur Verbrennung des Rauches eingerichtet sind.

2) Beim Einschüren müssen grosse und kleine Kohlen, gut mit einander vermengt, allenthalben auf dem Rost verteielt werden, und zwar
hinten in der Nähe der Brücke dicser als vorn an der Platte, weil hinten der Zug am stärksten ist und die Kohlen dort am schnellsten verbrennen.

4) Wenn eine regelmäßige, gleichförmige Dampferzeugung erforderlich und das Register geöffnet ist, darf die Brennmaterialmenge auf dem Rost nach und nach vergrößert werden; wenn aber die Dampferzeugung gesteigert werden soll, so darf die durchschnittliche Stärke oder Menge des Brennmaterials auf dem Rost nicht vermehrt, sondern muß vielmehr verkürzt werden, indem man kleinere Mengen auf einmal, aber häufiger einschützt. Sobald jedoch die Dampferzeugung das Bedürfnis übersteigt, muß man wieder bedeutendere Kohlenmengen auf einmal einschützen, indem man die Brennmaterialmenge aus dem Rost, wie vorher, regelmäßig vergrößert. Ist andererseits für längere Zeit weniger Dampf erforderlich, so verkleinere man das Register ein wenig, und benutze diese Gelegenheit, um das Feuer zu bießen oder den Rost zu reinigen, wobei man jedoch nur eine Hälfte desselben auf einmal vornehmen muß.

Wird ein Dampfmaschinen-Osten auf angegebene Weise betrieben, so entwickeilt sich nur wenig Rauch; und ist dies der Fall, so kann der Rauch dadurch verhindert werden, daß man während und nach dem Schüren die Thür 2 bis 3 Zoll während zwei oder drei Minuten öffnet; hierbei wird jedoch die Dampferzeugung gewöhnlich vermindert.

III. Notizen für Dampfmaschinenessen - Besitzer in Beziehung auf die Nachtheile des Rauches.

1) Es ist als erwiesen anzunehmen, daß eine Dampfmaschinenesse nicht zu weit seyn kann, wenn sie nur mit einem Register versehen ist, obgleich jetzt noch immer 99 von 100 Ossen entschieden zu eng find. Solche sind nicht im Stande einen hinreichenden Luftzuge durch den Osten hervorzubringen, daher statt einer Flamme mit wenig oder keinem Rauch, eine sehr rauchige erzeugt wird.

2) Mangel an Zug der Esse ist ein Fehler, den kein rauchverzehrender Osten in der Welt, mag er mit salter oder warmer Luft gespeist werden, verbessern kann; nur durch Anwendung eines Gebläsese ist dies möglich;
der Betrieb eines solchen kostet aber gewöhnlich so viel, als die durch dasselbe erzeugte Hülse wert ist.

3) Da es unmöglich ist, den Rauch ohne große Hülse zu verkehren, welche einen guten Zug erfordert, ein solcher aber ohne eine große Offnung nicht wohl hervorgebracht werden kann, so folgt im Nachstehenden eine Tabelle über die Verhältnisse, welche die Offen haben sollen, deren Zweckmäßigkeit durch die Praxis erwiesen ist, wobei die so genannte Dampfsohle (steam coal) von geringer Qualität der (englischen) Fabrik-Districte als Anhalt genommen wurde. Zwar können da wo — wie in London — noch vorwiegend Newcastles Kohlen angewendet werden, die Dimensionen der Offen etwas geringer sein; allein auch unter solchen Umständen kann man die nachstehenden Dimensionen beibehalten, weil die Kraft der vorhandenen Maschine nicht selten gesteigert werden muss.

<table>
<thead>
<tr>
<th>Höhe der Offen</th>
<th>Innerer Durchmesser</th>
<th>Nominelle Pferde-</th>
<th>Kraft des Kessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yard (a 3 Fuß)</td>
<td>Fuß</td>
<td>Zoll</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>8</td>
<td>.</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>10</td>
<td>.</td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>35</td>
<td>2</td>
<td>6</td>
<td>.</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>6</td>
<td>.</td>
</tr>
<tr>
<td>45</td>
<td>4</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>55</td>
<td>5</td>
<td>6</td>
<td>.</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
<td>0</td>
<td>.</td>
</tr>
</tbody>
</table>

5) Um die Rauchbildung zu vermeiden, darf man die Maschine nicht zu hoch belasten. Eine gewöhnliche Niederdruck-Condensation-Maschine wird meistens zu hoch belastet, wenn sie für jede nominelle Pferdekraft weniger als 25 Kreissoll im Cylinder hat. Eine Hochdruckmaschine ohne Condensation muss dagegen per Pferdekraft 10 bis 12½ Kreissoll haben und mit dem doppelten Effektivdruck gegen jene betrieben werden, d. h. mit 30 bis 40 Quadratzoll Druck in dem Kessel.
Unter dem Titel: „außerordentlich neue, einfache und gute Idee“, der findet sich im Cosmos, Revue encyclopédique, August 1855, S. 220 ein (von dem Redacteur Abbé Moigno nicht unterzeichnet) Artikel, betreffend einen Mechanismus zum Verdoppln einer rotirenden Bewegung. Der Verfasser deselben sagt:

„Einer der Mechanismen welche seit der Größung der Pariser Ausstellung unsere Aufmerksamkeit am meisten in Anspruch nahmen, und welcher von allen competenten Personen denen wir ihn zeigten, am meisten bewundert wurde, ist ganz gewiss folgender neue Apparat, der eine Abänderung einer vorhandenen Bewegung zum Zwecke hat und in vielen Fällen mit großem Vortheile gezahnte Räder erzeugen wird. Die Zeichnung, Fig. 5, welche wir der Güte des Hrn. Oberst Grissuthi verdanken, gibt eine sehr deutliche Vorstellung des neuen Mechanismus. Er besteht aus zwei sich drehenden Scheiben; die größere ist von Gußeisen, und auf ihrer oberen Fläche sind mittels sechs vorspringender Sectoren sechs Rüthen mit parallelen Seiten gebildet worden; die kleinere Scheibe, von Messing, trägt drei Zapsen, welche mit räthlichen Rollen versehen sind, die sich um diese Zapfen drehen, so daß die Flächen der beiden Scheiben, welche mit einander in Berührung kommen, sich auf einander abrollen, statt gleitende Reibung zu haben. Die Bewegung geht von der größeren Scheibe aus, und die kleinere ist die bewegte. Dreht sich die größere Scheibe, deren sich Rüthen die drei Rollen umschließen, um ihre Achse, so bewegt sie die kleinere Scheibe mit, und diese macht drei Umdrehungen für jede Rotation der größeren. Die Geschwindigkeit würde dieselbe geblieben seyn, wenn die große Scheibe zwei Rüthen gehabt hätte, und die kleine zwei Rollen; sie würde sich dagegen verlangsamt haben, wenn man der großen Scheibe acht Rüthen, und der kleinen vier Rollen gegeben hätte. In der Praxis kommt es jedoch selten vor, die Überzeugung weiter treiben zu müssen.”
Gassen's Mechanismus zum Verdoppeln einer rettenden Bewegung.

"Die in die Augen springenden Vorteile dieses Systems sind: 1) eine vollkommen gleichformige Übertragung der Bewegung; 2) eine beträchtliche Verringerung der Reibung, welche auf ein Minimum gebracht ist, mit viel weniger Kraftverlust; 3) vollständige Bermeigung eines Geräuschess, da die Berührung beständig statt hat; 4) beträchtliche Verminderung der Anzahl und Größe der Organe; 5) einfachere und wohlfühlere Construction; 6) viel größere Dauer; 7) die Möglichkeit, alle einzelnen Theile vollkommen rein zu erhalten, und diejenigen auszuwechseln, welche sich abgenutzt haben; 8) endlich die viel geringere Wahrscheinlichkeit eines Unfalles oder Bruches. — Vorteilhaft bei der Übertragung der Bewegung von der Achse einer Dampfmaschine auf die Achse der Treibmaschine eines Schiffes wird der neue Mechanismus seine richtige Stelle mit großem Vorteil finden. Neben, wo der selbe angewandt wurde, hat er die zutiefstenstensten Resultate gegeben, besonders wegen seines ruhigen Ganges und seiner Dauer. Möge er sich ins Unendliche verbreitern."

Beleuchtung des Obigen.

Nicht man den vorstehenden Artikel, so könnte man glauben, Wunder welche neue Erfindung im Gebiete der Mechanik gemacht worden sei, während doch nur ein spezieller Fall einer allgemein bekannten Erkennung beschrieben ist, nämlich ein Rad mit sechs Zähnen im Eingriffe mit einem Getriebe von drei Zähnen. Zur Ehre des Verfassers wollen wir annehmen, das der selben Meinung ist, denn er spricht von einem Mechanismus, genüge gesagt, wie der Blinde von den Farben. Das die oben beschriebene Vorrichtung nichts anderes ist, als ein Hypocycloidenrad im Eingriffe mit einem Getriebe, dessen Zähne aus Cylindern bestehen, bleibt nun noch nachzuweisen. — Jeder Sachverständige weiß, das wenn ein mit cylindrischen Zähnen versehenes Getriebe innerhalb des Theilkreises eines Rades zu gehen hat, die Zähne des letztern nach einer Parallelen zur Hypocycloide abgerundet werden müssen, für welche der Theilkreis des Rades Grundkreis, und der Theilkreis des Getriebes erzeugender Kreis ist. Es ist seiner Zeit, der überall weiß, was eine Hypocycloide ist, bekannt, das wenn der erzeugende Kreis gerade halb so groß ist als der Grundkreis, die Hypocycloide in eine gerade Linie, nämlich in einen Durchmesser des Grundkreises übergeht. Verhält sich folglich der Durchmesser eines Getriebes zum Durchmesser des Rades wie 1 : 2, wobei, abgesehen von der Anzahl der Zähne, das Getriebe immer zwei Umbreihungen für eine des Rades machen muß, so be-
weigt sich jeder Punkt des Getriebeselfkreises, wenn dieser in dem Rad- stetkreise gerollt wird, in einem Durchmesser des Radstelkreises, und wenn nun ein solcher Punkt als die Mitte eines Cylinders betrachtet wird, so beschreibt natürlich die Oberfläche dieses Cylinders ebenfalls eine gerade Linie, nämlich eine Parallele zum Durchmesser, und die Zähne eines Rades, im Eingriffe mit einem halb so großen Getriebe dessen Zähne Cylinder sind, können also durch nichts anderes, als durch gerade Linien begrenzt sein, die parallel zu Radien laufen.

Alles, was demnach Neues an der Sache ist, besteht vielleicht darin, daß zur Verminderung der Reibung Rollen auf die cylindrischen Zähne gesetzt sind, und daß die Zähne des Rades nicht in einem Radkranze stehen, sondern an der Seite einer Scheibe angebracht sind. Denkt man sich die sechs Sectoren in einem Radkranze stehend, so wird jeder Lauf gleich das gewöhnliche Rad erkennen. Wie es nun mit den Bewegungen des Verfassers des obigen Artikels steht, daß bei zwei Ruten (wobei übrigens die Sache gar nicht geht, da bei zwei Rollen auch vier auf einander rechtwinkelig stehende Ruten vorhanden sein müssen) die Bewegung nicht geändert würde, bei acht dagegen vervielfacht, das zu beachten mag dem Leser überlassen bleiben. Derfelbe theilt gewiß mein Erstaunen, daß der Verfasser im Stande war, acht so wichtige Vorzüge des neuen Mechanismus, der doch nichts anderes, als ein gewöhnliches Rad und Getriebe ist, vor dem Rad und Getriebe auszufinden.

T. Walther.

XLVI.

Aus Armenaud's Génie industriel, Juli 1855, S. 5.

Hr. Letestu ist seit längerer Zeit wegen der Construction von Pumpen sowohl für die Marine, als auch bei Bauten und zur allgemeinen Anwendung in Brunnen bekannt.

Sein System besteht im Wesentlichen in der conischen Form des Kolbens und der Ventile, welche den Vorteil gewährt, daß sich die Ventile nicht verstopfen, weshalb diese Pumpen auch bei schlammigem Wasser anwendbar sind. 34

Unter den verschiedenen Systemen von Pumpen auf der diesjährigen allgemeinen Industrie-Ausstellung zu Paris befindet sich auch die von und Brüder Armentaud) bereits vor mehreren Jahren in der Publikation industrielle beschriebene, welche aus mehreren verbundenen horizontalen Pumpen besteht, die direkt durch eine Dampfmaschine in Betrieb gelegt werden; dieser Apparat wurde bei den großen Hafenanlagen, welche die Architekten Brüder Mazelin in Havre ausgeführt haben, angewendet.

Hr. Letestu zeigt dieses Jahr noch eine neue Einrichtung, die uns sehr faszinierend scheint und in vielen Verhältnissen gute Dienste leisten wird. Wir meinen die Druckpumpe mit Reservoir, in welches mit Hilfe eines Hebelsarms Luft eingetrieben werden kann und das auch ein gewisses Wasservolum annimmt, welches so einem Druck nötig. Endlichhin bis 12 Atmosphären unterworfen werden kann. Diese Einrichtung gestattet, dass bei einer entstehenden Feuerbrunst die erste hinzukommende Person gleich einen Wasserstrahl aus einer weite Strecke und mit großer Kraft schleudern kann, wozu keine andere Anstrengung erforderlich ist, als die Leitung des Hahnes an einem Körbchen, welches sie in die Hand nimmt und auf den entzündeten Punkt richtet.

Solche Apparate sind besonders in öffentlichen Anstalten, wie Theater, Tanz- und Konzertällen sehr zweckmäßig, indem sie beim ersten Zeichen eines Brandes in Wirkung gesetzt werden und das Feuer in seiner Wurzel ersticken können.

XLVII.

Aus Armentaud's Genie industriel, Juni 1855, S. 331.

Mit Abbildungen auf Tab. III.

Diese Maschine, Glättmaschine (lisseuse) genannt, hat den Zweck, die Bänder oder Dörte der gefrästeten, gesäumten oder auf irgend eine andere Art vorbereiteten Wolle, welche verschönert werden soll, zu entfetten, zu waschen, auszudrücken, zu trocknen und zurückzurichten. Sie kann aber auch bei allen anderen Fasermustern angewendet werden, deren
zum Waschen und Zureiben der Wollebander.

173

Fäden mittels Wärme und Spannung zugerichtet und geglättet werden können.

Nachdem die Wolle gekämmt, gefärbt oder auf sonstige Weise vorbereitet wurde, ist sie noch mehr oder weniger mit Döl und andern erweichenden Substanzen imprägniert, von denen sie bestreit werden muß. Es sei dann aber versprochen werden kann, müssen die Fäsern noch zugerichtet und geglättet werden, um ihnen das Bestreben sich zu fräuseln und zu verflißen zu belehmen, d. h. ihnen durch Einwirkung der Wärme oder der Feuchtigkeit und einer längern Spannung das Ansehen von andern Fasersoffen, wie Seide oder Baumwolle, zu geben, damit sie die Eigenschaft erlangen, welche die gekämmte Wolle so charakteristisch von der gefärbten unterscheidet.

Alle diese verschiedenen Prozesse und Arbeiten erfolgen im Allgemeinen eine nach der andern, veranlassen mehr oder weniger Kosten und sind mehr oder weniger langwierig.

Nachdem die Wollebander entweder mit der Hand oder mit Maschinen gekämmt und vorbereitet worden sind, werden sie, entweder einzeln oder in Strähnen, entsettet und gewaschen, dann in diesem Zustande getrocknet; dieses Verfahren ist aber sehr folsbar, verwirrt die Wolle nach dem Kämmen von Neuem und verflißt sie stets mehr oder weniger.

Zu der darauffolgenden Zureifung und Glättung und um die oben erwähnte Wirkung zu erreichen, wendet man verschiedene Mittel an, die aber alle nur unvollkommene Resultate geben. Dahin gehören das Zusammenbrechen zu Jöpfen, welche in einem Behälter dem hineingelegten Wasser dampf ausgelegt werden; die Zureifung wobei die Döchte längere Zeit der Feuchtigkeit ausgelegt werden, während sie sehr fest auf Spulen gewickelt sind; der Nebengang der Bänder von der Vorbereitung auf Röhren und Cylinder, welche durch Dampf erhitzt werden und die mit den verschiedenen Vorbereitungsmaschinen (wie Entfisizen und Strecken) verbunden sind. Auf denselben Maschinen bringt man auch Trommeln an, die durch Dampf erhitzt sind und durch deren Innere die Wollebander gehen, um dem direkten Dampf ausgelegt zu werden.

Durch alle diese verschiedenen Prozesse wird aber die Wolle stets mehr oder weniger verdorben und nie vollkommen geglättet, besonders solche welche nur cardirt ist und die sogenannten gekrempelt-glämmten Gespinste liefern.

Bei der von den Hörn, Köhl in erfundenen Maschine werden alle diese verschiedenen Prozesse, das Entfetten, Waschen, Trocknen und Zureiben, mittels eines ununterbrochenen Durchganges bewirkt, wodurch wesentliche Ersparrungen und bessere Produkte erlangt werden.
Fig. 8 stellt einen Aufriß der Maschine dar; Fig. 9 ist ein Grundriß derfelben; Fig. 10 erläutert den Durchgang der Bänder durch die Behälter und über die verschiedenen Walzen und Zylinder.

Die zu entfettende und zu streichelnde Wolle wird der Maschine in fortlaufenden Bandern übergeben, wie sie die Hand- oder Maschinen-Bämmer, die Krempelei oder irgend eine andere Vorbereitung liefern.

In Fig. 8 und 9 ist ein Spulengestell A mit 12 großen Spulen dargestellt. Diese zwölf Bänder gehen zuerst in ein erstes Bade, welches ein Seifenbad enthält, worauf ein Paar Presswalzen sie einem zweiten Bade zuführen, wo sie gänzlich entfettet werden.

Ein anderes Walzenpaar presset letzteres Bad aus; darauf folgt ein Waschen mit frischem Wasser, um alle zurückgebliebenen Seifenreste wegzunehmen.

Dieses Waschwasser wird dann durch ein Paar große Presswalzen ausgepreßt.

Nachdem die Bänder diese Pressen verlassen haben, gehen sie nach und nach um eine Reihe von eisförmigen, mit Dämpfen erhitzen Cylindern herum, auf denen die Wolle getrocknet, gestreckt, zugerichtet und geblättert wird, so daß beim Heraustreten aus der Maschine die Bänder unmittelbar den Ziehs- oder Strecks-, den Fein-Spulen- und den eigentlichen Spinnmaschinen zugeführt werden können.

Das Spulengestell A, welches die Spulen mit der zu entfettenden Wolle aufnimmt, kann 8, 12, 16 oder noch mehr Spulen halten, je nach der Breite der Maschine und der Dicke der Bänder. Dicht davor befindet sich ein Bade von Weißblech B, in welchem man das Seifenbad gibt, das schon in dem oben Behälter C benutzt worden ist.

Die Bänder werden diesem Troge durch das Druckwalzenpaar a zugeführt, welches durch die liegende Welle b bewegt wird.

Im Innern des Troges B befindet sich ein anderes Presswalzenpaar d, welches ebenfalls durch Räderwerk bewegt wird, wie man auf den Figuren deutlich sieht; diese Walzen erhalten die Bänder horizontal auf der Oberfläche des Bades, während sie von der Führerwalze e und den Schwimmerwalzen f gehörig in daselbe eingetaucht werden.

Diese Bänder werden abgesehen durch ein Paar Presswalzen g und die Ziehwalze h in den zweiten Trog C geführt, in welchem sich ebenfalls eine Führerwalze i befindet.

Zwischen und über den Cylindern D und E ist ein Becken angebracht, in welches frisches Wasser läuft und von welchem ein Canal abgeht, der über der unteren Walze E austümpert, so daß ein vollständiges Abspülen erfolgt.

G sind die Treibs- und die Vorrolle der Treibwelle, welche die Bewegung durch einen Treibriemen erhalten und sie mittels verschiedener Zahnräder fortspansen, die in den Figuren deutlich dargestellt sind.

Sobald hohle kupferne Cylinder H, an den Enden mit gusseisernen Köpfen j verschlossen, deren Zapfen mit Stopfbüchsen k zum Einströmen und anderen l zum Auströmen des Dampfes versehen sind, haben über und zwischen sich fünf andere Cylinder i von derelben Construction, damit die Bänder nicht auf die Peripherie der erstern gebracht werden.

Ein Räderwerk K dient dazu, von der Treibwelle G ab, die ganze Reihe der Cylinder H mittels der Räder K' zu bewegen, wie schon bemerkt wurde. Die Anzahl der Zähne der Getriebe K nimmt nach und nach ab, um eine Spannung zu veranlassen, die dem Grade des Glättens und der Zurichtung der Fäden entspricht, indem die Trockenwalzlinder eine progressive Geschwindigkeit erhalten.

Räder L treiben die Cylinder I mittels der unteren Cylinder H.

M bezeichnet eine gusseiserne Dampfbüchse, in die eine Dampfrohre ausmündet, und von welcher die Anierohren m ausgehen, um den Dampf in die Cylinder H und I zu leiten. N eine Dampfbüchse, gleich der erstern, welche die Auströmungsröhren n des Dampfes aufnimmt.

Eine Anordnung von Ziehwalzen O führt die aus den Streck- und Glättewalzen hervortretenden Bänder in die darunter liegenden walzen. Diese Vorrichtung kann durch einen Apparat zum Abspülen der Bänder, aber auch durch eine Double- und Strechtschneide erzeugt werden.
Der erste Teil der Erfindung betrifft einen verbesserten Isolator zum Aushängen telegraphischer Leitungsdraht an Pfosten, Mauern oder anderen Stützen.

Fig. 14 ist eine Seitenansicht deselben. Er besteht aus einem schmiedeeisernen Haken a, in dessen Dehr der Leitungsdraht ausgängt ist. Der Stiel des Hakens a ist mittels Schwefel in eine umgekehrte Schale b von Porzellan, Glas oder überhaupt einem nichtleitenden Material festgemacht, deren vorspringender Rand durch Emaillierung oder auf andere Weise eine möglichst glatte Oberfläche erhält, um dem Anhängen von Feuchtigkeit vorzubeugen. Die Schale oder der Haken b steht in dem auskristallinen Vorsprunge des Hakens einer glasfeinen Gloke c, worin er mit Schwefel festgemacht ist. Die Gloke c selbst ist an dem Pfosten oder der Mauer einfach durch eine Hohlkrume befestigt, die von der Gloke hervorrangt.

In gewissen Zwischenräumen oder an den Stickpisten wird ein größerer Isolator angewendet, mit einem Drahthalter von der Form wie sie in Fig. 15 und 15' dargestellt ist. Das Ende des Halter's hat zwei Einschnitte a und b, die nach entgegengesetzten Seiten schmäler auslaufen, um die Einführung von Steilen und Schließen zuzulassen. Die Enden von zwei zu verbindenden Leitungsdrahtstücken werden jedes auf dem Grund eines der Einschnitte geschnitten, mit Hilfe eines an dem Pfosten befestigten geeignet Mechanismus hintänglich fest angezogen und dann die Keile von entgegengesetzten Seiten eingesetzt, so daß der Zug des Leitungsdrahtes den Keil eingetrieben und ihn auf dem Grund der Vertiefung festzuhalten strebt. Der Vorteil dieser Methode, den Draht an den Spannpfosten zu befestigen, besteht darin, daß der Contact zwischen den Endstücken deselben durch den Halter bewerkstelligt wird und das jedes Stück nach Erfordernd nachgelassen oder fester angesogen werden kann.

Der Zweck der Glaseifenglocke des Isolators besteht darin, den eisernen Rand der isolirenden Schale b vor Regen, Schmutz und Beschädigungen zu schützen; da deshalb innen und außen getrocknet erhalten wird, so
isoliert er die Gussseisenglocke von dem Drahthalter, oder den Pfosten von dem Leitungsdrahte vollkommen.

Die Erfindung betrifft ferner eine verbesserte Einrichtung für die Entladung der statischen Elektricität oder des Blitzes von dem Leitungsdrahte.

Fig. 16 ist eine Vertikalansicht des zu diesem Zwecke dienenden Apparates a ist ein Cylinder von Glas, Guttapercha oder anderem nichtleitendem Material, welcher vollkommen luftdicht zwischen zwei Metallscheiben b, c eingelegt und verlötet wird. — Eine Metallscheibe f wird in den einen der Deckel eingeschraubt und dient, um die Entfernung zwischen den beiden einander gegenüberliegenden Metallscheiben zu reguliren. Der zweite Deckel ist mit einem Loch d versehen, welches durch einen Sperrhahn l verschlossen werden kann und dazu dient, die atmosphärische Luft aus dem Innern zu pumpen. Nachdem der Sperrhahn geschlossen ist, wird er vor Zwischenfällen durch den Ring g geschützt, welchen man über ihn schiebt, und der Apparat ist dann für die Verwendung am Leitungsdrahte fertig, zu welchem Zweck er mit zwei Verbindungsschrauben i und h versehen ist, um die metallische Verbindung der einen Seite mit dem Leitungsdrahte und der andern Seite mit der Erde herzustellen. Die statische Elektricität oder der Blitz geht nun mit großer Leichtigkeit durch den leeren Raum zwischen den zwei einander gegenüberliegenden Metallscheiben, und so ist jeder Unfall von den Telegraphirapparaten abgewendet.

Ein anderer Theil der Erfindung besteht in gewissen Anordnungen, durch welche ein in Bewegung befindlicher Eisenbahnzug telegraphische Mittheilungen gemacht werden können, ohne dass es notwendig wäre die einzelnen Wagen mit einander metallisch zu verbinden. Es wird eine galvanische Batterie aus der Maschine oder dem Tender des Trains angebracht und eine ähnliche Batterie kommt auf dem letzten Wagen oder Bremserwagen. Zwischen beiden Batterien werden zwei metallische Verbindungen hergestellt durch die Linie der Ziehhäfen, durch die zwei Linien von Seitenfetten (indem man die entgegenge setzten Ketten jedes Wagens mittels Drähten verbündet, welche unter dem Gestell durchgehen), oder durch die Räder und Schienen, nämlich in der Weise, dass die eine Leitung die zwei positiven, die andere die zwei negativen Pole der Batterien verbindet. Angenommen, die Stärke beider Batterien sey ganz (oder nahezu) gleich, so werden beide einander die Waage halten und in Folge dessen geht kein Strom durch die metallischen Verbindungen. Wenn jedoch an einem Punkte des Zuges die zwei metallischen Verbindungslinien durch eine metallische Querverbindung gekuppelt werden, so wird für jede

Batterie ein ununterbrochener metallischer Kreislaufs gebildet. Schaltet man in jene Verbindungslinien Elektromagnete ein, und stellt die galvanischen Ströme mittels der Dauerverbindung her, so werden die Elektromagnete ihre Armatur anziehen, wobei Wecser losgelassen oder andere verabredete Signale gemacht werden können.

Fig. 17 ist der Grundriß von zwei Eisenbahnwaggons die den Theil eines Zuges bilden, an welchem der Apparat angebracht ist. A ist der vergrößerte Grundriß der Batterie an dem einen Ende, B der Grundriß der Batterie am andern Ende. a, a, a zeigt die metallische Verbindungslinie, welche zwischen zwei gleichen Polen der Batterien durch die Ziehhäfen hergestellt ist; b, b, b zeigt die metallische Verbindung zwischen den andern gleichnamigen Polen durch eine Linie der Seitenfelder. C ist ein Wecser, den man in der Verbindungslinie b, b, b einschaltet (in Fig. 18 und 19 vergrößert gezeichnet). D zeigt wie die Dauerverbindung durch Niederdrücken eines Knopfes hergestellt werden kann (in Fig. 20 und 21 vergrößert dargestellt). Statt der Verbindungslinie a, a, a durch die Ziehhäfen, kann man die zweite Linie c der Seitenfelder nehmen. Um die Continuität der Leitung besser zu sichern, können die zwei Seitenfettelinien die Verbindung zweier gleichen Polen der Batterien, und die Linie durch die Ziehhäfen zusammen mit den Schienen die Verbindung zwischen den andern gleichnamigen Polen bilden; oder man kann, um zusammengesetzte Signale hervorzurufen, ein doppeltes Verbindungsstück herstellen, indem man eine Seitenbatterielinie mit dem Ziehhaken und der Erde (einzeln oder zusammen) für einen Strom, und die zweite Seitenfettelinie mit der Ziehhakenlinie und den Schienen für den andern Strom vermeint.

Fig. 22 ist ein senkrechter Längendurchschnitt eines Waggons mit einer Einrichtung, vermag welcher jeder Reisende die Dauerverbindung zwischen den zwei Leitungslinien herstellen und dadurch lärm oder sichtbare Zeichen gleichzeitig an allen Stellen des Zuges machen kann, an denen sich hiefür Vorkehrungen befinden. Die Einrichtung besteht einfach in einem Drahte 1, welcher in der Nahe der Decke der Länge nach durch den Wagen geht. Von diesem Draht ist das eine Ende am Wagen, das andere Ende bei m an dem Hebel eines Communicators, dem Verhüllungshebel, befestigt. Der Communicator ist mit Hilfe der Nebendrähte n mit den zwei Hauptleitungsliinen verbunden, und bewirkt an der Leitung l eine metallische Berührungs zwischen denselben, wenn er stark genug gezogen wird, um den Bildehebel der zurückhalten den Hebel des Verhüllungshebels zu überwinden.
Um sich vor Unterbrechung des Stromes in der Seitenkettenleitung sicher zu stellen, ist es gut, die Kette zu verzinken (gegenwärtig sind sie meistens gesternst). Ist das Gestell des Wagens von Holz, so braucht man keine weiteren Vorsichtsmaßregeln, um die Bolzen welche die Ketten zu halten haben, zu befestigen; ist das Gestell aber von Eisen, so muß der Bolzen und seine Mutter isolirt werden. Die Art wie diese Isolation bewerkstelligt wird, ist in Fig. 23 und 24 dargestellt; k, k sind Platten, die einen Theil des Gestelles ausmachen; g ist der Kettenbolzen, welcher einen etwas geringeren Durchmesser hat als das Loch im Gestell, damit für eine über ihn zu schiebende kurze Gutta-percha-Röhre Platz ist. Zwischen dem hervortretenden Theil des Bolzens und dem Gestell werden die Störinge von Gutta-percha k, k auf der einen Seite, und der Störsring o auf der andern Seite angebracht. Der Draht p stellt die metallische Verbindung zwischen den zwei entgegengesetzten Kettenbolzen her; er ist nämlich mit Wachsen an den Enden versehen und zwischen dem Störsring o und der Mutter k eingeschaubt.

Der angemessene Wecker ist nach Wegnahme der Thüre des Gehäuses in Fig. 18 im Querschnitte und in Fig. 19 im senkrechten Längsdurchschnitte dargestellt. F ist der Elektromagnet mit seiner Armatur r, die an einem Eiifallhebel s befestigt ist. Die Anzeigungen der Armatur veranlassen die Auslösung eines Uhrwerks, das seine Bewegung zwei Sämmern t und t mittelst, die dann abwechselnd auf zwei Glocken u und u' von verschiedenem Tone schlagen, weil so der Weckerfahrt leichter von
einem andern Geräusche auf dem Zuge unterscheiden werden kann. Das Uhrwerk wird von Zeit zu Zeit an dem Zapfen v ausgesogen, der bei jeder Umdrehung das Zahnrad w mit seinem Hebel x um die Breite eines Zahnes fortbewegt. In das Uhrwerk gang ausgesogen, so steht der Hebel x horizontal, und in dem Maße als die Triebfeder abläuft, wird die Stellung des Hebels eine andere, bis sie endlich anzeigt, dass die Feder gänzlich abgespannt ist und damit für den Wärter das Zeichen zum Aus ziehen gibt.

Die Bewegung der Armatur wird durch eine Fortsetzung y des Hebels's, die einen Inbegriff durchläuft, sichtbar gemacht, da sie jedesmal zum Vor schein kommt, wenn die Armatur sich bewegt.

Fig. 20 ist ein Grundriss und
Fig. 21 ein Vertical durchschnitt des Communicators, vermittelt dessen die Signale gemacht werden. Er besteht aus einem Holzbrettlück, an welchem zwei Contactschrauben 1 und 2 befestigt sind, von denen mittelst Drähten die eine mit einer Metallsplige 3, die andere mit einer in einer Metallsplige 5 endigenden Feder 4 communicirt. Der Contact erfolgt durch Niederdrücken der Metallsplige 4. Ein solcher Verdrängerhebel nebst einem Wecker ist auf der Locomotive und jedem Bremserkasten des Zuges zum Gebrauche der Bremsen und des Maschinen zum angreifen, damit dieselben die verabredeten Zeichen „Halt!“ „Achtung!“ „Bremsen!“ u. s. w. durch einmaliges, öfteres oder fortlaufendes Weiterschlagen geben können. Man kann auch die Hiebsdend im Zuge an ihren angegebenen Weise in Stand segen zu signalisiren. Soll bloß mit dem Maschinen verkehrt werden, so kann die Batterie am Ende des Zuges wegschalten.

XLIX.
über einen elektrischen Apparat, welcher als Ventil wirkt,
von Hrn. J. M. Gaugain.

Aus den Comptes rendus t. XL, p. 840, durch Poggendorff's Annalen, 1855, Nr. 5.

Es gibt eine ziemliche zahlreiche Classe von elektrischen Strömen, die man als eine Reihe mehrerer anderer Ströme von abwechselnd entgegengesetzten Richtungen betrachtet. Um die wahre Beschaffenheit solcher zusammengesetzten Ströme definitiv festzulegen, hatte ich es für möglich, die
welcher als Ventil würf. anag. \\

Ich glaube, daß das Ventil-Ei (oefc-soupape) bei einer gewissen Zahl von Untersuchungen benutzt werden kann, und ich habe mich deshalb schon bedient, um eine Anzahl zu lösen, die Dr. du Moncel in einer
seiner letzten Mittheilungen an die Academie ausgestellt hat. Wenn man in die Kette eines Ruhmforßichen Apparats einen Condensator einschaltet, so dauert die elektrische Bewegung fort, wie es die physiologischen Wirkungen und Licht-Erscheinungen dieser Kette beweisen. Allein man kann zweierlei Hypothesen über die Natur dieser Bewegung machen. Man kann annehmen, der Strom pflanze sich durch die isolirende Schicht des Condensators, wie durch einen leitenden Körper fort, und alsdann würde seine Richtung stets dieselbe seyn. Oder man kann voraussetzen, die beiden durch den Inductionsapparate entweichenden Elektricitäten hüßen sich während der Wirkungszeit der elektromotorischen Kraft auf den beiden Condensatorflächen an, und vereinigen sich daraus wieder, wenn die elektromotorische Kraft zu wirken aufhört. In dieser letzten Voraussetzung muss der Strom abwechselnd entgegengesetzte Richtungen einnehmen. Die strenge Discussion der Thatfachen, glaube ich, würde hinreichend sein, zu entscheiden, welche der beiden Hypothesen die richtige seyn; allein die Frage kann mittels der Bentili'schen Werke auf eine entscheidende Weise beantwortet werden. 35

zu grüberer Bestimmtheit sehe ich voraus, der angewandte Condensator sei eine horizontal gelegte Franklin'sche Tafel und ihre Unterseite verbunden mit dem negativen Pol des Inductionsapparats. Errichtet man nun zwei Verbindungen A und B zwischen dem positiven Pol des Apparats und der oberen Belegung des Condensators, schaltet in jeden Zweig der Kette ein Galvanometer und ein Bentili-Gerät ein und stellt die beiden Geräte dergestalt, daß in dem Zweige A der Strom vom Pol zum Condensator, im Zweige B dagegen nur vom Condensator zum Pol gehen kann, so ist leicht vorherzusehen, was nach jeder der beiden fraglichen Hypothesen geschehen wird. Ist die Richtung der Ströme conflat, so werden sie, je nach der Richtung des Inductors, auschließlich durch den Zweig A oder auschließlich durch den Zweig B gehen. Besteht dagegen die elektrische Bewegung aus einer Folge von abwechselnd entgegengesetzten Strömen, so werden die beiden Zweige A und B gleichzeitig von den entgegengesetzten Strömen durchlaufen werden, und die Richtung jeder dieser Ströme, die allein durch die Stellung des Geräts bedingt ist, wird unabhängig von der Richtung des Inductors sein. Legertes ist, was geschah. Das Dafeyn der Stöße, welche die Zweige A und B zugleich durchlaufen, erweist sich sowohl durch das Licht in den elektrischen Geräten,

35 Vergl. über diesen Gegenstand auch Boggenbrooks Annalen Br. XCIV S. 326 bis 328.
ische Bewegung aus einer Folge von zwei abwechselnd entgegengesetzten Strömen besteht.

Dies Resultat erlaubt von einer Thatsache Rechnung zu geben, deren ich in meiner früheren Note, aber ohne Erklärung, gedacht habe. Ich meine die symmetrischen Lichterscheinungen, welche man in dem gewöhnlichen elektrischen G (dessen Anfänge beide nacb sind) beobachtet, wenn man zwei gleiche Inductionsströme einander entgegenstellt; wie ich gezeigt habe, rühren die beobachteten Erscheinungen ausschließlich von dem einen der angewandten Inductionsapparate her; allein da die elektrische Bewegung, welche zu ihren Anlass gibt, sich durch isolirende Substanzen fortplaziert, so bestimmt sie sich in dem Fall der eben studirten Ströme und muß durch die Auseinandersetzung zweier entgegengesetzter Ströme gebildet seyn. Diese Ströme folgen einander in einer Zeit, die fürger ist als die Dauer des Geschwindendrucks, und so müssen die Lichterscheinungen, welche sich zeigen, das Resultat der Superposition der Erscheinungen seyn, die einerseits der Ladungsstrom und andererseits der Entladungsstrom bewirkt wurde, wenn jeder für sich wirke; das ist wirklich der beobachtete Effekt.

36 Dr. Prof. Poggendorff gibt hier folgende Bemerkung hinzu: Zur Er-
läuterung dieser an sich unverständlichen Stelle mag aus der früheren Notiz, auf welche der Verfasser sich bezieht und die übrigens wenig Erythrodites enthält (siehe Compt. rend. T. XL. S. 358), hervorgehen seyn, daß derlei die schwache Lichterscheinung, welche er erhob, als die Inductionsströme zweier Apparate in entgegengesetzter Richtung mit dem elektrischen G verband, ausschließlich der Zwi- schenstrom der Ströme zuzuschreiben, die durch die unvollkommen isolirenden Hüllen der Inductionsströme hin einstellen. — Ich habe in solchem Falle mit meinen Apparaten gar keine Lichterscheinung wahrnehmen können (siehe Annalen Bd. XCIV S. 331) und auch Dr. O. ist der Meinung, daß sie bei anderen Beobachtern aus dem Mangel eines vollkommen Sonnensäumes der Unterbrechungen der Apparate, in Folge ungleicher Magnetisierbarkeit der Eisenbündel, hervergingen seyn, seineswegs aber aus einem gleichzeitigen Durchgang der beiden entgegengesetzten Ströme. Um jene ungleiche Magnetisierbarkeit zu vermeiden, wendet übrigens Dr. O. ein einiges langes Drähtbündel an, welches durch die innereckenden Rollen beider Apparate getragen ist.
Nachtrag zu dem elektrochemischen Schreibtelegraphen für die gleichzeitige Gegencorrespondenz aus einer Drahtleitung, von Dr. Wilhelm Gintel, f. i. Telegraphen-Director.

Aus der Zeitschrift des deutsch-österreichischen Telegraphen-Vereins, Juni 1855, S. 135.

Mit einer Abbildung auf Tab. III.

Man hat nämlich gegen meinen Apparat eingewendet:

1) dass im Momente des Niederbruchs des Doppeltasterhebels, während derselbe also weder mit dem Contactpunkte k noch mit l (siehe Fig. 4) in Berührung ist, der von der anderen Station herkommende Strom nicht zur Erde gelangen kann und daher auf sehr kurze Zeit unterbrochen wird, worauf sich der mögliche Fall ergibt, dass einzelne Striche auf dem Papierstreifen des Apparates verfűrtzt, Punkte hingegen auch ganz ausbleiben würden;

2) dass es seine Schwierigkeit hat, den Strom der lokalen Compensationsbatterie beim Niederdrücken des Doppeltasters genau gleichzeitig mit dem Linienstromen wirken zu lassen, weil eine Veränderung in den beiden Contactpunkten 1 und l' die Folge haben kann, dass der Schluss für die eine oder die andere Batterie früher eintritt, somit die Ausgleichung der beiden elektrischen Ströme am eigenen Apparate nicht vollständig ist.

Der sub 1 genügte, allerdings vorhandene Unterbrechungsmoment für den von der anderen Station herkommenden Strom lässt sich schon durch Verminderung der Hubhöhe des Tasterhebels auf ein Minimum reduciren; um ihn aber gänzlich zu beseitigen, bringe ich die beiden Tasterpunkte g und h mittels einer metallenen Einschaltungsleimme mit einander in leitende Verbindung, wodurch dem anfommenden Strom in dem Momente, wo sich der Tasterhebel weder mit k noch mit l in Contact befindet, der Weg von h durch g zur Linienbatterie, und durch derselbe zur
für die gleichzeitige Correspondenz auf einer Drahtleitung.

Erde geöffnet ist, folglich der Strom von der anderen Station, während des Niederdrückens des Tasterhebels, seine Unterbrechung mehr erleidet.

Zwar wird durch die leitende Verbindung der beiden Tasterpunkte g und h mit einander ein kurzer Schluß der eigenen Linienbatterie in der Nuthelage des Tasterhebels herbeigeführt, welcher aber während der Corresponzenz bloß intermittirend eintritt, nämlich nur dann, wenn der Vorwerth des Tasterhebels mit dem Kontakturcke k in Berührung kommt, was jedoch beim Geben der Zeichen nur eine sehr kurze Zeit dauert und daher der Batterie nicht schaden, nach vollendeter Correspondenz aber durch Auslösung der bei g und h angebrachten Einschaltungsflamme ganz vermieden werden kann.

Zur Beseitigung der ad 2 erhobenen Schwierigkeit habe ich mehrere Versuche in der Absicht angestellt, um zu ermitteln, ob sich die lokale Compensationsbatterie ohne Störung des Erfolges der Correspondece nicht entbehren lasse, und ich überzeugte mich, daß man dieselbe gänzlich entfernen und doch sehr gut gegensprechen kann.

Es ist zu diesem Vorsorge nur nötig die von der Localbatterie einerseits zum Rheostaten und andererseits zur Klemme o des Tasters führenden Polardrähte mit einander zu verbinden, wodurch die Localbatterie ausgeschaltet wird, und den Leistungswiderstand am Rheostaten so zu regulieren, daß beim eigenen Zeichengehen von der Linienbatterie nur ein sehr schwacher Theilstrom durch den Apparat geht, welcher auf dem Papierstreifen deselben noch kein wahrnehmbares Zeichen hervorzubringen vermag, das jedoch alsbald zum Vortheile kommt, wenn der von der anderen Station ausgehende elektrische Strom zu jenem Theilstrom einen abwägenden Theil liefert, so daß die Summe beider Theilströme ein Zeichen auf dem Papierstreifen erzeugt, welches dem von der anderen Station gegebenen Zeichen entspricht.

Auf diese Art läßt sich die gleichzeitige Gegencorrespondece mit dem elektrochemischen Apparate auch ohne lokale Compensationsbatterie wie bei Anwendung derselben mit gleich sicherer Erzielung zu Stande bringen.

Wien, im Mai 1855.
Ll.

Ueber Verbesserung der elektrischen Telegraphie; von W. Neubronner.

Morse's Apparat hat den scheinbaren Mangel, dass er nur Zeichen, keine wirklichen Buchstaben liefert, und hierin liegt der Grund, warum das Streben nach Verbesserung der elektrischen Telegraphen eine versehnte Richtung nahm. Man kann jetzt kaum alle die Anstrengungen, welche die Zeigerapparate eine Zeit lang in den Vorbergrund brachten, so wie die Bemühungen wirkliche Buchstaben zu bilden, als undankbare Arbeit bezichnen; denn bei ersteren wurde übersesehen, dass ein bleibendes Dokument einen viel höheren Werth hat, als ein zu notierender Buchstabe, und man schon dieses Vortheils halber lieber in wenigen Stunden ein neues Alphabet hätte lernen sollen; bei den letzteren liess man außer Acht, dass die Bildung von wirklichen Buchstaben nur auf Kosten der Zeit geschehen konnte.

Indessen in Beziehung auf Schnelligkeit ist das elektromagnetische System überhaupt mit einem Hemmthueb versehen, der in dem Elektromagneten selbst ruht. Die Beseitigung dieser Begränzung der Schnelligkeit ist bekanntlich mit Schwierigkeiten verbunden, und nicht vollständig möglich.

Man hort nämlich bereits, troddem man sich zu direkten Nachrichten jetzt allgemein des Morse'schen Apparats bedient, öfter Klagen, wie sich zu manchen Zeiten die Depeschen häufen, eine auf die andere warten muss, mitin der wesentliche Nützen der Telegraphie geschwächt wird.

Man versieht auf die nahe liegende Idee, die Leitungsdrähte und Apparate zu vervielfältigen (wobei, beiläufig gesagt, auch das Personal vermehrt
werden muß). Wie dieses enorme Capital, zu sparen und der Zweck besser zu erreichen ist, soll nun geseh

Bain schlug, wie bemerkt, schon im Jahr 1847 vor, mit durchlöcherten Bändern statt mit den Tastern zu operiren; da man aber das Durchschlagen der Papierstreifen kaum so rasch bewerkstelligen kann, als das Tasten am Telegraphen, so hat man diesen Vorschlag nicht beachtet, und doch liegt gerade darin der Weg der ergiebigsten Verbesserung. Während am Tasten des Telegraphen nur eine Person arbeiten kann, können 10, 20 und mehr Personen gleichzeitig Papierbänder durchschlagen und der elektrochemische Apparat ist fähig 10, 20 und mehr Papierstreifen in der selben Zeit abzurollen, in welcher man dem Morse'schen nur Einen von gleicher Größe zumuthen darf, denn man kann dem elektrochemischen Apparat eine viel größere kaum abzusende Schnelligkeit ertheilen.

Es wird ausdrücklich bemerkt, es ist möglich für dieses System zur Bildung Morse'scher Zeichen auf elektrochemischem Wege hinreichend gleichgehende Werke anzufertigen; die Schrift wird, wenn einer der Apparate rascher oder langsamer geht, wohl etwas gedrängter oder weitläufiger, nie aber unvollständig werden.

Zwei gleichgehende Schlagwerke von Schwarzwalder Uhren wurden genügend gefunden. Das Uberflüssige war entfernt, der Sperrhaken des Elektromagneten wurde aus den Windstiel gerichtet, eine entsprechende Achse der Räder nach Außen verlängert, und daran die Leitungsrolle für die trockenen (durchschlagenen), oder je nach Erjördernis nassen (chemischen) Bänder befestigt. Die „Metallscheiben“ nach Bain (die Nadeln oder Schreibstifte, welche die Leitung auf den Bändern vermitteln) sind nicht zweckmäßig, weil sie schmieren, und durch feuchte Papier schlecht leiten; statt deren wurden kleine Metallrollen auf denen Reinigungsschwämmchen fest, trefflich gefunden, auch gibt dies statt der Punkte, breitere, deutlichere Zeichen. Eine Regvorschütung ist überflüssig, die nassen Bänder wurden viel einfacher in verschlossenen Gefäßen zwischen nassen imprägniirtem Papier feucht gehalten. Auch die Morse'schen Apparate lassen sich mit wenig Mühe gleichzeitig in elektrochemische verwandeln.

Da das Geschäft getrennt wird:

1) in die Durchschlager, Bearbeiter des Papiers,

2) ins Abrollen, das Telegraphieren

so ist es möglich, daß das Telegraphen-Bureau die Bänder per Elle, B. nebst Buchstaben-Schema verkauft, und das Durchlöchern füglich andern Kräften, selbst den Privaten überlassen kann, für das eigentliche Telegraphieren (Abrollen) aber Eine Person hinrichtt. Selbst die Geburtstag kann auf ähnliche Weise beseitigt werden.
Karmarsch, über die Leuchtkraft und den Beleuchtungswert

Der Absender erhält sein (durchschlagenes Papier) Manuskript zurück, der Empfänger eine elekrochemische Copie, in der sein Schreiben unterlaufen kann, wie beim Tassen.

Für die Regierungen bemerke ich, dass der Telegraphift an diesem Apparat weder lesen noch schreiben zu können braucht, der Apparat die Bänder aus verschlossenen Fässchen aufnehmen und in solche abgeben kann, ohne dass man sie lesen kann.

(Was man sich vom gleichzeitigen Telegraphieren mittels eines Drahtes aus verschiedenen Richtungen oder mit verschiedenen Stromen verspricht, passst wohl auch auf das elektrochemische System; ob es praktischen Werth hat, wird die Zeit lehren.)

LII.

Über die Leuchtkraft und den Beleuchtungswert der Paraffin-Kerzen; von Karl Karmarsch.

Aus den Mitteilungen des hannoverschen Gewerbevereins, 1855, Heft 5.

Von mehreren Seiten ist bereits der aus Paraffin versetzten Kerzen als eines aufgezeichneten Erleuchtungsmittels gedacht worden, so wohl was das vorgültig schöne äußere Ansehen dieser Kerzen als die überraschend hohe Leuchtkraft ihres Materials betrifft. In letzterer Beziehung ist Folgendes anzuführen:

1) Kohlmann (Gewerbeblatt aus Württemberg, 1854, S. 293) verglich Paraffinkerzen, 5 Stück im Pfundpaket von 457 Gram, wirklichen Gewicht, mit Stearinsäurekerzen; 6 im Pfundpaket von 348 Gram, und fand:
 a. dass die Flamme des Paraffinlichts 1,58 Mal so hell brannte, als jene des Stearinsäurelichts;
 b. dass dagegen in gleicher Brennzeit von Stearinsäure 1,2 Mal so viel verbrannt wurde, als von Paraffin.

Aus Paraffin wäre demnach 1,58×1,2 oder 1,896 Mal so viel Licht entwickelt, als aus einer gleichen Gewichtsmenge Stearinsäure. Der Preis eines Pfundpaketes wird für Paraffin zu 20 Sgr., für Stearinsäure zu 9 Sgr. angegeben; legt man die oben erwähnten wirklichen Gewichte des angeblichen Pfundes zu Grunde, so berechnet sich ein volles preuß. Pfund (467,71 Gram.)
Paraffinlichte aus 20,47 Egr.
Stearinsäurelichte aus 12,09 "

Danach wären Paraffinkerzen zwar 1,69 Mal theurer als Stearinäurekerzen, da sie aber laut des Vorstehenden fast 1,9 Mal so viel Licht entwickelten, so würde die Paraffinbeleuchtung doch noch im Vortheil stehen.

2) G. Karsten in Kiel (Polytechn. Journal Bd. CXXXIV S. 366) untersuchte Paraffinkerzen (aus der Fabrik von A. Wiesmann und Comp. in Bonn) in Vergleichen mit Kerzen von verschiedenen anderen Materialien; seine Resultate sind dem Wesentlichen nach in folgender Tabelle zusammengestellt:

<table>
<thead>
<tr>
<th>Gattung der Kerzen</th>
<th>Lichtstärke</th>
<th>Material</th>
<th>Verhältnis der Lichtmenge aus gleich viel Material (Leuchtkraft).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>der Flamme in 1 Stunde. Gram.</td>
<td>verbraucht</td>
<td></td>
</tr>
<tr>
<td>Paraffin</td>
<td>4 im Pfd.</td>
<td>1000</td>
<td>7,244</td>
</tr>
<tr>
<td>Walrauth</td>
<td>6 " " "</td>
<td>850</td>
<td>7,451</td>
</tr>
<tr>
<td>Wachs</td>
<td>4 " " "</td>
<td>473</td>
<td>7,616</td>
</tr>
<tr>
<td>künstl. Wachs 37</td>
<td>5 " " "</td>
<td>929</td>
<td>8,858</td>
</tr>
<tr>
<td>Stearinsäure</td>
<td>4 " " "</td>
<td>850</td>
<td>11,341</td>
</tr>
<tr>
<td>Talg</td>
<td>6 " " "</td>
<td>869</td>
<td>14,073</td>
</tr>
</tbody>
</table>

Eine genau zutreffende Berechnung der Kosten des Lichtes ist aus Karstens Mittheilung nicht abzuleiten, da er das wirkliche Gewicht eines Kerzen-Pfundes für Paraffin gar nicht, für die übrigen Materialien etwas schwanckend angibt. Seht man indessen das Pfund Paraffinkegren als vollwichtig voraus (was es beinahe sein soll), nimmt für das Ubergewicht der übrigen Arten einen Mittelstand, und legt die in Hamburger Schillingen angegebenen fieler Localpreise des nominellen Pfundes zu Grunde, so erhält man, auf preußisches Geld umgerechnet, für das volle Pfund:

Paraffin	22,5 Egr.
Walrauth	34,3 "
Wachs	24,2 "
künstl. Wachs 37	17,1 "
Stearinsäure	12,6 "
Talg	8,2 "

37 Eine bessere Sorte Stearinsäure.
Der zur Erzeugung gleicher Leuchtmengen erforderliche Kosten-
auswand stellt sich hiernach schliesslich folgendermaassen dar:

<table>
<thead>
<tr>
<th>Kerze</th>
<th>Paraffin</th>
<th>Wallbrah</th>
<th>Wachs</th>
<th>hirnliches Wachs</th>
<th>Stearinsäure</th>
<th>Talg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000</td>
<td>1845</td>
<td>2094</td>
<td>1000</td>
<td>1034</td>
<td>813</td>
</tr>
</tbody>
</table>

Ich gebrauchte zu den Versuchen, als deren Zweck ich die Ermittlung der Leuchtkraft des Paraffins mir vorlegte, Paraffinsterzen aus denselben Duellen, von wo Kästchen sie erhalten hatte, nämlich aus der

<table>
<thead>
<tr>
<th>Gattungen der Kerzen.</th>
<th>Durchschnittliche Leuchtkraft. (Eichmengen aus gleichviel Material.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Béclet.</td>
</tr>
<tr>
<td>Wachs</td>
<td>1000</td>
</tr>
<tr>
<td>Wallbrah</td>
<td>1033</td>
</tr>
<tr>
<td>Stearinsäure</td>
<td>987</td>
</tr>
<tr>
<td>Talg</td>
<td>801</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Der Paraffins-Kerzen.

Von jeder der drei Arten nahm ich ohne besondere Wahl drei Stück, welche mit Nr. 1, 2, 3 bezeichnet, genau gewogen, 4 Stunden lang gebrannt und schließlich ebenfalls wieder sorgfältig gewogen wurden. Je drei Kerzen mit gleicher Nummer prüfte ich im Laufe der gedachten Brennzeit zufällig auf die Helligkeit ihrer Flammen, wobei die Lichtstärke der Paraffinsferze als Einheit genommen wurde. Die Lichtmessung geschah mittels des Rumford'schen Photometers (durch Schattenvergleichung), unter Beobachtung aller wohlbekannten und erforderlichen Vorsichtsmaß- regeln; die Paraffinsferze stand jedesmal in 40 Zoll Entfernung von der schattenabsondernden Tafel, die Talg- oder Stearinäureferze wurde dann entsprechend verfeinert.

Die Ergebnisse der Beobachtungen sind in nachstehender Tabelle auf- gezeichnet.

39 Die Talgkerzen trachtete ich stets im besten Zustande des Brennens zu haben, wenn ich die Lichtmessung vornehm; dieser tritt sehr nach einem mässigen Hüsen ein, worüber die Erfahrung bald beicht.
<table>
<thead>
<tr>
<th></th>
<th>I. Reihe</th>
<th>II. Reihe</th>
<th>III. Reihe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Paraffin Nr. 1.</td>
<td>Stearin Nr. 1.</td>
<td>Talg Nr. 1.</td>
</tr>
<tr>
<td>Helligkeit, Versuch 1</td>
<td>1000</td>
<td>1000</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>795</td>
<td>737</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>856</td>
<td>810</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>879</td>
<td>894</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>989</td>
<td>934</td>
</tr>
<tr>
<td>Durchschnittliche Helligkeit</td>
<td>1000</td>
<td>904</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>33.52</td>
<td>37.82</td>
<td>31.62</td>
</tr>
<tr>
<td></td>
<td>8.38</td>
<td>9.45</td>
<td>7.90</td>
</tr>
<tr>
<td>Relative Leuchtkraft, oder Verhältnis der Lichtmenge aus gleichem Gewichte Brennstoff</td>
<td>1000</td>
<td>801</td>
<td>890</td>
</tr>
</tbody>
</table>
Somit wäre also — die Leuchtkraft des Paraffins = 1000 angenommen — jene der beiden anderen Leuchtmaterialien wie folgt:

\[
\text{Stearinsäure.} \quad \text{Talg.} \\
\text{Nach Versuchsreihe I.} \quad 801 \quad 890 \\
\text{II.} \quad 747 \quad 970 \\
\text{III.} \quad 731 \quad 932 \\
\text{und im Gesamtdurchschnitt.} \quad 760 \quad 931
\]

\[
\text{Wachs:} \quad \text{zwischen} \quad 555 \quad \text{und} \quad 1000 \\
\text{Wachstracht:} \quad 1045 \quad 1068 \\
\text{Stearinsäure:} \quad 759 \quad 880 \\
\text{Talg (im günstigsten Falle):} \quad 856 \quad 921
\]

Für Paraffin = 1000,
" Stearinäure = 760,
" Talg = 931,
so erfordert dieselbe Menge Licht, welche 1 volles Pfund Paraffinkerzen ausgibt,

von Stearinäurerskerzen 1,316 Pf., deren Preis 14 Ggr. 7 Pf.
" Talgeskerzen . . 1,074 " " 6 " 11 "

Die Paraffinkerzen kosten in der Fabrik selbst 15 Ggr. (12 Ggr.)
 das Pfundpaket von Netto 456 Gram. In Hannover sind dieselben zur
Zeit noch nicht käuflich; angenommen aber, hiesige Kaufleute würden sie
führen und könnten sie zu 16 Ggr. ablassen, so käme das vollwichtige
Pfund auf 16 Ggr. 5 Pf. zu stehen, und es wären dann die Kosten für
Erzeugung gleich großer Lichtmengen

mittels Paraffin 16 Ggr. 5 Pf. oder 1000
" Stearinäure . . . 14 " 7 " 888
" Talg 6 " 11 " 421
(während Karsen für Stearinäure 1031 und für Talg 813 berechnet).

Nachtrag.

In der Ubersicht, die Leuchtkraft der Paraffinkerzen noch bestimmter
zu ermitteln, habe ich dieselben ferner auch mit Wachskerzen verglichen,
wie sie mir eben — nicht von vorgänglicher Qualität —
zu Gebote standen. Diese, 6 Stück im Pfunde und 12½ Roll lang,
wogen Netto 409 Gram. oder 28 Lott, und kosteten 14 Ggr., was für
das vollwichtige Pfund 16 Ggr. ergibt.

Zwei dieser Wachskerzen und zwei Paraffinkerzen aus demselben
Pakete welchem die vorher geprüften entnommen waren, wurden auf die
oben beschriebene Weise geprüft, wobei ich folgende Resultate erhält:

194 Karmarsch, über die Leuchtkraft und den Beleuchtungswert
<table>
<thead>
<tr>
<th></th>
<th>IV. Reihe</th>
<th>V. Reihe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraffin a.</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Wachs a.</td>
<td>530</td>
<td>562</td>
</tr>
<tr>
<td>Paraffin b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wachs b.</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Helligkeit, Versuch 1</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Durchschnitt. Helligkeit</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Materialverbrauch in 4 Std.</td>
<td>33,48</td>
<td>33,65</td>
</tr>
<tr>
<td>1 Std.</td>
<td>8,37</td>
<td>8,41</td>
</tr>
<tr>
<td>Relative Leuchtkraft</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Die Leuchtkraft des Paraffins zu 1000 angenommen, stand sich jene der Wachskerzen nach Reihe IV 700

V 748

im Mittel = 724,
also seltsam etwas geringer, als jene der Stearinsäurekerzen bei den oben beschriebenen Versuchen — ein Beweis mehr für die schon im Ansehen sich unfreundliche untergeordnete Güte des hier geprüften Wachses. Demzufolge wurde die Leistung von 1 wirksamen Pfund Paraffin durch 1,38 wirksch. Pfund Wachs hervorgebracht werden; und da ersteres zu 16 Ogr. 5 Pf. angenommen wird (S. 194), letzteres aber 16 Ogr. kostet, so findet man den Vorteil auf gleiche Lichtmengen aus Paraffin = 16 Ogr. 5 Pf. oder 1000

Wachs = 22 " 1 " 1345;

b. B. Wachsbefestigung stellt sich um ein Drittel kostspieliger als Paraffinbeleuchtung.

Hatte ich endlich die Resultate aller meiner hier beschriebenen Versuche, räumlich der Leuchtkraft verschiedener Kerzen mit denen Paraffinbeleuchtung.
v. Sauer, über einen Apparat zur Erzielung gleichförmiger Temperaturen

[Table]

<table>
<thead>
<tr>
<th>Leuchtgas</th>
<th>nach</th>
<th>nach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wachs</td>
<td>4000</td>
<td>1000</td>
</tr>
<tr>
<td>Paraffin</td>
<td>2222</td>
<td>1381</td>
</tr>
<tr>
<td>Stearinsäure</td>
<td>1689</td>
<td>1049</td>
</tr>
<tr>
<td>Talc</td>
<td>996</td>
<td>1285</td>
</tr>
</tbody>
</table>

In Betreff des Tageslichts darf nicht vergessen werden, daß die für dasselbe ausgeführte hohe Zahl keineswegs einen in der Praxis wirklich zu gewinnenden Lichtertrag ausdrückt, sondern nur dann diese Bedeutung haben würde, wenn es möglich wäre, den im günstigsten Momente des Brennens entwickelten Grad von Helligkeit fortlaufend zu erhalten (vergl. die Anmerkung auf S. 191). Die durchschnittliche Helligkeit während der ganzen Brennzeit (rechtzeitiges Bürmen vorausgesetzt), also die praktisch nutzbare Leuchtkraft, muß wenigstens um ein Achtel geringer veranschlagt werden.

LIII.

Aus dem Jahrbuch der f. f. geolog. Reichsanstalt, 1855, S. 64.

Mit Abbildungen aus Tab. III.

im Verlaufe von 24 Stunden, indem dieselben, wie es scheint, während des Tages geringe, bei beginnender Stadtsbeleuchtung hingegen stärker belastet werden. Außer dieser Hauptschwanfungen finden übrigens stets noch im Laufe des Tages und der Nacht, in Folge anderweitiger Ursachen, kleinere Veränderungen in der Zuführung des Gases statt, welche aber immerhin merklich genug sind, um für den angebauten Fall sehr störend zu werden.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Stunde</th>
<th>Druck in Zollen Wasserhöhe</th>
<th>Datum</th>
<th>Stunde</th>
<th>Druck in Zollen Wasserhöhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>10</td>
<td>1/8</td>
<td>5.</td>
<td>6</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>4 1/2</td>
<td>1/2</td>
<td></td>
<td>9</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>5 1/4</td>
<td>3/8</td>
<td></td>
<td>9 1/4</td>
<td>3/8</td>
</tr>
<tr>
<td>5.</td>
<td>6</td>
<td>2</td>
<td>6.</td>
<td>6 1/4</td>
<td>1/8</td>
</tr>
<tr>
<td></td>
<td>12 1/2</td>
<td>1/2</td>
<td></td>
<td>12</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>4 1/4</td>
<td>1/2</td>
<td>7.</td>
<td>8 1/4</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>5 1/4</td>
<td>1/2</td>
<td></td>
<td>11</td>
<td>1/4</td>
</tr>
</tbody>
</table>

Bei Versuchen, welche ich im Laboratorium der f. k. geologischen Reichsanstalt anstellen ließ, handelte es sich darum, eine Flüssigkeit mehrere Tage hintereinander möglichst gleichförmig zu erhitzen. Es machte sich hierbei das Bedürfnis recht lebhaft geltend, vor der anzuwendenden Lampe eine Vorrichtung einzuführen, welche die Zuführung des Gases regulieren sollte. Wenn wie hier eine Flamme erforderlich ist, welche tageslang ohne Unterbrechung fortbrennen soll, so liegt es selbstverständlich am nächsten, eben nur auf eine Gaslampe zu rekurrieren. Ich forderte demnach Herrn Siegfried Markus, Mechaniker am f. k. physikalischen Institute, aus, einen Regulator für eine Gaslampe zu konstruieren, welcher bewirken sollte, daß dieselbe, unabhängig von dem wechselnden Drucke
v. Hauer, über einen Apparat zur Erzielung gleichförmiger Temperaturen

des Gasometers, niets ein gleiches Quantum an Gas zugeführt werde. Dieser talentvolle junge Mann, schon anderwärts bekannt durch seine Arbeiten im Gebiete der Mechanik, hat nun ein Instrument vorgestellt, welches ganz geeignet erscheint den gestellten Anforderungen zu entsprechen, und somit überhaupt einem lange gesuchten Wunsche für chemische Laboratorien Genüge leisten dürfte. Fig. 1 stellt diesen Apparat in sehr verkleinertem Maßstäbe dar.

Die innere Bohung des Hahnes ist oval und so groß als das Kauffhühner der Nöhrre H, G. Aus der Nöhrre K, L tritt das Gas wieder aus
dem Apparate; sie wird daher an ihrem Ende bei K durch einen Raut-
enschlauch mit der anzuwendenden Lampe in Verbindung gelegt. Der
Hahn L an derselben dient dazu, die Flamme auf seine Größe zu bringen,
welche sie dann constant beibehalten soll. Die Ausstülfohren bei K ist
etwas kleiner als das Kaliber der Zulufröhre H, J.

Die Art der Wirkung des Apparates erklärt sich hiernach leicht. Lässt
man das Gas bei H einreten, so wird auf die Wassertäche in dem Ge-
säße A ein Druck bewirkt, und es tritt, je nach der Stärke dieses Druckes,
eine größere oder geringere Menge Wasser durch die Hebeöhr C in das
andere Gefäß A‘. Hierdurch wird bewirkt, daß das Niveau des Wassertes im
Gefäß A‘ steigt, wodurch der Schwimmer und mit ihm der Metallstab
E, F gegeben wird, welcher sonach mittels des Hebels den Hahn G in
demselben Maße schließt, wodurch also bei wachsendem Drucke die Zulufr-
öffnung für das Gas immer kleiner wird. Nimmt der Druck ab, so steigt
aus A‘ Wasser in das andere Gefäß zurück, es sinkt der Schwimmer und
öffnet wieder mehr den Hahn der Zulufröhre H, J.

Aus dem Gesagten ergibt sich, daß die Lampe, welche mit dem aus
dem Apparate austretenden Gas noch zu werden die Bestimmung hat,
nie mehr Gas benötigen darf, als bei dem Minimum des statthabenden
Druckes, unter welchem das Wasser aus dem großen Gasometer kommen,
zuströmen kann, wenn die hervorbringende Temperatur eine constante blei-
ben soll. Die Größe der Lampe, welche man demnach in Gebrauch setzen
will, hängt von der Größe der Öffnung, aus welcher das Gas urprüng-
lich erhalten wird, und dem zu erreichenden Minimum des Druckes, unter
welchem das Wasser zuströmen kann; ab; ebenso bedingen daher auch diese
beiden Größen die inneren Dimensionen für die Zu- und Ausflufröhren
(H, J und K, L) am Apparate selb.

Der einzige bei diesem höchsten einfachen Instrumente schwieriger zu
constituirende Bestandtheil ist der Hahn der Zulufröhre bei G, welcher
natürlich sehe leicht beweglich sein und dennoch luftdicht schließen soll.
Beide Bedingungen sind an dem von Herrn Markus konstruirten Ap-
parate vollkommen erreicht. Der Hahn befindet sich nämlich nicht in
einer conischen, sondern cylindrischen Bohrung eingelassen, und ist so gut
eingeschliffen, daß schon das geringe Gewicht des zu seiner Bewegung an-
gebrachten kurzen Hebels eine Abwärtsbewegung derselben verursacht,
wenngleich die Stange E, F entfernt; dennoch schließt er aber vollkommen
luftdicht.

Da ich diesen Apparat speziell zur Erhaltung von Temperaturen unter
100° C. anfertigen ließ, so wurde derselbe also für diesen Zweck am ge-
eignet sich mit einer kleinen Lampe von der in Fig. 2 abgebildeten Form in Verbindung gebracht, welche gestattet, eine sehr kleine Flamme hervorzubringen. Die Form dieser Lampe ruht von einem Mutter her, welches zuerst von Hen. Prof. C. Hornig aus Berlin nach Wien gebracht wurde. Diese Lampen sind wegen ihrer einfachen Construction und Wohlfühl, so wie wegen des großen Vortheils, daß sie eine vollkommen rührende und brennende Flamme geben, sehr zu empfehlen. Dieselbe besteht aus einem einzigen Mantel von Eisenblech, der unten ganz offen und mit drei Füßen versehen ist. An seiner Spitze ist derselbe mit einem Metallgitter befestigt. Durch das niemals gebogene Rohr wird das Gas in das Innere des Mantels geführt und tritt gehörig mit Luft gemischt beim Metallgitter aus. Die Dimensionen der Lampe, welche ich zu dem obigen Zwecke anwebe, sind um ein geinges größer als die beigefügte Zeichnung. Die weitere Anwendung derselben ergibt sich von selbst. Der in Fig. 3 abgebildete, mit einer Schraube verschliefe Duschkahn ersetzt, als noch zweckmäßiger den Hahn bei L in Fig. 4. Es wird dieser an den Kautschukschlauch, welcher die Lampe mit dem Apparat verbindet, angebracht und gestattet die kleinste Mängen in Einstellung der Größe der Flamme. Er bietet den Vortheil, sehr nahe an der Lampe angebracht werden zu können, wodurch jede Veränderung bei einer Schließung oder Deffnung an der Flamme der Lampe augenblicklich ersichtlich wird, während bei einem von der Lampe entfernteren Hahn diese Veränderungen immer erst nach einem gewissen Zeitinnerball zu bemerken sind, und daher eine Einstellung der Flamme auf einen gewissen Punkt erschweren.

LIV.

In England erlangte Erfahrungsergebnisse über die bei der Eisenfabrikation erforderlichen Maschinenkräfte.

Aus „The Iron Manufacture of Great Britain, theoretically and practically considered“, von dem Ingenieur W. Truran (London, Ey kró. 1855.)

Höchsten. — Bei einer Windpressung von 3 Pfd. auf den Duobratzoll sind bei einer wöchentlichen Production von 100 Tonnen oder

Obgleich Britannien mehr Eisen produiziert als alle anderen Länder zusammengekommen, so hatte seine Literatur die jetzt doch noch keine dem Praktiker genügende Beschreibung seiner Eisenhüttenprozesse aufzuweisen. Das vorliegende Werk (28 Bogen 4, und 23 Tafeln) ist vorzüglich und eine deutsche Bearbeitung nur der Forder eines bekannten deutschen Technikers.

H.
über die bei der Eisensfabrication erforderlichen Maschinenkräfte.

Raffinie- oder Feineisen her. — Bei einer Windpressung von 2½ Zoll beim Feinen von Fritschroheisen, aus 100 Tonnen Fein- oder Weißfeisen, die wöchentlich producirt werden 13, und mit Reibung und Verlust 16 Pferdefräße.

Die beim Vorgange des Puddelrains bei einer Geschwindigkeit von 55 Umgängen in der Minute erforderlichen 44 Pferdefräße werden auf folgende Weise abgeordnet:

Kraft zur Neuberwindung der Reibung und der Trägheit der Pexilmachine... 5 Pf. Kr. Desgl. der schweren Maschinerie, als Kurbel, Schwungstäbeligen, Rad und Getriebe... 13 Desgl. Windefräder, Kurbel und Spindeln für die Scheren... 3 Desgl. Walzwerk, bestehend aus Walzen, doppelten Ge- trieben und Verbindungswellen... 15 Desgl. Dutsche nebts Kurbel... 4 Wenn das Walzwerk im vollständigen Betriebe ist, so sind die 74 Pferdefräße wie folgt, verteielt: auf die in der 6te....
Die von dem Train absorbirte mittlere Kraft beträgt 179 Dampf- pferde, allein sie wird nur in Zwischenräumen von wenigen Sekunden
ausgeübt, und während des Walzens beträgt die von der Maschine abgegebene und die in dem schweren Schwingungsgrade angehütte Kraft 332 bis 485 Dampfpferde.

Betrieb eines 12 jölligen Walzwerks, bestehend aus drei Streck- und zwei Schlichtwalzen, Getrieben, zwei Paar Scheren und einer horizontalen Hochdruckmaschine leergehend, bei 140 Umgängen in der Minute, 26 Pferdekrafte; additionelle Kraft beim Walzen von Rund- und Quadratbeisen von 5/8 bis 1 Zoll Stärke, 23 Dampfpferde, zusammen 49 Pferdekrafte. Wöchentliches Fabrikationsquantum 80 bis 100 Tonnen.

Betrieb eines achtzölligen Trains, dem obigen ähnlich, jedoch von einer besondern Maschine und Maschinerie betrieben; er liefert kurze Längen von Bolzen- und Quadratbeisen bis 5 1/2 Zoll; mittlere Kraft bei halb zölligem Bolzenbeisen, einschließlich Reibung und Trägheit, 54 Pferdekrafte.
Erfahrungensergebnisse über die bei der Eisensfabrikation erforderl. Maschinenkräfte.

Betrieb von einem Paar doppelter Schienen-Richtpresse, welche 28 Jüge in der Minute machen und wöchentlich 80 bis 100 Tonn Schienen gerade richten, 7 Pferdefrästen.

Betrieb von schweren gekröpften Scheeren, welche Rohschielen von 6 und 1 Zoll zerschneiden, 65 Schnitte in der Minute machen und täglich 120 Tonn zerschneiden, 9 Pferdefrästen.

Die Kraft, welche im Jahre 1855 die Maschinen zu Dowlaish entwickeln, ist folgende:

4 Wasserhaltungsmaschinen auf den Steinkohlen- und Eisensteinruben, so wie zur Wasserbedienung des Werks: 496 Pt. Kr. 16 Fördermaschinen auf den Steinkohlen- und Eisensteinbächten: 1134 " "

14 Maschinen auf Sichtbrücken u. s. w.: 668 " "

11 Locomotiven, welche Steinkohlen und Erz auf das Werk fördern und Produkte fortschaffen: 580 " "

2 Maschinen, welche Thonmühlen, Pochwerke, Ziegelmaschinen u. betreiben: 76 " "

5 Gebärmaschinen: 2154 " "

10 Maschinen zu Hammer- und Walzwerken: 2165 " "

2 Maschinen zum Betriebe der Drehs- und Bohrwerke, von Scheren u. s. w.: 35 " "

Summa 7308 Pt. Kr.

LV.

Aus Armengaud’s Genie industriel, Juli 1855, S. 14.

Unser Lesern sind die Verdienste der Hr. Thomas und Laurens um die Industrie, besonders um das Hüttenwesen, aus früheren Mittheilungen bekannt. Auch die Besucher der Pariser Industrieaustellung werden durch die Modelle, welche die genannten Herren dorthin geschiickt haben, auf dieselben besonders aufmerksam geworden sein.

Sie gehörten zu den ersten, welche die entstehenden Hohöfengase benutzten, und konstruirten sehr finnreiche Apparate, um diese Anwendung zugleich praktisch und wohlstell zu machen, indem sie mit jenen Ofnen Dampfstelle, Puddelsößen u. s. w. feuerten.

Mit einem kleinen Hohöfennmodel haben die genannten Ingenieure jetzt zu Paris einen sehr finnreichen Lufterhitzungs-Apparat ausgestellt. Man hatte bis dahin zu diesen Zweck nur Rohren angewendet, die einander mehr oder weniger nahe lagen und um welche die heißen Hohöfengase circuliren; die Hr. Thomas und Laurens haben dagegen die Thee gehabt, eine Art von gusseiferner, cylindrischer Retorte herzustellen, welche in ihrem Innern eine große Menge von kleinen Scheibeln hat, die mit dem Cylinder aus einem Stück gegossen sind, während sie in ihrer Mitte mit einem hölzen (mit der Retorte concentrischen) Kern versehen ist. Diese Einrichtung gewährt den Vortheil, die Construction des Apparates sehr zu vereinfachen und ihn sehr dauerhaft zu machen, daher auch weit wohlstell zu sein, als die Rohrenapparate, während er all den Bedingungen einer regelmässigen Erwärmung aller Luftptheile entspricht.

Das Gebläse derselben Ingenieure unterscheidet sich ebenfalls durch mehrere Eigenthümlichkeiten, deren Vortheile bereits von vielen Eisenhüttenleuten anerkannt wurden. Die Cylinder liegen horizontal, die Geschwindigkeit des Wechselns der Kohlen ist bedeutend und der Condensator sowie die Luftpumpe sind zur Seite angebracht.
Die erste Einrichtung dieser Gebläse wurde im VIII. Bande der Publication industrielle a) beschrieben; die Vorzüge und Vorteile dieser Maschinen sind a. a. O. näher nachgewiesen.

Erwägung verdient auch eine von diesen Ingenieuren ausgestellte Stahlscheiben-Kaliberwalze mit schalenförmiger Oberfläche sowohl aller Kaliber als auch der Zapfen, dieselbe ist ihrer ganzen Länge nach höhli. Diese Walze ist, ganz entgegen dem jetzigen Verfahren, in sehr dünnen Schalen (coquilles) gegossen, welche nach dem Abguß zerbrechen; man erreicht dadurch den Vorteil, daß die Walzen an allen Punkten der Oberfläche, mag ihre Form sein welche sie wolle, ganz regelmäßig und nur etwa 1 Centimeter tief gehärtet sind. Bei den gewöhnlichen dicken Schalen ist es anders, indem die gehärtete Linde zu dick wird, dagegen die Walze weit eher während des Betriebes zerbrechen kann; auch zeigen solche schalenförmige Walzen den Nachtheil, daß sie nicht überall gleiche Härzung haben und daß dies besonders der Kaliber trifft, deren Oberfläche nicht an allen Punkten gleichartig ist.

Durch Anwendung höherer Walzen beabsichtigten die Erfinder deren Erhöhung zu verhindern, weil man allabann einen Strahl fetes Wassert hindurchgehen lassen kann, der sie während des Betriebes fortwährend abführt.

LVI.

Die Hohöfen des Ingenieurs Fabry.

Von der Sambre erhalten wir eine Neuigkeit, welche alle Ingenieure, Eisenhüttenbesitzer und Kohlenspreudichten Belgiens im Verwunderung ge
sehlt hat.

Demzufolge scheint die Eisenfabrikation in eine ganz neue Phase ge
treten zu sein, in eine Phase der hoffnungsvollen Zukunft und großem Gewinnes.

Seit langer Zeit hat man sich mit der inhaltsschweren Frage beschäfti
gt, ob man nicht noch bei der Eisenfabrikation die Kohls durch rohe Steinkohlen ersetzen könnte.

Diese höchst interessante, von dem belgischen Ingenieur Hrn. Fabry wieder aufgenommene Frage hat bei den Eisen- und Kohls-Producenten, welche von ihm zu einem Vortrage auf dem Stadthans zu Charleroi eingeladen waren, eine große Aufregung veranlaßt, indem jener nützliche In
genieur ihnen dort die auf unwiderlegbare Thatachen gestützte Theorie seines neuen Hohöfensystems auszuführen suchte.

Die von Hrn. Fabry vorgetragenen 3een sind, wie er selbst ge
nacht, nicht ganz die zeitigen, da schon auf mehreren Hütten in England (Wales und Schottland) die Kohls sehr genügend durch Steinkohlen (Anthracit) ersetzt worden sind.

Hrn. Fabry eigen tümlich sind die bei den Eisen-Hohöfen, so wie sie jetzt angewendet werden, anbrachten Verbesserungen, welche als neue Erfindung angesehen werden können.

Versuche, die Kohls durch Steinkohlen zu ersetzen, sind zu verschie
denen Malen sowohl in Belgien als auch in Frankreich gemacht worden; sie mißlangen aber sämtlich wegen der jeptigen Beschaffenheit der Desen, die zur Erleichterung der Aufschlüsselung ganz ungeeignet sind, in Folge der dichten Kinde, welche die rohen Kohlen durch ihre Verbrennung bilden.

48 Unsere Quelle sagt nicht, ob dieselbe Hr. Fabry ist, welche die röthlichen Metallmaschinen erfunden hat, die jetzt in Belgien so häufig und mit beeindruckenden Resultaten angewendet werden und die im vorhergehenden Journal, 1853, Bd. CXXXI. S. 336 mitgetheilt wurden.
Um die von den Reformatoren des Rohstahlschmelzprozesses gefundenen Resultate zu erreichen, musste man Mittel auffinden, um die Luft in den Ofen so circuitiren zu laßen, daß sie die Verbrennung der Steinkohlen befördert. Diese Aufgabe hat Hr. Fabry zu lösen gesucht und es ist ihm dies auf eine genügende Weise gelungen.

Bei den jetz gebräuchlichen Hohenfrosttritt der Wind unten in den Ofen, strömt von dort nach oben und in dieser Richtung durch den ganzen Ofenraum.

der Hohenfrost Fabry's ist einer mit umgekehrten Flammen, welcher mittelst der Luftvertheilung in allen seinen Theilen den Steinsblengofen sich zu entwenden gestattet und das Brennmaterial verhindernd zusammen zu baten oder zu zerbringen und Staumassen zu bilden. Der Wind würde mittelst überleitender, den Hohenfrost gänzlich umgebender und von oben bis unten angebrachter Rohren in denselben eintreten, doch der Art, daß die Verbrennungsprodukte, d. h. die Flammen, statt wie jetzt durch die Gichtöffnung auszuströmen, bis zum Boden des Hohenfrostes gehen, daß die ganze Höhe desselben durchströmen und durch einen das Geschoß ersetzenden horizontalen Kanal über dem Herde weggehen und in eine Zugwelle gelangen.

Da aus dieser Weise der Wind von allen Seiten in den Hohenfrost strömt, so würde er auch jedes Zusammenbauen und Zerspalten der Steinkohlen verhindern.

Diese kurze Darstellung des Fabry'schen Systems wird für Fachmänner hinreichend sein, um ein Urtheil über die Vortheile und Nachtheile der Erfindung zu fällen.

In der Versammlung am 5. September d. J. zu Charleroi fanden sich eine Anzahl von Ingenieuren, Eisenhüttenleuten und Kohlschabersanten ein; um das System des Hrn. Fabry kennen zu lernen. Es wurden dagegen Einwürfe mit berstenen Bitterkeit gemacht, welche jede neue Idee unvermeidlich veranlaßt, wenn sie die Empirie, veraltete Vorurtheile und besonders wenn sie die materiellen Interessen angreift.

Man hat Hrn. Fabry den Einwürfe gemacht, daß bei der Einrichtung seines Hohenfrostes teigige und halbschmelzene Substanzen in den zum Herde führenden Kanal fallen, denselben verstopfen und das Ausströmen der Flammen verhindern würden.

Die Vorteile, welche der Hohofen mit umgekehrter Flamme darbietet, sind sehr bedeutend. Nach Fabry's Angaben kann man Steinkohlen jeder Art und Größe anwenden, von denen der Centner in Belgien 3,2 Egr. kostet, während Kohle nicht unter 9,6 Egr. angewachsen sind; auch kann die entnehmende Flamme zur Baudeofenfeuerung benutzt werden. - Eistigen die Versuche Fabry's auch im Großen, so wird der Preis des Eisens eine wesentliche Verminderung erfahren und die Produktion deselben wird dadurch sehr erleichtert werden.

Der Referent im Journal des Mines verspricht die Sache im Auge behalten und wieder darüber berichten zu wollen.

LVII.

Diese Erfindung, welche am 20. März 1854 für England patentiert wurde, besteht in der Darstellung des sogenannten Eisenschwammes und seiner Verwendung zu verschiedenen Zwecken. Die patentirteren Verfahrensarten betreffen folgende Punkte: 1) die Auswahl und Vorbereitung der Erze und, in Verbindung mit diesen Operationen, eine elektrische Sortiermaschine; 2) die Reduktion dieser Erze zu Metallischwamm mittels irgend eines Reductionsmittels, hauptsächlich aber durch reines Kohlenoxydglas, welches aus der bei der Reduktion sich entwickelnden Kohlensaure gewonnen wird; 3) das Zerpulvern des Schwammes; 4) die Vermengung des Schwammes mit mehreren Substanzen vor oder nach dem Zerpulvern; dieser Vorgang kann zweifellos mit Vortheil statt der Cremenation angewendet werden; 5) die Zusammenpressung des Schwammes vor oder nach dem Pulverisiren; 6) das Formen der Metalle im zertheilten oder schwannigen Zustande mittels der Zusammenpressung. 7) die Bewahrung des Schwammes gegen Veränderung vor oder nach der Zusammendrückung; 8) die heisse Cremenation des zusammengepressten Schwammes, falls der selbe nicht mit benzinigen Substanzen welche guten Stahl bilden, durch Tränken oder Mischen (nach 4) verbunden worden ist; 9) das Schmelzen.
Chenot, über die Darstellung des Eisenschwammes
und Zusammenschweisen des zusammengerückten Schwammes, entweder
im offenen Feuer oder in Tiegel, oder auch durch Kohle; 10) eine Ver-
bindung des Schmelze- und des Tementierprozesses, indem dieselben gleich-
zeitig ausgeführt werden.

Den ersten Punkt betreffend, nämlich die Auswahl, Aufz und
Vorbereitung der Erze, so ist es notwendig, dass dieselben rein
und von solcher Verunreinigung sind, um gutes Eisen oder guten Stahl
gewebe zu können. Bei der Auswahl der Erze muss man denselben Vorzug
geben, welche Eisen in Verbindung mit Mangan enthalten, wohin haupt-
sächlich die Spatheisensteine gehören. Da aber selbst die besten Erze außer
der gewöhnlichen ordigen Beimengung auch andere Metalle enthalten,
welche ihre guten Eigenschaften vermindern, so werden sie der Wirkung
einer elektrischen Sortiermaschine unterworfen. Diese Maschine, welche
auf die Erze nach dem Rosten und Pochen angewendet wird, wirkt auf
solche Weise, dass sie einerseits ununterbrochen eisenhaltige Substanzen und
andererseits die Gangarten mit den fremdartigen Metallen niederdrückt.
(Sie wird auch zur Sortierung von Schwammes benutzt, wenn der selbe
mit fremdartigen Stoffen vermengt ist.) Der Hauptcharakter dieser Ma-
schine ist die Benutzung eines Elektromagnetes statt eines natürlichen oder
permanenten Magnets, wie man ihn zur Trennung der Eisen- von den
Messing- und Eisenspänen benutzt. Durch dieses Mittel können alle eisenhaltigen
Substanzen zur weiteren Verwendung sehr rein dargestellt werden. Man
kann daher auch, außer den Eisenerzen, alle Arten von Eisenbasis, also
eisigen oder in Eisenspänen von Gußeisen, Schmiedeeisen, benutzen,
indem man sie rosten lässt, um sie in füllliche Erze zur Darstellung des
Schwammes zu verwandeln. Die Art und Weise, wie Elektromagnete
vorteilhaft zur Separation angewendet werden können, ist folgende: —
Eine Reihe von Elektromagneten, z. B. vierzig, werden auf einer mit
einer Weile versehenen Metallscheibe befestigt. Zwischen und ringsum die
Elektromagnete auf der Scheibe wird ein ununterbrochener Ring von
zweien Elektromagneten in solcher Art angebracht, dass ihre Pole einen
cylindrischen Ring bilden. Es würde daher die ganze cylindrische Ober-
fläche des Ringes als Magnet wirken, wenn die Elektricität durch die
den beiden Pole eines jeden Elektromagnetenanges durchginge; dies wird
aber auf folgende Weise vermieden: — Einer von den Polen von vier
bis fünf Elementen einer Bunsen'schen Batterie ist mit der Metalls-
scheibe verbunden, auf der die Elektromagnete in einem Kreise angebracht
sind. Diese Elektromagnete stehen daher unter dem Einfluss dieses Pol's
der Batterie, und können nur dann als Magnete wirken, wenn der
zweite Pol mit einer von den Windungen jedes Elektromagneten ver-

Was nun den zweiten Punkt betrifft, nämlich die Reduction der Erze zu Metall schwarz und so können bekanntlich die Eisennörper durch Kohle, welche dann Kohlensäure bildet, oder durch Wasserdampf, der Wasser erzeugt, oder durch gefroste Gase, die Kohlensäure und Wasser liefern, reduirt werden. Wenn Stein- oder Holzkohle zur Reduction angewendet wird, so nimmt die mit dem Erz geschichtete Kohle eigenen Raum ein, aus welchem Gewinde die Gase vorzuziehen sind. Die Wahl der anzuwendenden Gase ist übrigens wohl zu berücksichtigen, sowohl in Beziehung auf Dessinometrie, als wegen ihrer Reaction. So erzeugt das überdies theure steine oder gefroste Wasserstoffgas Wasser, welches der Reduction dann entgegenwirkt.
Kohlenoxyd ist das zweitmäßigste von allen Gasen zu dem Reductionsproces. Durch jede Unreinheit wird sein Reductionsvermögen aber sehr vermindert. Es ist bemacht, den Versicherungen der Stüttenleute entgegen, unmöglich irgend ein Erz durch Kohlenoxyd, welches durch Verbrennung erzeugt worden, zu reduciren, weil solches mit seinem vielfachen Volum Stockstoff gemischt ist. Wenn Gase ohne die Zwischenlagerung irgend einer Substanz angewendet werden, so können die schwammigen Thelischen während des Reductionsprocesse zusammenbleiben, und es wird derselbe daher aufgehalten oder verhindert. Um diesen Nachtheil zu vermeiden, wendet Chenot eine von den zwei folgenden Verfahrensarten an. Die erste besteht darin, das Erz in kleine Bäuchen mit durchbohrten Seiten zu geben, welche Büchsen aus Eisenblech bestehen. Das zweite Verfahren besteht darin, das Erz mit Kalkwasser zu tränken, welches das Aneinanderhängen der Thelischen verhindert und sich nach der Reduction absondert. Ein anderes Mittel besteht darin, das Erz mit Kalk und Kohle zu schützen. Das zur Reduction dienende Kohlenoxydgas stellt er mittels einer Kohlenfäure (aus Kalkstein mittels Salzfäure entbunden) dar, indem er letztere in eine Retorte leitet, welche glühende Kohlen enthält. Leitet man dann dieses Kohlenoxyd in den Apparat, welcher das Metalloxyd enthält, so wird es in Kohlenfäure verwandelt, welche durch einen geeigneten Apparat in die Retorte zurückgeführt und dort wieder in Kohlenoxyd verwandelt wird. Auf diese Weise erhält man eine reiche Duelle von reiner Kohlenfäure und völlig auch von reinem Kohlenoxyd. Mag nun der Reductionsapparat sohn welcher er wolle, mag er senkrecht stehen, horizontal oder geneigt liegen, so muss er luftleicht verchloffen sein; das Kohlenoxydgas wird auf der einen Seite eingeschütt und verlässt ihn am andern Ende als Kohlenfäure. Auf diese Weise ist die bis jetzt mit vielen Schwierigkeiten verbunden gewesene Benutzung des Gases sehr erleichtert und wirksam gemacht. Der so erlangte Schwamm kann entweder durch ein kohlenstoffhaltiges Gas oder durch eine verfehlte Substanz cementirt werden; die weiter unten beschriebenen Mittel sind jedoch zweckmäßiger, um jede gewünschte Dualität gleichartig Metalle zu erlangen; überdies ist die direkte Cementation ein sehr langsamer, schwieriger und unvollkommener Proces. Der dritte Punkt betrifft die Pulverisirung des Schwammes; wenn nämlich die Erze nicht von der Art sind, dass sie ein Metall von der gewünschten Dualität und Schmelzbarkeit liefern, so muss der Schwamm durch irgend einen zweckmäßigen Apparat pulverisirt werden. Apparate, die durch Reibung wirken, sind besser als solche die durch Stöße zerfeiern, weil bei dem letzteren Verfahren leicht Klumpen entstehen, die sich
sowieig zerbrechen lassen. Nach dem Pulverisiren kommt die Substanz zu der elektromischen Sortiermaschine.

Der vierte Punkt bezieht sich auf die Vermengung des Schwammes mit verschiedenen Substanz. Wenn die Erze, die Eigenschaften, welche zum Schmelzen oder Schweissen erforderlich sind, besitzen, wie es der Fall sein kann, so braucht der Schwamm nicht pulverisiert zu werden, und da der höhere bereitete Schwamm porös ist, so wird diese Eigenschaft benutzt, um ihm die erforderliche Kohle zur Stahlsbildung beizumischen. Zu dem Ende wird der Schwamm in ein fettiges Präparat getauucht, dessen Zusammensetzung der Dichtigkeit oder dem Absorptionsvermögen des Schwammes angepaßt ist, so daß derartig hineinreichend sattigende Substanz aushilft. Das überschüssige Fett wird hierauf durch Destillation, welche sich bis zur Verflüssigung getrieben wird, entfernt. Der Schwamm enthält dann alle Bestandtheile der verlangten Stahlsart — die Härte dieses Stahles fällt nach der Dichtigkeit des angewendeten Fettpräparates verschieden aus. Dieses Verfahren bildet ein ganz neues Prinzip, um dem Eisen genau bestimmte Kohlenmengen durch seine ganze Masse einzuverleiben ohne Anwendung von Wärme.

Wir gehen nun zu dem fünften Punkt über, zu der Zammendruckung des Schwammes. Wenn derselbe nicht pulverisirt zu werden braucht, so kann er direkt zur Preßmaschine gelangen, jedoch muß er gewöhnlich erst zerfeinert werden. Ist dies nun geschehen und sind die oben erwähnten Gemenge gemacht, so wird er dem Druck unterworfen und dieser Prozeß ist aus den nachstehenden Gründen von größter Wichtigkeit für die vollkommenere Eisen- und Stahlfabrikation: 1) Der Eisenschwamm ist ein sehr veränderlicher Körper, und er wird um so leichter ordirt, von je besserer Beschaffenheit er ist, besonders wenn er metallisches Mangan enthält. Diese Empfindlichkeit rührt von seiner Porosität
her, welche die Capillar-Absorption von Luft und Gasen erleichtert, die aber durch eine starke Zusammenpressung aufgehoben wird, wo dann der Metallschwamm eben so unveränderlich ist wie feste Metalle. 2) Da der Metallschwamm sehr voluminos im Verhältnis zum festen Metall ist, so wird er durch Druck auf etwa ein Viertel seines ursprünglichen Volums reduziert und dadurch eine große Ersparrnis in Beziehung auf Apparate, Brennmaterial und Handarbeit erzielt. Auch wird durch die Zusammenpressung der Metallsverlust bedeutend vermindert, besonders bei der Bearbeitung des offenen Feuers. 3) Bei dem mit anderen Substanzen gemischten Schwamm beginnt die durch Druck erzielte Verflüssigung der späteren Reactionen sehr. 4) Die Zusammenbrückung schafft einen neuen Industriezweig, nämlich die Fabrication von Artislen, welche direct aus Eisen oder Stahl geformt sind. Nachdem nämlich der Schwamm in Formen von der erforderlichen Gestalt eingepreßt worden ist, wird die erhaltene Masse einer starken Hitze, entweder in einem Ofen- oder in einem reduzierenden Gasfeuer ausgelegt, worauf die aus Eisen, Stahl oder Legirungen bestehenden Gegenstände eben so fest sind, als wenn sie gegossen worden wären.

Den nächsten Punkt betreffend, nämlich die Formen von Metallen, so ist auch hier die Zusammenpressung anwendbar, um die Metallen im zertheilten Zustande, als Bohr-, Dreh- und Schliffspäne, Blechschichten, entweder für sich allein oder im Gemenge mit Schwamm, die gewünschte Form zu geben oder ihr Volum zu vermindern. Durch dieses Verfahren sind die Schwierigkeiten, Eisendreispäne zusammen zu fassen (um sie auszuschweißen), ebenfalls gehoben. Es sind bei dieser Methode sehr starke Preßungen erforderlich; auch kann man die zusammenzudrückenden Späne dabei in große erhißte metallene Gefäße bringen.

Der siebente Punkt betrifft die Conservation des Schwammes gegen Veränderungen, wenn er z. B. weit transportirt werden soll; dazu taucht man ihn in Del, Pech, harzige oder fettige Körper, welche alsdann auf dem Schwamm verkokt werden. Auch kann man Delfarben anwenden, die keine Dämpfe enthalten welche der Verflüssigkeit des Metalles nachtheilig sind.

Der achte Punkt betrifft die warme Cementation des zusammengepreßten Schwammes. Da zusammengepreßter Schwamm nur schwierig selbst die flüssigen Dele abtorbt und da man ihm auf diese Weise nur durch wiederholte Eintauchungen und Verkohlung des Deels die nötige Kohlenstoffmenge einverleiben konnte, so ist es oft nothwendig, den Schwamm auf gewöhnliche Weise, oder in continuirlichen Reductions-Apparaten zu cemenitiren. Die Cementeion schreitet dann sehr günstig
vornwärts, was von der vorhergehenden Zusammenpressung, und unter gewissen Umständen auch von dem vorhergehenden Einfügen herrührt.

Den zehnten Punkt, nämlicli den Schmelz-und Cezementierungsprozeß betreffend, sind die eben erwähnten Methoden zum Schmelzen des Schwammes auch auf gewöhnlichen Stahl anwendbar, wegen der beim Schmelzen mit Holzkohlen stattfindenden Cementeation, welche nach der Länge der Zeit, in der die Schmelzung erfolgt, mehr oder weniger vollkommen ist. Man kann daher durch eine langsame Führung des Schmelzens die gleichzeitige Cementeation erzielen. Die Sohle des hierzu benützten Ofens wird erhitzt, damit das Metall nicht in feinen

Die Herausgeber des Génie industriel, die Brüder Armengaud, hogen im Augustheft S. 109 ihrer Zeitschrift über das neue System der Eisens- und Stahlfabrication von Chenot, dessen Establis-ment sich zu Chîly bei Paris befindet, Nachrichtendes:

Bemerkensvoll weist Hr. Chenot den Metallschwamm, d. h. das unmittelbar durch Reduktion der Eisenerze dargestellte schwammförmige Eisen, welches sich mittels der Preßen zusammenbricken lässt, zu Lüppen an, welche wie gewöhnliches Eisen bearbeitet werden, oder er cementsiert den Schwamm bei der gewöhnlichen Temperatur, um Stahl daraus zu bilden.

Hr. Chenot hat zuerst klar gezeigt, dass das gewöhnlich bei der Eisensfabrication angewendete Verfahren weder rationell noch ökonomisch
ist, daß es zuviel Arbeitskräfte und zuviel Brennmaterial erfordert, und daß man von diesem Grundlage ausgehend nicht erst Rohisen zu erzeugen braucht, um Stabisen darzustellen. Es ist ihm auch gelungen, schmiedbare Gnisen direkt aus den Eisern darzustellen.

Er bedarf daher bei seinen Prozessen weder der Hohösen, noch der Frischfeuer oder Rubbdelösen, sondern erzieht dieselben einfach durch einen Flammofen seiner Erfindung, in welchen Schichten von Kohle und Erz 10 bis 12 Meter (32 bis 38 rheinl. Fuß) aufgegeben werden. Der auf diese Weise gefüllte Ofen wird 20 bis 24 Stunden lang geheizt; das Eisenrohd wird reduziert, und man erhält nach dieser Zeit alles Eisen als Schwamm, welchen man in Kästen im inneren Theile des Apparates mittels einer eigenthümlichen, sehr finnreichen Anordnung sammelt; diese Vorrichtung ist notwendig, um die Entzündung des schwammförmigen metallischen Eisens beim Herausnehmen zu vermeiden, wobei überdies sehr starke Explosionen erfolgen würden.

Zu den Hauptarbeiten der ganzen Fabrication sind einige Mann hinreichend, und auch diese sind nur kurze Zeit beschäftigt, z. B. etwa alle drei Stunden, um die Fortschritte des Prozesses zu untersuchen, um Rohisen auf die Höste zu schüren, endlich beim Ausladen der Produkte.

Der Metallschwamm ist in Vergleich mit dem Erz oder Eisen leicht, da er sehr viel Luft eingeschlossen enthält; diese Luft entwickelt sich aber, wenn man ihn dem Druck unterwirft oder in eine Flüssigkeit taucht. Durch starfen Druck kann man ihm jede beliebige Form ertheilen. Wenn man also eine gewisse Quantität Schwamm, welcher vorher in Pulver oder in Körner verwandelt worden ist, in eine länglich viereckige oder irgend eine andere Form bringt und ihn darin dem Druck einer kräftigen hydraulischen Preßung aussetzt, so erhält man Luppentüche oder Mäfseln, die alsbann schweisswarm gemacht und wie die gewöhnlichen Luppentüche ausgeschmiedet und ausgewalzt werden können.

Hr. Chemot läßt jezt eine ungeheure Preßung mit zweifel Kohlen bauen, die auf eine große Oberfläche wirken und höchstens einen Druck von drei Million Kilogr. ausüben soll, um Stücke von großen Dimen-
flönen, wie Eisenbahnen und andere Radreifen, Eisenbahnschienen usw. formen zu können.

Sein Verfahren wird seit kurzem mit bedeutendem Vorteil in Spanien angewendet und dürfte bald auch in anderen Ländern in Anwendung kommen.

Jetzt führt dieser unermüdliche Erfinder in seiner Hütte einen Apparat aus, mit welchem er Gase erzeugen und diese statt des gewöhnlichen Brennmaterials zur Feuerung verwenden will. Dadurch glaubt er eine bedeutende Kohlensparung zu erlangen, die bei seinen Flammen obern um so wichtig wäre, weil solche alsbald wegen der wechselnden Kohlenspitzen mehr Erz aufnehmen könnten, so dass in demselben Ofen in gleicher Zeit mehr Schwamm erzeugt würde.

LVIII.

Ueber die Wirkungsweise der Schwefelblüthe gegen die Traubenfrankheit; von Hrn. Marès.

Aus den Comptes rendus, Septbr. 1855, Nr. 10.

Die Krankheit des Weinbaues wird jetz durch die Gegenwart des Oidium Tuckeri, charakterisiert. Gelingt es, die Stöcke von diesem zu befreien, so sind sie geheilt und entwickeln ihr Wachsthum unbehindert fort. Wie nun das Schweifelpulver diese Wirkung vollbringt, läst sich mittels des Mikroskops sehr genau beobachten, und zwar ist eine von dem weissen Flaus des Oidium trisch befallene Beere am geeignetsten, um die auseinanderfolgenden Erscheinungen zu verfolgen. Allerdings lassen sich
dieselben auch auf den Blättern und grünen Zweigen wahrnehmen, jedoch nicht so leicht.

Um die Wirkungen des Schwebels auf das Oidium im Ganzen kennen zu lernen, muß man die Beobachtung der Traube auch nach der Desorganisation des Pilzes fortsetzen. Man sieht dann, daß die Beere größer wird und sich allmählich der Schwebelblättrige entledigt; die Zweigen wachsen und an ihren Spiten entwickeln sich junge Blätter; diese sind
aber neue Oberflächen, welche für einen Angriff der Krankheit vollkommen disponirt sind. Man sieht dann die Trümmer des Oidium, die nach seiner Desorganisation aus der Traube zurückbleiben, nämlich zwischen den Schwefelsäbchen, welche so weit auseinander liegen, dass sie dieselben nicht berühren konnten. Sie haften stark an der Epidermis und man sieht, wie sie, je nach der Temperatur und der Feuchtigkeit des Mediums, ihr Aussehen verändern und vom 15ten bis zum 20sten Tag nach der Anwendung des Schwefels sich reorganisiren. Es zeigen sich dann an dem Weinstock neue Merkmale der Krankheit, das Laub fängt an bläß zu werden, die jungen Blätter an den Spitzen werden fleckig und auch die Traube zeigt viele weisse Flecken. Untersucht man zu dieser Zeit ein schwach bestaubtes und noch mit Schwefelsäbchen versehenes Stück Trauben-Epidermis unter dem Mikroskop, so wird man zwischen den Schwefelsäbchen welche der Traubenhaut noch anhängen, eine ziemlich große Anzahl von Keimfärnern (Sporen) sehen; einige feinen, andere fügen sich auf ihren Stielen und gehen von dem Schwammgewebe (mycelium) aus; letzteres treibt zahlreiche Strahlen, es ist reorganisirt und im Zuzand sehr lebhaftes Wachstumms. Dieses zweite Hereinbrechen der Krankheit muss, wie das erste, durch Schwefeln bekämpft werden.

Ich habe mich überzeugt, dass die Schwefelsäure auf den Weinstock nicht durch die schweflige Säure oder die Schwefelsäure wirkt, welche sie in kleiner Menge enthält. Gepulverter rother Schwefel wirkt gerade so wie jene.

Aus Vorstehendem ergibt sich:
1) dass der Schwefel auf das Oidium nur bei unmittelbarer Berührung wirkt;
2) dass er, wie gewöhnlich auf dem Weinstock verbreitet, nie alle Keime des Oidium gänzlich zertönt, aber dem Wachstum des Schimmel pilzes genugsam Einhalt thut, dass dieser den Wachstum des Weinstocks nicht mehr stören kann, nämlich von dem Augenblick anfangen wo er getötet wurde bis zu demjenigen seiner Reorganisation, ein Zeitraum, welcher bei den Temperaturen der Monate Mai, Juni, Juli und August 20 bis 25 Tage umfasst.

Die Resultate der aus großen Flächen stückweise und beim Beginn des Angriffes der Krankheit vorgenommenen Schwefelung befrühen diese Angaben vollkommen.
LIX.

Über das hydrostatische Bett oder die schwimmende Matrass, deren man sich in den englischen Spitäler bedient; von Dr. Neil Arnott.

Aus den Comptes rendus, Sept. 1855, Nr. 10.

Das als Druckpumpe wirkende Herz ist das Instrument, welches das Blut durch die Arterien nach allen Theilen hineindringen. Die Kraft einer Wasserpumpe wird durch die Höhe gemessen, auf welche sie das Wasser treibt, und Versuche haben gezeigt, daß das Herz in den Arterien einen Druck unterhält, welcher das Blut in einer offenen verticalen Höhe, die mit einer großen Arterie in Verbindung stünde, 10 Fuss hoch steigen machte würde. Mit dieser Kraft also zieht bei einem gesunden Menschen das Blut durch die Arterien und die unzähligen Gefässe der Organe, indem es dabei die innern Reibungen und den allenfallsigen äußeren Druck auf die Körpertheile überwindet. Wird nun in Folge einer Krankheit die Triebkraft des Herzens vermindert, so kann sie zur Unterhaltung des Kreislaufs in den comprimirten Theilen unzulänglich werden, und wenn in diesem Fall der auf einen Theil der Hüllen ausgeübte Druck über eine gewisse Zeit fortbaut, so kann die Zerkümmern dieses Theils die Folge seyn.

Ein besonders lehrreicher und diese Ansicht befriedigender Fall veranlaßte mich zu dem ersten Versuch mit dem hydrostatischen Bett. Eine junge Frau hatte nach einem schweren Wochenbette ein von ganz außerordentlicher Muskelschwäche begleitetes Fieber. Sie konnte kaum den Finger bewegen; den Körper aber, um ihre Lage im Bett zu verändern,
gar nicht; sie hatte nicht die Kraft vernehmlich zu reden, und die Thätigkeit des Herzens war so schwach, daß der Puls kaum fühlbar war. Mehrere Tage und Nächte hindurch blieb sie in diesem Zustand ohne Schlaf, dabei alle 10—15 Minuten verlangend, in ihrem Bett umgelegt zu werden. Als sie endlich eine halbe Stunde verbracht hatte, ohne dieses zu verlangen, hofften die Wärter, daß es besser gehe; es waren aber im Gegenthes alle Theile der Haut, auf denen sie gelegen hatte, abgestorbren, nämlich auf dem heiligen Bein, den Schultern und den Fersen, und bald darauf, nachdem sie auf die Seiten gelegt worden war, hatte sie sich auch auf den beiden Schenkelthrom und gelegen. Mehrere Herzte hielten ihren nahen Tod für gewiß. Ich bemerkte bei dieser Gelegenheit: 1) daß die Ursache örtlicher Gangrän, die sich genau auf die Theile beschränkt welche den Druck erlitren, ohne Zweifel gerade in diesem Druck zu suchen sei; 2) daß wenn man die Kranken in einem Bad hätte schwimmen lassen, die Thoerse sich nicht erzeugt hätten; 3) daß es möglich sey ein Bett zu constuirem, so troden wie man ein Bett sich denken kann und so weich wie die Oberfläche des Wassers. Es wurde sogleich dazu geschnitten. Man spannte über eine Wanne und das darin enthaltene Wasser ein großes Kautschukbäck aus, legte eine vierfach zusammengenlegte Decke als Unterlage und ein Kopfsiffen darauf und auf dieses Bett die Kranken. Sie schwamm auf demselben ohne allen merklichen Druck auf die untere Oberfläche ihres Körpers. Sogleich rief sie aus: "ich besünde mich im Himmel, lostet mir in Ruhe," sie schlief ein und bewegte sich fast fünf Stunben nicht. Nach dem Erwachen nahm sie Nahrung zu sich; kurz sie war gerettet. Die steben Massen abgestorbenen Fleisches lösten sich durch Gitterung ab und die wunden Stellen vernarbten.

Dieses Verfahren hat sich bis jetzt, obwohl der eben erwähnte Fall nicht mehr vereinzelt steht, nur sehr langsam Bahn gebrochen, 44 wohl in Folge mangelhafter Kenntniss der oben erwähnten Veranlassung des Nebels. Ferner möchten viele Personen bisher gelaucht haben, daß ein Luftsack, dessen man sich als Bett bedient, oder ein, auf einen Strohsack gelegter Sack der mit Wasser gefüllt ist, dieselben Dienen teife, wie das hydrostatische Bett. Aber eine auf einem Luft- oder Wasserbad liegende Person wird in der That von einer gespannten und harten Reinwand getragen, denn der Sack wird um so härter, je grösser das darauf ruhende Gewicht ist. Beim hydrostatischen Bett hingegen trägt das Kautschukbäck durchaus

44 Dr. Arnot brachte das hydrostatische Bett schon im Jahre 1832 in Verwendung. Siehe seine Abhandlung im vollenen Journal Bd. XLVI S. 169.

Das hydrostatische Bett gewährt, abgesehen davon, daß es welcher ist als jedes andere Bett, noch folgende Vortheile: es erschwert es sehr dem Kranken eine andere Lage zu geben, um z. B. eine Wannte aus dem Rücken zu verbinden; ferner ihm ein Gefäß unter den Leib zu bringen; auch kann man mittels desselben sehr leicht die gewünschte Temperatur unterhalten; endlich läßt sich dem Kranken mittels der Dicke der Matrizen-Theile oder der Rissen, eine beliebige Lage geben.

LX.

Thonfugeln—Drainirung vom Capitän Norton zu Dublin.

Aus dem Practical Mechanic’s Journal, Septbr. 1855, S. 130.

Mit Abbildungen auf Tab. III.

Capitän Norton, bekannt wegen seiner Beschäftigung mit den Schießwaffen, wendet zur Drainirung harte Thonfugeln an. Diese Thonfugeln werden mittels irgend einer geeigneten Maschinerie geformt und müssen eine möglichst vollkommen Form erhalten. Nachdem sie getrocknet worden, werden sie sehr hart gebrannt, so daß sie in der Erde eine sehr lange Dauer haben. Die Größe dieser Drainirfugeln muß nach den verschiedenen Umständen verschieden sein, jedoch ist ein Durchmesser von 4 bis 5 Zoll in der Regel genügend. Wenn solche Fugeln in Drainirungsgräben gelegt werden, so gestatten sie dem einfließenden Oberschläenwasser zwischen ihnen durchzugehen und das Land trocken zu
Soubiran, über den Blutegelsumpf zu Montsalut.

legen. Sphäroidische Steine würden dafselse leisten wie die Thonfugeln; letztere werden aber aus dem Grunde vorgezogen, weil sie vollkommen fügelformig sind, was bei Kieseln oder Schiefern nicht der Fall ist. Fig. 6 ist ein Längendurchschnitt von einem auf diese Weise drainirten Felde und Fig. 7 der entsprechenende Querdurchschnitt. Zuerst wird in dem Boden B ein länglich-vierckiger Graben A gezogen und wenn derselbe die hintängische Tiefe erreicht hat, so wird dessen Sohle geebet und mit Schiefer oder einem andern zweckmäßigen und wohlfelten Material C belegt. Darauf kommt eine erste Lage von Thonfugeln D und zwar auf diefelbe regelmäßige Weise wie die beiden Figuren zeigen. Ist der Graben 8 Zoll weit, so nimmt er gerade zwei Reihen von vierzähligen Fugeln nebeneinander auf. Auf die unterste F认真落实 folgt eine zweite E, deren Anordnung ebenfalls aus den Figuren deutlich, und auf die Fugeln folgt eine dritte F von Schiefer - oder andern bünken Steinplatten F, worauf die Erde wieder in den noch offenen Theil des Gräbens geworfen wird und zwar der bewachsene Theil zu untert. Die Zwischenräume der Fugeln gestatten dem Wasser durchzusiftern und der Zweck der Drainirung wird dadurch vollkommen erreicht.

LXI.

über den Blutegelsumpf zu Montsalut (Landes-Depart.);
Bericht von Hrn. Soubiran.

Aus dem Journal de Pharmacie, Mai 1854, S. 338.

Hr. Rollet, correspondendes Mitglied der (französischen) Akademie der Medicin, hat die Blutegelsucht im Landes-Departement unternommen und stellt ein fast ganz neues System auf, welches alle Beachtung verdient.

Diese neue Art der Blutegezucht verdient ausführlich besprochen zu werden und wir lassen ihre Darlegung mit Rollet’s eigenen Worten folgen:

"Es wurden bisher bei der Blutegezucht drei Hauptfehler gemacht:

1) Man gab dem zur Blutegezucht bestimmten Sumpf bisher eine zu große Ausdehnung, wodurch zu viele Blutegel dem Handel entzogen werden; überdies konnten die Züchter aus dem Grunde eines solchen Sumpfes einen festen Boden machen, daher sich Blutegel in demselben verchüppen und umkommen.

2) Fehlte ein constantes Niveau des Sumpfwassers, daher die Züchter gesungen sind, das Wasser zur Zeit der Erlegung abzulassen, und wenn sie glauben, daß diese vorüber ist, es wieder einzulassen; dadurch geht eine zur Ernährung der kleinen, nicht zeugungsfähigen Blutegel kostbare Zeit (vom Monat Juni bis December) verloren; möglicherweise tritt auch ein Verlust bei Regenfechter ein, wo die Erde, in welche die Coons gelegt wurden, aufgeweicht wird, daher diese Coons nicht zur Reife gelangen können; noch einen Verlust erleidet man dadurch, daß während des Trockentiegens der Sumpfe nicht gesüft werden kann, washalb die Preise der Blutegel zu dieser Jahreszeit immer in die Höhe gehen.

3) der dritte Fehler, welcher den Züchtern den meisten Nachtheil brachte, ist, daß die Blutegezucht nicht zu einem Bestandtheil des landwirtschaftsbetriebes gemacht wurde, was eine notwendige Verbindung ist, um die Blutegel gebörg zu ernähren, ohne die zu ihrer Ernährung dienenden Thiere zu erschöpfen; deshalb sehen sich die Züchter gezwungen, alte und erschöpfe Pferde zu benützen, welche den Blutegeln ein wenig nährhaftes Blut liefern; viele dieser Thiere sterben in den Sumpfen, was den Züchtern ebenfalls große Kosten verursacht, während kräftige Thiere, außer der Ernährung der Blutegel, auch Arbeit und Dünger liefern würden.

"Diese Fehler müssen die Züchter in ihrem eigenen Interesse abstellen; man weiß jetzt, daß zum Ernähren der Blutegel, wenn sie sich fortspangen sollen, lebendiges Blut erforderlich ist."

15
welches sie bei ihrem Gang durch das Wasser macht, und der Geruch, den sie verbreitet, locken eine Menge dieser Thierchen an, welche in einem Augenbliek die Kühe der Kuh übersiehen, sich unter den Haaren festlegen und vollsaugen und bedeutend angeschwollen natürlich ins Wasser zurückfallen. Nach dieser guten Maßzeit muß eine mehreige Tage oder Wochen dauernde Verdauung folgen, wobei aber diese Keimthierchen in Fadenblutegel übergehen; nach auf einander folgenden ähnlichen Maßzeiten werden sie im ersten Jahr zu mittelm in andernfaß Jahren zu großen, der Fortpflanzung fähigen Blutegeln."

"Meine Bassins sind, wie gesagt, von sehr geringer Ausdehnung, wechselnd der Gesundheitsrat von Bordeaux noch in seinem vorletzten Bericht über die Bluteteliche sie ganz überging; nachdem er sie aber gesehen hatte, war er von meinen Fortschritten in Beziehung auf die Gesundheit so sehr, als auf die Fortpflanzung der Blutegel, und die Landwirtschaft, wahrsicht überrascht."

"Ich begann damit, meine natürlichen Sumpfe mittels Abhaußegräben zu entleeren, und mit Hilfe eines natürlichen Gefäßes konnte ich einen verselben, ganz von seinem Torf befreien, mit Ausnahme der Ränder, welche ich lieber ließ; ich setzte nun Blutegel ein, welche ich noch nicht zu erahnen vermochte, sie wanderten großenteils aus; nur einige verselben machten Cocon, legten sie aber vier Zoll über das Niveau des Wassers; ungeachtet meiner Gräben, sind natürlich diese Sumpfe, wegen der in denfelben vorhandenen Duellen, steet mit Wasser versehen."

"Diese Lage der Cocons gab mir den Schlüssel zu meinem System. Ich brachte Torferde in die Mitte meines Sumpfes und bildete damit Inseln von 3 Fuß Breite und 1 Fuß Höhe über dem Niveau des Wassers, ließ dann diese Inseln, so wie deren Ränder mit Rasen belegen, und umgab sie mit Gattern, damit die Kühe nicht auf die Bewässerung steigen konnten; da ferner der Boden nicht überall fest war, ließ ich eine Menge Kies zuführen, daher meine Kühe die Bassins betreten konnten, ohne in den Schlamm zu versinken. Allein die Kühe blieben nicht ruhig stehen, und vergebens liefen ihnen die Blutegel nach, nur sehr wenige konnten anheischen. Ich ließ nun mitten auf den Inseln Krippen anbringen und legte Futter für die Kühe auf, und bald diese sogar an, damit sie nicht weglauen konnten. Es gelang mir aber das über die Weise so viele Kühe gleichzeitig in die Bassins zu bringen, daß alle aus der Erde gefrorenen Blutegel zugleich gefüttert werden konnten.

Sobald eine Kuh ziemlich angebissen war, führte man sie aus dem Bassin und nahm die Blutegel von ihr ab, welche aus dem Weg nicht abgesessen waren. Auf diese Weise litten die Kühe durchaus nicht durch

„Ich kaupe, um den Fehler nicht zu begehen, welchen manche Züchter so theuer büßen mussten, seine ungünstigen Blutegel, sondern nur inländi- sche, sogenannte starke aus dem Landes-Departement; dieselben sind vor- trefflich und vertragen das Versenden, die Kälte und Nachläßigkeiten in der Behandlung besser, als andere Sorten, wechseln sie, vorzüglich im Sommer, von den Apothekern in Bordeaux sehr gefischt sind.”

„Nachdem meine Bassins fertig waren, ließ ich sie mit Pfahlswerk umgeben und zwischen beiden ein sehr hohes Wächterhaus bauen, mit Schießscharten und Glocken und guten Wächterhund versehen.”

„Nichts fehlt mehr, als ein Reservoir für die entleerten Blutegel, welches ich dieses Jahr, wo ich fast im Winter werde fischen können, anzulegen beabsichtige.”

„Mit zwei Bassins mußte ich auch meine Herde vergrößern und statt des Halbfraus nach nach Futterkräuter zu erhalten suchen, und so bekam ich dadurch, daß ich die Blutegelsucht zu einem Theil der Bewirtschaftung machte, ein Wirtschaftsgut mit Wiesen- und Feldbau und schönem Bieseiland. Meine Kühe befanden sich so wohl dabei, daß sogar Nachbar mich erbietend ihre Kühe in meine Bassins zu lassen, unter der Bedingung daß sie von meinem guten Futter erhalten. So stunden mir in diesem Jahre 60 eigene und fremde Kühe zu Gebot, um die Blutegel in Bassins zu füttern, deren Flächenraum zusammen nicht über 1/4 Hektare beträgt, während die Züchter an den Ufern der Garonne, welche 100 Hektaren Blutegelsümpe haben, nur 400 bis 500 magere, schlecht genährte Herde bestitzen.”

„Meine Blutegel befinden sich noch in den natürlichsten Verhältnis- nissen; sie nehmen Nahrung zu sich wenn sie Hunger haben, frieren in die Erde zurück wenn es ihnen gefällt ist, machen ihre Cocons wenn sie wollen. Sie haben reichliche Nahrung und werden rasch groß.”

„Es wurde die Frage aufgeworfen, ob die Blutegelsucht bei so kleinen Bassins einträchtig sein könne. Ich kann hierauf bejahend antworten, 15 *
benn ich habe auf einer 3 Fuß langen Insel bis 300 Cocons gezählt. Es ist mithin zu hoffen, daß eine nach meinem System gehörig betriebene Zucht den Preis der Blutegel nach wenigen Jahren so herabdrücken wird, daß sie selbst den ärmmsten Kranken verordnet werden können."

"Die unerlässlichen Bedingungen für die Fortpflanzung der Blutegel sind in Kurze folgende:

1) ein natürlicher Sumpf, der in einer beträchtliche Anzahl aus der Erde des Sumpfes gebildeter Inseln abgeteilt ist, welche mit Rasen belegt sind, die Mittagsonne haben, 1 bis 1½ Fuß hoch und wenigstens 3 Fuß breit, mit Battem umgeben und mit Krippen für die Nähe verschanzen sind;

2) das Wasser muß in diesen Sumpfen stets auf einem konstanten Niveau erhalten werden;

3) man begehe sie so viel als möglich mit inländischen Blutegeln;

4) am Grunde des Sumpfes muß ein feister Boden hergestellt sein;

5) man muß mit einer beträchtlichen Anzahl wohlgenährter Kühe versuchen sein, so daß keine der selben durch den Blutverlust leidet; man führe die Thiere nur während der schönsten Jahrestage, ein bis zweimal wöchentlich, hinein und zwar so nahe beisammen, daß alle Blutegel einer Abteilung an denselben Tage anbeissen können;

6) man lege ein Reservoir für entleerte Blutegel an, mit der Erde des Sumpfes hergestellt, damit die Blutegel noch genügsam ihre Cocons hineinlegen, hauptsächlich aber, damit sie nicht entweichen können."

Die Fütterung der Blutegel, mit dem Blut lebendiger Thiere hat sich also auch hier als ein sehr zweckmäßiges Verfahren bewährt, welche Erfahrung schon von Mehreren gemacht wurde, unter andern von Hrn. Guénard, welcher dabei beobachtete, daß beim Heimtag der Thiere aus dem Teich in den Stall durch das bloße Ochen das Blut aus ihren Füßen immer fortfließt und verloren geht, dann in den Stallen die Streu blutig macht. Er empfiehlt daher das Vieh, ehe man es heimführt, in Ruhe weiden zu lassen, damit die Blutegelwunden Zeit haben sich fest zu schließen.

Ferner bemerkte Hr. Guénard, daß die Blutegel hauptsächlich das Hammelblut lieben, auf diese Thiere begierig zugehen und von deren Blut bald dick werden.
Über die Blutegelzucht in den Sumpfen der Gironde; der Société d'Encouragement von Hrn. A. Chevallier erstatteter Bericht.

Noch vor ganz kurzer Zeit befürchtete man, daß an Blutegeln, deren Preis so hoch stieg, daß sie armen Kranken unzugänglich wurden, wovon diese durch nicht aus dem Handel verschwinden, wenigstens großer Mangel eintreten werde. Dieser Mangel war die Folge eines außerordentlich großen Verbrauchs, und der Er schöpfung zuerst der französischen Sumpfe, und bald darauf auch jener in Ungarn und der Türkei, durch mehrmals auf einander folgendes Austräumen deselben.

Ihre Kommission hat daher die Sumpfe in der Gegend von Bodirz einer Untersuchung unterzogen und sich dabei folgende Fragen gestellt:

1) Wie viel Gekären Sumpfe dienen zur Blutegelzucht?
2) Welche Personen haben sich zueß mit dieser Zucht beschäftigt?
3) Welcher Verschlagart bezieht man sich dabei und welche verdient den Vorrang?

45 Man vergl. den Bericht über diese Verfahren im polytechn. Journal Bd. CXXXI. S. 452.
4) Wie werden die Blutegel in den Sumpfen der Gironde ge¬
füttert?

5) Welche Resultate haben sich bis jetzt ergeben?

6) Ist die Blutegelzucht der vorrigen Gegend hinsichtlich der Gesund¬
heit nachtheilig?

7) Welche Vorschriften sind zu geben, damit die Blutegelzucht Nutzen
gewähre, ohne daß durch sie ein Nachtheil für die öffentliche Gesund¬
heit entsteht?

ad 1. — Der von den Blutegelzüchtern benutzte Flächenraum wird
allgemein zu 5000 Hektar angeschlagen; ein Drittel deselben wird zur Ver¬
mehrung der Blutegel verwendet und die andern zwei Drittel dienen
den sowohl zur Blutegelzucht als zu den häuslichen Arbeiten bestimmten
Pferden als Weide.

ad 2. — Sicherer Vermehren haben die Herrn Véchade das
Verdienst, Frankreich mit einem so wichtigen Industriezeig beschenkt zu
haben. Ihre ersten Versuche machten dieselben im Jahre 1835. Als
Landleute ohne Vermögen und Pächter des Sumpfe des Baron Pic chon,
sammelten sie in dieselben etwas Binsen und zur Fütterung ihres Viehes
unzureichende Kräuter; auch fütterten sie alljährlich eine kleine Anzahl
Blutegel, welche sie nach Bordeaux zum Verkaufe brachten. Sie machten
die Beobachtung, daß Sumpfe, in welche oft Pferde kommen, mehr Blut¬
egel erzeugen, und erkannten den Vorteil, welchen die Anwendung des
Blut von Gängetieren für die Fütterung, Vermehrung und Zucht der
Blutegel gewährte. Leider machte aber der Mangel an Capital ihre Unter¬
nehmungen schwierig und legte ihnen viele Opfer auf. Sie enthielten sich
nicht nur mehrere Jahre lang des Fischens, um der Fortpflanzung sähige
Blutegel zu haben, sondern sie holten deren noch häufig aus dem Landes¬
Departement. In der Absicht, ein rasches Heranwachsen ihrer Blutegel zu
befördern, fütterten sie dieselben, indem sie an dem Thiere selbst
das erforderliche Blut saugen ließen; sie sanden soper, daß, um die Tier¬
legung zu beschleunigen, nicht nur die Niederwasserung der Sumpfe ver¬
hindert, sondern überführten in den Monaten Julius und August zum Aus¬
trocknen geschritten werden muß. Durch beharrliche Anwendung dieses
Hier in Kürze erwähnten Verfahrens erwarben sich die Herrn Véchade
nicht nur Vermögen, sondern bereicherten auch ihren Pachtieren, indem
sie die Pachtins, welcher anfänglich 300 Francs betrug, allmählich auf
25,000 Francs stiegen.

ad 3. — Bei unserer Einsichtnahme in der Umgegend von Bor¬
deaur sanden wir, daß mehrere Methoden der Blutegelzucht gebräuchlich

Was das zu wählende Verfahren anbelangt, so wird von den meisten Blutegelzüchtern die Anwendung der natürlichen Sumpfe vorgesehen. Wenn indessen der Vorzug des neuen Verfahrens, welches darin besteht, die Blutegel innerhalb eines kleinen Flächenraums zu erzeugen und aufzuziehen, unbestreitbar erwiesen würde, so wäre damit offenbar für die Landwirtschaft, in Folge des ihr dadurch zurückgegebenen Bodens, sehr viel gewonnen.

ad 4. — Ihre Nahrung erhalten die Blutegel durch Pferde, Kühe und Tiel. Wie wir erfuhr, beträgt die Anzahl der in den Sumpfen der Gironde verwendeten Pferde 1500, und dieselben halten noch mehrere Jahre aus, namentlich bei den Jüchtern, welche genügend Weide besitzen. Es kam sogar zuweilen vor, daß Pferde, welche in sehr schlechtem Zustand die Sumpfe betraten, sich in Folge der zahlreich erschienen Anzahl Blutegel sowohl erhöhten, daß sie mit Vortheil wieder verkauft werden konnten. Es gehen aber doch jährlich nicht weniger als 700 bis 750 zu Grunde.

Die Pferde verwendeten man vorzugsweise, weil sie mehr Blut haben als die anderen Thiere und den Anbiß besser aushalten. Die wohlhabenderen Jüchter lassen sie bis zur Schneezeit auf der Weide und bringen sie dann in die Ställe zurück.

Die Kühe, sagt man, nähren schlecht; wenn ihnen das Wasser nämlich nicht bis zu den Knieen herausgeht, bringen sie die Blutegel mittels

ihrer rücksichtsvollen Zunge zum Abfallen und verbinden sie so ihre Nahrung einzunehmen. Ferner darsf man sie nicht allzuhäufig bemühen, weil sie sonst aufhören Milch zu geben.

Der Wassertier kann man sich mit Nuppen bedienen; für Torfmoore aber taugen sie nicht, weil ihr zu bünner Fuß sich in den Torf einfinkt und bald empfindlichen Schaden anrichtet.

Die Tiere sind wegen ihres ruhigen Verhaltens sehr güt; man bedient sich ihrer gewöhnlich nur in Sumpfen mit stetigem Wasserszustand.

Mit der Fütterung der Wassertiere wird gewöhnlich im April angefangen und gegen den 15. Juni zu ausgeboren; man beginnt hierauf im Oktober wieder damit und fährt fort bis Mitte November, je nachdem die Witterung mehr oder weniger warm ist. Man verzehrt dabei so, dass man die Pferde bis 6 Mal im Monat in jede Anstellungenführt; sobald man wahrnimmt, dass ein Pferd schwach wird, führt man es heraus und schickt es zu seiner Erholung auf die Weide.

ad 5. — Die Beanwortung dieser Frage haben wir verschoben, weil wir die dazu erforderlichen Nachweise noch nicht erhalten haben.

ad 6. — Die Wassertier war der Gegenstand vieler Klagen; man suchte nachzuweisen, dass dieser Industrieze in der öffentlichen Gesundheit nachhaltig sei, und behauptete, dass in mehreren Gemeinden die Bewohner alle mit Fiebern befallen seien, wodurch sie kränklich werden und abnehmen. Diese Behauptungen sind offenbar irreführend. Als der Industriezweig der Wassertiere noch nicht in dem großen Maßstab betrieben wurde, wie gegenwärtig, hielt der arme Pächter, um seine armellose Ernte an Binsen und Gras befahren, das Wasser in seinem Laufe nach den Sumpfen aus, welche dadurch zu Krankheitsüberren wurden, durch die sich das Fieber in der Gegend verbreitete. Jetzt ist alles anders; die Wassertiere mussten Vorkehrungen treffen, um den Sumpfen zu gewissen Zeiten entweder frisches Wasser zuzuführen, oder das Wasser darauf ablaufen lassen zu können; in Folge der neuen Industrie trat bei den Landleuten eine gewisse Behaglichkeit ein und Krankheit und Blend nahmen bald ab.

ad 7. — Unseres Erachtens wäre, um die Wassertiere in jeder Weise der Gesundheit unangreiflich zu machen, dieser Industriezweig vermehrungenmäßige Vorschriften zu unterwerfen, um die Wassertier Sümpfe und ihre Ausbeutung unter Aussicht zu haben, vorzüglich aber, um die sofortige Hinwegschaffung der Pferdebeleicht zu überwachen.
Folgerungen. — Aus allem, was wir gesehen und beobachtet haben, geht hervor:

1) daß sich seit dem Jahr 1835 zu Bordeaux ein großer Industriezug, die Blattegelzucht, gebildet hat, welche die Erzeugung und Aufsicht der Blattegel zum Zwecke hat;

2) daß dieser Industriezug bedeutend ist und 5000 Hektaren Flächenraum erfordert, theils zu äpfeln, theils zu Weiden, viele Arbeiter beschäftigt und ein Capital zuzüge macht, welches man auf vierzig Millionen Francs anschlägt;

3) daß sich die Hrn. Véchade zuerst mit der Blattegelzucht beschäftigen und zu diesem neuen Industriezug den ersten Anstoß gegeben haben;

4) daß auch die von den Hrn. Rollet und Wilman abgeänderten Verfahren zusammengestellt sind.

Miscellen.

Bentile mit Hautschüttelgel.

Ricinusöl als Maschinenölmische.

Ueber eine Vorrichtung zum Fördern, Formen und Pressen des Torfes; von Karl Erter.

Mittelt um zu bestirken, ob ein neugebautes Gebäude trocken genug ist, daß es ohne Gefahr bewohnt werden kann.

Das dieser außerordentlich wichtige Gegenstand, welcher für den allgemeinen Gesundheitszustand der Bewohner ein hohes Interesse hat, ist bei weitem noch nicht genügend erörtert worden, und es dürfte daher der folgende Beitrag zur Erleichterung dieser Frage nicht unwillkommen sein.

Die Erbauung der Gefängnisse in Grön hatte eine Kommission bestellt, welche den Auftrag bekam, zu untersuchen, in wie weit ein in dieser Stadt neu erbautes Gefängnis trockena bar war, worüber der Dr. Marc d'Espine einen Bericht erstattete und in demselben die Mittel angab, denen man sich bediente, um den Grad der Feuchtigkeit zu ermitteln, welche sich in den verschiedensten Theilen des Gebäudes nach einem Jahre ihrer Benützung noch befand. - Bei den beiden ersten Untersuchungen konnte sich die Kommission durch den bloßen Augenblick und das Maß der hygrometer gewissermaßen dazu, daß das Gebäude noch nicht trocken war; bei einem letzten Besuch und nach Irenmonatlicher Austreibung durch Ventilation von außen und durch Dosen, wurde man folgendes Verfahren an:

Selbst der Kalt wurde, bald nachdem es aus dem Dosen gekommen, zugehen und in 47 Gefäßen von gebrannter Form und von gebrannter Farbe so vertheilt, daß sich in jedem genau ein Gewicht von 500 Gramm (0,69 Wiener Pfand) befand; 32 dieser Gefäße wurden in eben so viele Zellen des Gefängnisses gestellt, die übrigen 15 brachte man in verschiedenen Lokalen in der Stadt unter, und zwar sowohl in die trockensten und gezeichneten, als auch in die feuchtesten, wohin der Kalt noch Sonne bringt und nicht in den Keller. Um 7 Uhr Abends am 4. August j. j. wurden die sämtlichen Gefäße an ihren Ort gestellt; Thüren und Fenster jedes Gemaches wurden sorgfältig geschlossen, und am
anderen Morgen würden sie in derselben Stunde und in derselben Ordnung, in der sie aufgestellt worden, wieder weggenommen und dahin gebracht, wo sich die Kommission versammelt hatte. Hier wurden sie von neuem aus einer sehr empfindlichen Waage gewogen, und man sah, dass sämtliche Gefässe in diesen 24 Stunden sehr bedeutend an Gewicht zugenommen. Diesenigen, welche in den gewöhnlichen Localen gesandt, zeigten eine Gewichtserhöhung von 4,90 Gramm; diejenigen aus den ungewöhnlichen waren 5,6 und selbst 6,5% Mal schwerer; die Gefässe der Keller zeigten eine lebhafte Verweichung; diejenigen der Zellen des Gefängnisses hatten um 6 bis 12 Gr. an Gewicht zugenommen.

Aus diesem Unterschiede liess sich leicht die Folgerung ziehen, dass das Gebäude dennoch nicht zu viel Feuchtigkeit habe, um bewohnt werden zu können. Es wurde daher mit dem Beheizen und Benitriren des Zehns fortgefahren, bis man am 5. Dezember einen neuen Versuch vornehmen. Alle Gefässe, die in der Stadt aufgestellt waren, wogen 1/4 bis 2 Gr. weniger als beim ersten Versuch. Der Sommer war trocken und heiss gewesen. Auch die Gefässe in den Zellen hatten weniger Gewicht, jedoch in einem viel härteren Verhältniss; diesejenigen, welche 12 Gramm, gegeben, hatten jetzt höchstens nur noch 4,90.

Die Kommission erklärte daher, dass das Gefängnis für bewohnbar, nachdem es indessen derselben Versuch mit Gefässe auf die gleiche Art wiederholt, dieselben aber mit Schwebelgase, wie sie im Handel verkommt, gefüllt hatte und daraus dieselben Resultate gewann.

Die Gefässe wurden im November in die Zellen gebracht und bei keinem von ihnen bemerkt man später irgend ein Symptom, aus dem man hätte schliessen können, dass das Gefängnis noch Feuchtigkeit berge.

Mit Recht war die bei diesen Versuchen gemachten Erfahrungen und bei dem Umstande, dass in einem Werke über die Mittel gesprochen wird, die man anwenden könnte, um sich zu überzeugen, dass keine Feuchtigkeit mehr in den neuen Gebäuden vorhanden, welche der Gesundheit der Bewohner nachteilig werden müssen, sind die nachstehenden Vorschriften aufgestellt worden:

1) Man solt zu den Versuchen in einem neuen Haus eine gewisse Anzahl von Zimmern unter den wählen, die man am feuchtten und unter denen, die man am trockensten glaubt.

2) In der Nähe des neuen Hauses werden mehrere Zimmer gewählt, die schon seit langer Zeit bewohnt sind, so dass man den Gebäudenchaft im Vorderen zu der neuen Bewohner beibringen kann. Man muss eine solche Wahl treffen, dass die Zimmer der Nachbarschaft, in denen man Versuche machen will, sowohl zu vollkommen gelüftet, trocken und gesunden, als auch zu den Wohnungen gehören, welche sogleich geöffnet und so feucht sind, dass die Wirkungen davon auf die Bewohner bemerkbar werden.

3) Hat man etwa 20 Zimmer oder mehr sowohl in dem neuen Haus als auch in der Nähe gewählt, so müssen ebenso viele Gefässe von gleicher Form und mit vollkommen gleichen Einfassungen mit frisch gebrauchtem, lebendigem Kohl, der aus einer und beweibten Osen gesenckt und gebräh gemacht ist, oder mit Schwebelfäser, wie sie im Handel verkommen, ansamt werden. Die Quantität von 500 Gr. (0,89 Wiener Pfund) pro Gefäss ist vollkommen hinreichend, ob man Koch oder Schwebelfäser nimmt; nur ist es erforderlich, dass das Gemisch Produkt einer sehr genauen Waage gewogen werde.

4) Nachdem die Gefässe gefüllt sind, müssen sie nach dem ausgesuchten Zimmer getragen und in die Mitte eines jenes derart von vertreten Leuten gesetzt werden, denen die Sorge obliegt, und welche auch in der Nähe des Raumes, Thüren, Kamine, Dämmen geschlossen werden, sobald die Gefässe aufgestellt sind. In den Zimmern, wo die Beeten an die Wände geschoben werden sollen, muss man die Verfassung der Zimmerwände festen.

Ein Protokoll; jedes Gefäß wird mit einem dem Zimmer, in welchem es aufgestellt war, entsprechenden Zeichen versehen.

Gehn man nun die auf diese Weise erhaltenen Ziffern durch, so wird man finden, daß sich das Gewicht sämtlicher Gefäßs verschoben hat, und vergleicht man die Vergrößerung des Gewichtes von dem Gefäß des neuen Haupfs mit denen der verblendeten benommenen mehr oder minder gefunden Zimmer, so wird man auf der Stelle finden, ob ein Arbeitst der ob hämatisch Zimmer des neuen Haupfs trocken und um ohne Stadtfest für die Bewohner bezogen werden zu können. (Für die allgemeine Bauzeitung.)

Anwendung der Neigungsf-Elektrostäbchen zum Zünden von Sprengladungen.

"Die Voltaische Batterie, mit welcher bisher vorzugsweise experimentiert wurde, genügt viel weniger, weil die Größe ihrer Leistung von der Qualität der Leitung abhängt die man ihr barbietet; wo starke Wirkungen gefordert werden, ge- rät man in die Alternative: elektromagnetische Batterien oder feste, der relativ, und die gemengten Diamanten öfter gebräuchliche Leitungen anwenden zu müssen."

Es gelang zuerst Herrn. Prof. W. T. O. Gäßchmann zu Freiberg, mittels einer schwachen Elektrizitätsmaschine in einem Steinbreche über Tage, und unab- hängig von dem Bitterungss und Atmosphären-Braung, mehrere mit gewöhnlichem

Es ist kein Zweifel, dass Herr A. Caudin einen genaueren Bericht über seine Erfindungen in Bezug auf die Anwendung der gelben Gläser für photographische Laboratorien abgeschrieben hat (Polytechn. Journal Bd. XXXVII S. 463, wo der Artikel von A. Caudin unterzeichnet istu folgte). Die Glasplatten werden durch folgende Stoffe gefärbt:

1) mit Kohlenstoff, sehr gewöhnliches Glas,
2) " Ölfen, das häufig verkern,
3) " Antimon,
4) " Blei, ist blau-gelb,
5) " Uran, farbenlos,
6) " Silber.

Durch eine unendliche Anzahl Versuche, welche ich der britischen Naturforcher Gesellschaft übergeben habe, wird erwiesen, dass die gelben Gläser von 1) bis 5) eine Menge chemische Substanzen hindurchlassen, welche hierin, um die kolloidisierten Blätter und die empfindlichsten fotografischen Papiere anzügten, und dass nur das mittelst Silber gelb gesärtte Glas, obwohl es mehr Licht als die andern durchläuft, für die chemischen Substanzen un durchlässig ist.

Man muss also dafür sorgen, für photographische Ateliers nur Gläser anzuwenden, die mit Silber gesärt werden. (Horn's photographisches Journal, 1855, Nr. 9.)
Über die Prüfung der Schwefelsäure; von Wütstock.

Wenn man eine Spur von seienischter Säure und daraus einige Tropfen einer Giesenvitriollosung zu concentrirter Schwefelsäure fegt, so erhält man eine Reaction, die der ganz vollkommen ähnlist ist, welche entsteht, wenn Giesenvitriollosung einer Schwefelsäure hinzugesetzt wird, welche eine Spur einer höheren Dyplicationshufe des Stickstoffs enthält. In beiden Fällen wird die Grösse beider Flüssigkeiten purpurroth gefärbt.

Ich fand die Reaction bei der Prüfung einer fäulnischen concentrirter Schwefelsäure vermittels einer Giesenvitriollosung. Im ersten Augenblick glaubte ich jene durch eine Dyplicationshufe des Stickstoffs verursacht, überzeugte mich aber nach kurzer Zeit, dass ich es mit einer seienislichen Schwefelsäure zu thun hatte. (Boggen- derg. Annalen, 1855, Nr. 7.)

Über die Anwendung des natürlich vorkommenden Bitteralses anstatt der Schwefelsäure bei der Fabrication der Salsäure, des schwefelsauren Natrons, der Salpeteräure und des Chlors; von Ramon de Luno.

Der Zweck meiner Versuche war, einerseits zugänglich der Transportlosen der Salsäure Empfanger zu ermöglichen, andererseits für das an mehreren Orten Spaniens (namlich in der Provinz Toledo, in der Nähe von Madrid) in reichlicher Menge vorkommende Bitterals (Schwefelsäure Magnesia) eine technische Verwendung zu finden.

Darstellung von Chlort. — Man fasse es bereitet durch Darstellung eines Gemenges von Kochsalz, Braunstein und kristallisiertem Bitterals; dies sich leicht verarbeiten, nachdem nachgewiesen war, dass das Bitterals und das Kochsalz beim Erhöhen Salsäure entwiceln. (Comptes rendus, Juli 1855, Nr. 9.)

Vorteilhafte Darstellung des sein zerstörten Zinkes.

Das sein zerstörte Zink ist schwer auf sein mechanischem Wege darzustellen, und die Darstellung deselben aus Eisenbrennen mit einer gallischen Säure hat ihre Schwierigkeiten; deshalb versuchte C. Künzel das von Bößler ange-

Unverdünnter Lymphballen für Briefstempel zu.

Für Cider- und Weiß-Produzenten.

Das fünfte Heft der von Dr. Gall herausgegebenen Zeitschrift: „Praktische Mitteilungen zur Förderung eines rationelleren Betriebs der landwirtschaftlichen Gewerbe“ enthält eine sehr lehrreiche Abhandlung über die Weinsbereitung aus Tafeln und unreinem Korn, worauf wir nicht die Ciderfabrikanter für welche bietende eine erfreue und nützliche Anleitung zu einem vorzüglichsten Verfahren enthält, sondern auch denkende Weinsbeginenten — welche darin sehr beachtenswerte Hinweise zu einer zweckmäßigsten Vorbereitung des Mostes vom Ärgstehne der Trauben an bis zum Eintritt der Cährung, finden werden — auferordentlich empfehlen. — Wir zweifeln seines Augenblick daran, daß die praktische Belehrung dieser Hinweise — dem Verfahren bei der Ciderbereitung auf der Insel Guernsey entspricht — sich wie das einfachste Mittel erwirken wird das zu erreichen, was liebgut zu erreichen bezweckt, als er den Weinsbeginenten empfiehlt, den Traubenmehl, wie die Bauerischbierbrauer die Biermürze, in großen und flachen offenen Bechern und lauten Kämen gären zu lassen, nämlich; eine vollständige Verdünnung und Aufhebung der fermentierenden Gase der Trauben säften, welche bei den bisherigen Weinsbereitung-Methoden zum Theil im Weine gelöst bleiben und Verfasse sind, daß unsere Weine sich jedes Jahr in der warmen Jahreszeit wieder trüben und selbst in den kältesten noch neue Niederhälse bilben. — Wäre liebgut das Verfahren der Ciderfabrikanter auf Guernsey bekannt geworden, so würde er ohne alle Zweifel diese, statt der Bauerischbierbrauer, den Weinsbeginenten als Nützliche empfohlen haben, und die Weinsbereitung würde ihm dann den größten Fortschritt, den sie nur mannt, zu verdanken gehabt haben. (Böttigehr's bot. Notizblatt, 1855, Nr. 23.)

Verbessertes Neutralisationsverfahren bei der Fabrication von Traubenjuder; nach Dr. L. Gall.

Es ist fast unmöglich, daß in der Flüssigkeit, welche die in Zucker umgebildete Stärke enthält, nicht etwas Schwefelsäure oder etwas löslichen sauer. (Kolle) zurück-
bleibt, weil die Sättigung der Schwefelsäure nicht bloß durch die Neuge, sondern auch durch die Neutralisationsfähigkeit des dazu verwendeten Kohlenhydrats bedingt ist. Um vollkommens reinen Kauter zu erlangen, hege man daher zur Sättigung der Schwefelsäure Kohlenhydrat Kalt in Wasserhülse zu und färdige dagegen den überschüssigen Kalt in Abdampfen mittelst concentrirter Essigsäure, welche man um so unbedenklicher ebenfalls im Wasserhülse anwenden kann und muß, als dasselbe in die Sicht des Austritts sehr flüchtig ist und daher die überschüssige Essigsäure, welche keinen Kalt mehr verbindet, mit welcher sich des Essigsäure Kalt verbinden und als solcher ablassen könnte, bei dem fertiggesteinen Abdampfen vollständig verflüchtigt wird. Diesem Verfahren verbansten fünf der rheinischen Klarbrennereifabriken die anerkannte Fleißigkeit und zum Teil auch die Schönheit ihrer Fabrikate, wodurch sie leicht die franzöfischen weit übertreffen. (V. a. V. aus des Wirk. prak. Mittheilung, M. 1. S. 149.)

Methode, den Talg sehr weis und saft geröstet zu machen.

Man nehme aus 1 Rent, Talg ½ Pfd. rohes Scheidewasser, sowie ¼ Pfd. Bitteröl, und versahre damit solgendermaßen: Zu dem geschmolzenen Talg wird die Mischung der beiden Säuren langsam hinzugefügt und dann nach richtigem Verdunsten ¼ Stunde stehen gelassen. Adbann giesst man den Talg in ein großes Gefäß faltten Waffers aus, welches zweckmässig auf irgend eine Weise, besonders da, wo der flüssige Talg einläuft, in Bewegung erhalten werden muß, damit sich nählich nur kleine Klumpchen beim Erhärren bilden, und die mit dem Talge vermischte Säure im Wasse sich vertheilt. Hierauf wird nach dem Erkalten der Talge auf ein Tisch oder sonst eine Vorrichtung geworfen, von wo das Wasser abläuft zweckmässig so ist noch, um das ganze zu entfernen, noch einigemale Wasser darüber zu gießen und während dem die auf einander hängenden Klumpchen zu lockern. Adbann läßt man den Talg über feuer noch einmal gerösten, jedoch nur bei leisstem Feuer, während man feinig umzurühren hat, theils um das Brennen zu verhüten, theils damit das sich am Boden ansammelnde spezifisch schwere Wasser, ins Rogen ge- rathend, den darüber steheren flüssigen spezifisch leichteren Talge nicht in der Höhe wirkt. Denn sämtliches Wasser verlofft, ist das einrötende Maasicht des flüssigen Talges angezogen, läßt man legieren noch einige Zeit ruhig stehen, und man wird nun bemerken, das sich reichlich braune Flecken, hauptsächlich an der Oberfläche, abscheiden, welche durch die Einwirkung der Säuren erbohrte und unendlich gewordene Hackflöhe fest verhefe wird einfach durch Scheren durch Berg oder ein Tisch getrennt, woran der Talg noch dem Erkalten die schönste Weise bleibt und betache geröstet ist. (On. (Würzburger gewinntägige Wochenchrift, 1855, Nr. 43))

Buchhandlung der J. G. Gotta'schen Buchhandlung in Stuttgart und Augsburg.
LXXXIII.

Im Auszug aus dem Cosmos, Revue encyclopédique, Sept. 1855, S. 311.

Mit einer Abbildung auf Tab. IV.

Dingler's polyt. Journal Bd. CXXXVIII. S. 4. 16

Die Grundsätze und Thatsachen, auf welchen die mechanische Theorie der Wärme hauptsächlich beruht, sind folgende:

1) die Wärme und die (mechanische) Kraft sind zwei Wirkungen, zwei Außerungen einer und derselben Ursache; sie fügen sich gegenseitig in einander um, und erzeugen sich eine aus der andern; derselben Wärmemenge entspricht unter allen Umständen dieselbe mechanische Arbeit und umgekehrt.

2) unter allen Umständen wo Wärme verschwindet oder in den latenten Zustand übergeht, wird sie durch Kraft oder Bewegung ersetzt; dies findet bei den Feuermaschinen statt; der Dampf oder die heisse Luft spielt bei diesen Maschinen nur die Rolle des Vermittlers zwischen dem Wärmestoff und der Kraft, indem sie durch ihre Ausdehnung einen Beruflust an Wärme, der sich in Kraft umsetzte, veranlassen;

3) unter allen Umständen wo Kraft verschwindet (gewissermaassen in latenten Zustand übergeht), wird sie durch Wärme erzeugt; dies ist z. B. bei der Reibung der Fläck.

4) durch die Versuche von Desprez, Regnault und Siemens ist genügend nachgewiesen, dass die Summe der gebundenen und freien Wärme des gesättigten Wasser dampfes bei verschiedenen Druckungen eine verschiedene ist.

5) Regnault hat durch direkte Versuche gezeigt, dass wenn ein heisses Gas aus einer ersten Hülle bei derselben Temperatur in eine zweite grössere übergeht, so das es einen grössern Raum einnimmt, aber ohne eine mechanische Arbeit hervorzubringen, in diesem Falle weder Erhöhung noch Erniedrigung noch Erhöhung der Temperatur stattfindet. Dass hingegen, wenn man das in die zweite Hülle tretende Gas eine mechanische Arbeit vollbringen lässt, eine Abkühlung stattfindet, welche stets der erzeugten Arbeit proportional ist.

Wir wollen nun den Mechanismus und das Spiel der so genannten "Maschine mit regeneriertem Dampf" beschreiben, und zwar nach dem Modell der Londoner Maschine mit zwei einander gegenüber befindlichen horizontalen Cylindern und einem verticalen Cylinder; dieselbe wird jetzt in der Fabrik des Hrn. Mouffard, rue Jean Gousjou zu Paris,
fortwährend in Betrieb bleiben. (Die Maschine von vierzig Pferdekraften, welche im Anbau des Industriepallasts aufgestellt wurde, hat drei verticale Cylinder.)

Beschreibung der Maschine, Fig. 15. — M und M' sind zwei Feuerräume, die mit Köpfen gesperrt werden, welche man in die zwei Rümpfe schüttet. NN, NN' sind zwei Kessel, welche den innern Mechanismus allenthalben, oben und unten, einfassen. OO, O'O' sind zylindrische Wände, welche der Flamm des Feuerraums ihre Richtung zu geben haben. HH' sind zwei Männet von Gusseisen, welche unaußerlich von der Flamm oder den heißen Gasen bespült werden; ihre Böden sind eingetieft und gerundet, um eine größere Heizfläche zu erzielen; die inneren Bände dieser Mäntel sind gänzlich mit rauen Theilen oder Spitzen beleibet, damit sie dem Dampfe, welcher in ihnen sich regeneriren (d. h. seine anfängliche Temperatur und Pressung wieder erlangen) muss, die Wärme beßer mittheilen. GG, G'G' sind zwei zylindrische Flächen, ebenfalls von Gusseisen, auf ihrer vorderen und hinteren Seite offen, und allenthalben von den Männeln HH' umgeben.

AF, A'F' sind die Kolben, aus zwei mit einander verbundenen Hälften bestehend; die ersten Hälften A, A' sind die eigentlichen Arbeitskolben, welche wie gewöhnlich aus Metallringen bestehen; sie bewegen sich in Cylinder in hin und her, welche stets die Temperatur von denen der gewöhnlichen Dampfmaschinen haben; dieser Bedingung musste insofern eingetreten werden, weil die tägl. erfahrung lehrt, daß wenn ein Kolben sich in einem Cylinder von hoher Temperatur bewegt, die Metallringe bald zerstört werden. Die zweiten Hälften F, F' der Kolben sind Anfänge oder Muffe, im Innern hoch und mit Kohlenstücken (als schlechtem Wärmeleiter) ausgesüßt; ihr Zweck ist, die Cylinder und die Arbeitskolben A, A' so weit als möglich gegen die große Höhe des Bodens der Männet zu schützen; diese Muffe bewegen sich frei und ohne dichte Berührung in den zylindrischen Flächen G, G'.

Man wird bemerken, daß die Durchmesser der Anfänge (Muffe) F, F' zweimal so groß als die Durchmesser der Arbeitskolben A, A' sind; folglich sind die ringsförmigen Flächen (die Dampfräume) an den Arbeitskolben die Hälfte der hinteren Flächen dieser Anfänge; und weil der in den Männeln enthaltene Dampf, wegen des den Muffen in den zylindrischen Räumen G, G' gelassenen Spie, gleichzeitig auf die vorderen und hinteren Seiten der Muffe wirkt, so ist die resultirende Wirkung (die Differenz der zwei Wirkungen in entgegengesetztet Sinne) dieselbe, welche der Dampf auf die Basis des Arbeitskolbens ausüben würde. Die Stangen der Arbeits-
folben gehen durch Stopfbüchsen E, E' und sind in der Mitte B der Maschine mit Kurbeln verbunden, welch die abwechselnde geradlinige Bewegung in eine stetige Kreisbewegung umfießen und der Welle C die Drehbewegung erteilen. Die vier Linien II, I'II', welche man zwischen den cylindrischen Flächen G, G' und den Seitenwänden der Mantel H, H' sieht, bedeuten auch cylindrische Flächen, welche durch mehrmals um sich selbst gerollte Drahtgewebe gebildet sind; man nennt sie Respiratoren, weil ihre Besinnung ist, die Wärme des Treibdampfs abwechselnd aufzunehmen und wieder auszutragen; sie müssen nämlich an den Dampf, welcher zum (innern) Boben der Mantel geht, die in ihnen ausgespeicherte Wärme abgeben; dagegen müssen sie dem Dampf, welcher aus den Arbeitszylindern tritt (um, wenn er von links kommt, unter, wenn er von rechts kommt, über den Arbeitsfolben eines dritten verticalen Cylinders D zu gelangen), die Wärme entziehen um dieselbe vorrätig zu halten. Die Stange des verticalen Folbens D ist unten verlängert und mit derselben Kurbel verbunden welche die Welle C dreht, aber rechtwinkelig mit den Stangen der zwei horizontalen Folben, um deren Bewegung fortzusetzen. Der Cylinder D ist also, wie die Abbildung zeigt, in freier Verbindung, durch seinen unteren Theil mit dem Mantel H', durch seinen oberen Theil mit dem Mantel H. Er ist das charakteristische Organ der neuen Maschine; Hr. Siemens nennt ihn Regenerator, weil durch seine Vermittlung der Dampf regenerirt (aus seine anfängliche Temperatur und Pressung gebraucht) wird.

P ist die Öfse; Q ein mit Ventil versehenes Rohr, durch welches der Dampf in die Maschine gelangt; R der Vertheilungsschieber; S ein Ventil, durch welches der verlorene Dampf in die Öfse zieht, um den Zug zu befördern.

In Gang setzen der Maschine. — Man ündet das Feuer an und wartet bis die Temperatur des Bodens der Mantel H, H' (welche man mit einem Luftthermometer messen kann) auf beinahe 400° C. gestiegen ist; der Druck des Wasser dampfs in den Generatoren (Kesseln) beträgt alsdann beinahe fünf Atmosphären. Wenn also der Manometer einen inneren Druck von fünf Atmosphären anzeigt, so weis man auch, daß der Boden der Mantel die Temperatur von 400° erreicht hat, und die Maschine kann folglich in Gang gesetzt werden. Unterrichtet man in diesem Zeitpunkt die Temperatur der Respiratoren oder Cylinder von Drahtgewebe, so wird man finden, daß sie an demjenigen Ende welches dem Boben am nächsten ist, die Temperatur dieses Bodens haben, während an ihrem andern Ende ihre Temperatur nur 150° C. beträgt. Daraus folgt, daß wenn der Dampf mit einer Temperatur von 100° in den Mantel
mit regeneriertem Dampf.

bringt, indem er durch den zwischen diesen Wänden und den Geweben des Respirators begriffenen Raum zieht, seine Temperatur unaushörlich steigern wird, so daß er am (inneren) Boden des Mantels mit einer Temperatur von 400° und mit fünf Atmosphären Druck ankommen wird; das hingegen, wenn der Dampf mit 400° vom Boden des Mantels herkommt und denfelben Raum sowie den Respirator in entgegengesetztem Sinne durchzieht, er nach und nach seine überschüssige Wärme an die Drahtgewebe abgeben und mit einer Temperatur von ziemlich 150° austreten wird. Die Erfahrung hat gezeigt, daß diese Temperatur-Austauschung zwischen dem Dampf und den Geweben des Respirators in sehr kurzer Zeit stattfindet, in zwei Fünftel einer Sekunde, also 150 Mal in der Minute; oder sogar in einem Fünftel einer Sekunde, also 300 Mal in der Minute. Da jede doppelte Wärme-Austauschung zwischen dem Dampf und den Geweben einem Kolbenstich entspricht, so könnte die Maschine 300 Kolbenstiche in der Minute machen.

Spiel der Maschine. — Erste Periode. Wenn die Temperatur und der Druck die erforderlichen sind, nämlich erster 400° C. und letzterer fünf Atmosphären beträgt, die Maschine überdies die in der Figur angegebene Stellung hat, d. h. die drei Kolben am Ende ihres Weges, am Boden der Mantel und des regenerierenden Zylinders ange- langt sind, so öffnet man das den Dampf aus dem Generator zulassende Ventil Q; der Dampf langt am Schieber an, welcher ihn gegen den Mantel links H richtet; er dringt durch den Raum, welcher zum Theil mit den Drahtgeweben des Respirators gefüllt ist, erhitzt sich immer mehr, langt am (inneren) Boden des Mantels an, verbreitet sich vor und hinter dem Muff, drückt aber mehr auf die hintere Basis des Muffes, wegen ihres zweimal größeren Durchmessers; der Arbeitskolben A wird fortgeschoben und erhebt die Kurvein eine halbe Umdrehung. Da in dem Maße als der Kolben vorrückt, der Dampf welchen er vor sich her treibt, wieder zum Boden des Mantels gelangt, indem er theils zwischen dem Zylinder und dem Muff durchgeht, theils neuerdings durch die Drahtgewebe dringt, so nimmt er die Wärme wieder auf, welche er verloren hatte, und in Folge dieser Wiedereigistung behält der Dampf während des Kolbenstiches, und obgleich er endlich den doppelten Raum einnimmt, nahezu seinen Druck von fünf Atmosphären.

herkommende Dampf die Drahtgewebe in entgegengesetztem Sinne durchzieht, so gibt er seine Wärme an dieselben ab und geht aus dem Zustande des überhitzten Dampfes in den des bloß gesättigten Dampfes über. Nun ist der Durchmesser des regenerierenden Zylinders aber zweimal so groß als derjenige des Arbeitszylinders, daher sich der Dampf auch auf den doppelten Raum ausdehnt; und in Folge der kombinierten Wirkung der Abstübung und der Ausdehnung sinkt sein Druck, welcher anfänglich 4 bis 5 Atmosphären betrug, auf beinahe 1 Atmosphäre herab.

Wenn der Kolben A' am Ende seines Weges angelangt ist, beginnt der Dampf, welcher ihn bewegte, an den Deckel des regenerierenden Zylinders hinauszudringen, der Kolben D dieses Zylinders muß alsdann niedergehen, indem er den expandierten und abgesüßten Dampf vor sich her durch den Respirator zum Boden des Mantels H treibt. Zu derselben Zeit, wo der vom Mantel H geformte Dampf auf die obere Fläche des Kolbens D drückt und auf diesen Kolben als Kraft wirkt, wirkt der durch die untere Fläche dieses Kolbens in den Mantel H getriebene Dampf auf ihn als Widerstand. Der Kraft-Dampf hat anfangs einen hohen Druck, 5 Atmosphären, sein Druck vermindert sich nachher fortwährend bis zum atmosphärischen. Der Widerstand-Dampf hingegen hat anfangs bloß den atmosphärischen Druck, aber sein Druck nimmt unaufhörlich zu und erreicht 5 Atmosphären, wenn er in den Mantel H gebrungen ist. Da der Kraft-Dampf anfangs der stärkere ist und der Widerstand erst im letzten Moment sein Maximum erreicht, so überwindet dieser den Kolben D, in Folge seiner erlangten Geschwindigkeit, leicht und erreicht das Ende seines Weges. Wie hieraus ersichtlich, hat dieser Kolben, auf welchen zwei Kräfte in entgegengesetztem Sinne wirken (eine Kraft und ein Widerstand, welche beiderseits die Pressionen von 1 bis 5 Atmosphären durchliefern), seinen Wirkungszweck hervorgebracht, welcher denjenigen der Arbeits-
folßen \(A, A' \) vergrößern könnte; er hat aber sehr vorteilhaft dazu gedient, den expandierten und abgeführtsten Dampf in den Mantel \(H \) zurückzuführen, damit er darin regeneriert wird, seine anfängliche Temperatur und Preßung wieder erlangt.

In der Zeit, wo wir jetzt angelangt sind, ist die erste Dampfmasse welche in die Maschine zugelassen wurde, wieder in den Mantel \(H \) gelangt, nachdem sie durch den Respirator drang, welcher ihr die anfängliche Temperatur von 400° wieder erteilte; und die zweite Dampfmasse füllt den regenerierenden Cylinderr, mit 150° Temperatur und dem atmosphärischen Druck; es kann jetzt ein zweiter positiver Schub des Arbeitskolbens \(A \) erfolgen, und zugleich oder hernach ein zweiter Null-Schub des Kolbens \(D \), welcher die zweite Dampfmasse in den Mantel \(H \) treibt, endlich ein zweiter positiver Schub des Arbeitskolbens \(A' \).

Es hat den Anschein, dass das Spiel der Maschine sich auf diese Weise beständig fortsetzen könnte; zahlreiche Versuche ergaben, dass die Maschine durch die auseinanderfolgende und abwechselnde Abkühlung und Wiedererhitzung der zwei ersten mittels des Vertheilungsschiebers eingeschlagenen Dampfmasse wirklich eine Stunde und eine halbe Stunde in Gang bleiben kann. Aber diese Versuche ergaben auch, dass nach einiger Zeit die Kolbenhubeben langsam aus einander folgen und endlich das Spiel der Maschine aufhört.

Wie sich nachweisen lässt, entspricht dieser langsamere Gang einer steter Verminderung der Differenz zwischen den Temperaturen der hinteren und vorderen Enden der Drähtgewebe des Respirators. Im anfänglichen und normalen Zustande ist diese Differenz, wie bereits erwähnt, beinahe 250°, am Boden beträgt nämlich die Temperatur der Gewebe 400° und am Ende 150°; nach einigen Kolbenhuben erhöhen sich aber die Enden immer mehr und erreichen selbst 400°; die Maschine kehrt dann still.

blieb, nämlich 110 bis 120 per Minute. Die Temperatur der Mäntel ist niets proportional dem Druck des Dampfes; der Heizer kann sich daher nach dem Zeiger des Manometers und dem Wasserstand richten.

Man wird nun mit der im Anbau des Industriepaßlatts aufgestellten Maschine von vierzig Pferdefrästen, welche drei verticale Cylinder hat, Bremsversuche anstellen, ihren Kostenverbrauch und die verdampfte Wassermenge, die Anzahl der Stuhlbenshube, den Nuffeffect usw. bestimmen.

Gegenwärtig müssten wir uns begnügen die Resultate mitzuteilen, welche man mit der ersten von Benjamin Hice u. Sohn in Bolton erbauten Maschine des neuen Systems erhielt.

Versuch am 8. December 1854. 100 Umdrehungen in der Minute; Dampfdruck im Mantel, 5 Atmophären; dynamische Kraft, mit Naught’s Indicator gemessen, 25,1 Pferde; Brennmaterial-Verbrauch, per Pferdewacht in der Stunde, nachdem die Maschine vorher in Gang gesetzt war, 2,54 engl. Pfund (1,15 Kilogr.).

Versuch am 11. December 1854. 100 Umdrehungen in der Minute; Dampfdruck, 5,6 Atmosphären; gemessene dynamische Kraft, 25,1 Pferde; Brennmaterial-Verbrauch, nachdem die Maschine in Gang gesetzt war, durchschnittlich 2,23 engl. Pfund (1 Kilogr.) per Stunde und Pferdewacht.

Versuch im Januar 1855. Dampfdruck, 65,75 engl. Pfund, 4,38 Atmosphären; effective Kraft, durch Bremsen der Welle gemessen, 6,14 Pferde; verwandte Brennmaterial, 2,5 engl. Pfund (1,4 Kilogr.) per Stunde und Pferdewacht.

LXIV.

Schmierhahn für Dampfcylinder, von dem Amerikaner Wade.

Aus Armgardt’s Génes industrié, Juli 1855, S. 50.

Mit Abbildungen aus Tab. IV.

Der Zweck dieser Erfindung ist der, Del in einen, im Betriebe befindlichen Dampfcylinder zu bringen, ohne das dieses von dem Dampfe herausgetrieben wird.

Dieser Becher oder Schmierhahn ist in Fig. 6 und 6a im Aufriss und Durchschnitt dargestellt.
Der Schlüssel A ist hohl und enthält Del; er wird mittels derplatte L mit einer Schraubenmutter in der Büchse B gehalten. Neben ihm befindet sich ein Becher E, der unten in eine Rohre C ausläuft, welche bis zum Schlüssel geht. Unter dem letzteren befindet sich eine andere Rohre D, die mit dem Innern des Dampfzylinders in Verbindung steht.

Der hohle Schlüssel A ist mit zwei Öffnungen a und b versehen, von denen erstere den Zweck hat, das Del in den Schlüssel zu bringen, die zweite es in den Zylinder gelangen zu lassen. Diese Öffnungen sind so angebracht, dass sie nicht gleichzeitig den Öffnungen der Röhren C und D gegenüberstehen können. Wenn daher a und c zusammen offen sind, um dem Schlüssel des Hahnes zu füllen, so ist die Verbindung mit D unterbrochen, und so bald b und D in Verbindung stehen, ist C verschlossen und der Dampf kann daher weder austreten, noch das Del herausbreiten.

Das vordere, der Platte L entgegengelegte Ende des Schlüssels ist mit einer Kurbel F versehen, und hat eine Schraube t, die in den Einschnitt i tretend den Gang der Kurbel bestimmt. Mit dieser ist eine Stange verbunden, welche der Wachtmänner zur Hand hat und was durch der Hahn gedreht werden kann, was bei den gewöhnlichen, mit einer einzigen Öffnung versehenen Hähnen nicht möglich wäre.

LXV.
Beschreibung einer Pumpe mit Kautschuk-Bestilen; von Gottfried Stumpf.

Mit einer Abbildung auf Tab. IV.

Bei der in Fig. 1 abgebildeten Pumpe ist:
A der Zylinder,
A' die Anhängrohre zur Steigventilkapsel,
A'' die Anhängrohre zur Saugventilkapsel,
B der aus den Kolben ausgesetzte Druckkolben,
a der im Zylinder wirkenbe Saug- und Hebekolben,
c das Steigventil,
d das Saugventil,
s der Rohrendumpfs zur Saugrohre,
s' der Rohrendumpfs zur Steigrohre.

In dem Zylinder A bewegt sich der Kolben a; aus demselben be-
findet sich eine strahlenförmig durchbrochene Platte, die entweder dicht, ausge-
schraubt oder mit dem Kolben in einem Stück gegossen ist, und auf
welche die Kautschumwolle c schlägt.

Weder der Kautschumwolle befindet sich der Fänger b; aus diesen ist
der Druckkolben B angebracht und sämtliche Theile sind durch den Bolzen t
und dessen Mutter seit verbunden. Der obere Theil des erwähnten Bols-
zen hs hat ein Scharnierschloß, in welches ein zweites mit Zugsänge q eingepasst is.

Hinsichtlich der Ventilkapseln C und D, welche sich ganz ähnlich sind,
is nur die Beschreibung der einen (während die Saugventilkapsel)
notwendig. Die Ventilkapsel D ist mit einem Deckel versenkt; und hat wie
die meisten einen Bügel m, m, durch welchen eine Schraube l geht, die
den erwähnten Deckel niederdrückt. Die Bügelschraube drückt auf einen
Bolzen g; welcher durch den Deckel bis in den Saugrohrdumpf S' reicht.

An dem Deckel ist dieselbe oben und unten mittelst zweier Muttern r'; r''
auf die erforderliche Höhe abgestimmt und gedreht; unten ist ebenfalls ein
Gewinde angeschraubt und auf daselbe die Mutter r'''' aufgesetzt. Durch die zwei Muttern r', r'' wird die
Scheibe s so gestellt, daß sie mit ihrer oberen Fläche in gleicher Ebene
mit der obere Fläche des Verdrängers o vom Saugrohrdumpf S' liegt.
zwischen der rundenden Platte p und dem Verdrängen o läßt sich eine Ring-
öffnung, entsprechend der Stärke und dem Neubeschlag der Kautschumwolle.

Die ganze Pumpe ist an die Wand projicirt, und da nach oben die
Flügelspange mit Kolben oft nicht herauszunehmen ist, ohne daß man eine
Verdrängung oder Stoppung anbringt, auch sämtliche Schrauben des
Stopsdickenkabels dann zu lösen sind, so wurde unten eine ausgeschlissene
Platte d mit Bügel f ausgeschraubt.

Wenn das Wasser durch das Ventil D nach dem Zylinder A an-
gelaugt ist, so wird bei dem Niedergang des Kolbens a und B daß unter
denselben befindliche Wasser sich durch die Klappe des Kolbens a drängen.
Da jedoch der Querschnitt des Kolbens B halb so groß ist als der Quer-
schnitt des Zylinders A, so wird das im Raum des Kolbenhubes sichende

Bei den Ventilen ist die wesentliche Verbesserung die, daß der Sitz samt dem Oberteil des Ventils sich heraushebt und man an Tages jede Ventilreparatur vorzunehmen im Stande ist. Löst man die Schraube l und entfernt die selbe, sohebt sich der Bolzen m, hebt dann den Deckel h auf, so wird mit demselben der Bolzen g samt Fächer n, Rautschutzplatte und Platte p, p, sich in einem Stück herausnehmen lassen; und ist man im Besitze eines zweiten auseinandergezogenen, nicht mit Dichtung zu versehen- den Deckels, dessen Ventilsplatte aus die erforderliche Höhe geschaubt ist, so kann nach kurzer Unterbrechung die Pumpe wieder ihr Spiel beginnen und selbst der herausgenommene Theil ist in wenigen Minuten gleich dem eingefügten wieder hergestellt. Bei dieser Ventileinrichtung ist keine sehr genaue Arbeit notwendig, und offensichtlich ist sie den Metallsventilen weit vorgewichen.

LXVI.

Die Centrifugalpumpe von Appold in London.

Aus Armengaud's Génie industriel, Juli 1855, S. 37.

Mit Abbildungen auf Taf. IV.

Die Appold'sche Centrifugalpumpe ist schon seit einiger Zeit im Conservatoire des Arts et Métiers zu Paris ausgestellt, wo man sie schon öfter in Gang setzte. 47 Gegenwärtig sieht man zwei solcher Pumpen

47 Eine Nettz über dieselbe von Prof. Dr. Rühlmann wurde im vollen Journal Bd. CXXXI. S. 334 mitgeteilt; eine Zeichnung dieser Pumpe war bisher nicht veröffentlicht worden.
in der allgemeinen Industrieausstellung; die eine, von großen Dimensionen, ist bestimmt durch Dampf getrieben zu werden; die andere, viel kleinere, wird aus freier Hand in Thätigkeit gesetzt.

Fig. 7 stellt die vollständige Pumpe im Verticaldurchschnitte dar; Fig. 8 ist ein Verticaldurchschnitt, rechtwinkelig zu dem vorhergehenden Durchschnitte. Die Figuren 9, 10 und 11 sind Detailansichten des Centrifugalrades, des wesentlichen Organes der Maschine, im Aufriss und im Durchschnitt.

Dieses Rad besteht aus einer kleinen Trommel P, welche durch eine kupferne Scheidewand a Fig. 10 in zwei gleiche cylindrische Räume getheilt ist. Die gleichfalls kupfernen Seitenwände b der Trommel haben in ihrer Mitte eine freisömige Öffnung, durch welche das Wasser herbeiströmmt. Die Scheidewand a ist mit den Seitenhälften b durch sich kreuzende Schaufen verbunden. Die ganze Trommel rotirt um eine Achse p, auf welcher sie festgekittet ist. Zur weiteren Befestigung an der Trommel dient eine Schraube von conischer Gestalt, um soviel wie möglich den Verlust an lebendiger Kraft beim Eintritt des Wassers in die Trommel zu vermeiden.

Der Apparat arbeitet nur, wenn das Rad von Wasser umgeben ist, und um ihn immer mit Wasser gefüllt zu erhalten, sind zwei Bodenventile K angebracht, welche sich, wenn der Apparat in Thätigkeit ist, unter dem Einflüsse des Gasengs öffnen. L ist das hölzerne Gestell, in welchem der Apparat gelagert ist.

Setzt man nun unter den angegebenen Bedingungen das Rad in rasche Umdrehung, so wird das Wasser unter dem Einflusse der Centrifugalkraft das Bestreben äußern zu entweichen. Das aus dem Rad herausgetriebene und die Röhre T hinaufsteigende Wasser wird aber durch das von unten herausgesaugte Wasser sofort ersetzt.
Die Höhe auf welche das Wasser gehoben werden kann, hängt von der Geschwindigkeit des Rades ab. Uner eine gewisse Höhe hinaus wäre es absolut unmöglich eine hinreichende Geschwindigkeit zu erhalten; aber lange bevor man diese Grenze erreicht, würde man nur einen sehr schwachen Nussereffekt erzielen, woraus hervorgeht, dass die Appold'schen Pumpen hinsichtlich ihrer Anwendung beschränkt ist. Sie eignet sich im Allgemeinen für biesigen Fälle, wo es sich darum handelt eine große Wassermenge auf eine geringe Höhe zu heben.

Was die Bewegung des Wassers längs der Schaufeln anbelangt, so ist es wichtig zu bemerken, dass das fortwährende Streben der Centrifugalwirkung, die Geschwindigkeit des Wassers nach Maßgabe seiner Entfernung vom Mittelpunkte zu vermehren, nur dann für alle Wasserstrahlen eines und derselben Querschnittes stattfinden kann, wenn der Querschnitt der durch die Schaufeln gebildeten Canale vom Mittelpunkte aus abnimmt. Würde das letztere nicht der Fall sein, so würde ein Theil des Wassers beständig in seiner Bewegung verzögert, und diese Verzögerung würde einen unzweckmässigen Verlust an lebendiger Kraft herbeiführen. Diese Betrachtung ist es, welche aus der Bestimmung der Form der Schaufeln stört.

Die Versuche, welche bei Gelegenheit der Londoner Industrie-Anstellung mit der Appold'schen Pumpe mittels des Morin'schen Dynamometers angestellt wurden, haben folgende Resultate geliefert.
<table>
<thead>
<tr>
<th>Höhe in Metern, auf welche das Wasser gehoben wurde</th>
<th>Wassererhöhung per Minute in Litern</th>
<th>Umdrehungen des Rades per Minute</th>
<th>Rheosse des Maschinen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,590</td>
<td>9,540</td>
<td>828</td>
<td>0,588</td>
</tr>
<tr>
<td>2,745</td>
<td>7,440</td>
<td>620</td>
<td>0,648</td>
</tr>
<tr>
<td>5,600</td>
<td>5,274</td>
<td>792</td>
<td>0,649</td>
</tr>
<tr>
<td>5,897</td>
<td>5,610</td>
<td>768</td>
<td>0,650</td>
</tr>
<tr>
<td>5,897</td>
<td>5,076</td>
<td>800</td>
<td>0,650</td>
</tr>
<tr>
<td>7,070</td>
<td>4,962</td>
<td>843</td>
<td>0,398</td>
</tr>
<tr>
<td>8,235</td>
<td>3,000</td>
<td>876</td>
<td>0,463</td>
</tr>
</tbody>
</table>

Demgemäß kann die Appold'sche Centrifugalpumpe bis zu einer Höhe von 5 Metern mit großem Vortheil da angewendet werden, wo mittelst einer geeigneten Transmission eine hinreichend große Geschwindigkeit zu erlangen ist.

LXVII.

A. Gwynne's verbesserte Centrifugalpumpe.

Mit Abbildungen aus Tab. IV.

Fig. 12 stellt eine der verbesserten Pumpen im senkrechten Querschnitt und Fig. 13 im Seitenquerschnitt dar. Die Zuführungscanäle A haben die Form eines Halbkörpers; sie führen in sanfter Steigung in die Mitte des rotirenden Kolbens, über das Rade B; und sie sind so konstruiert, daß sie sich in einem Cylinder C entleeren, der einen

Theil des Pumpengehäuses bildet. Der Kolben rotiert in Berührung mit den inneren Enden des Cylinders. Die äußeren Enden dieser Kanäle sind mit Flanschen versehen, wovon die eine ein einfaches Lager zur Aufnahme des Endes der Kolbenachse, die andere eine Stopfbüchse enthält, durch welche die Achse tritt, um außerhalb des Apparates in Umdrehung gesetzt zu werden. Die Kanäle A, B sind so beisammen, daß ein und derselbe Kern oder Formfassen den Kern oder die Form für beide abgibt. Auf diese Weise erhalten die Kanäle auf beiden Seiten der Pumpe genau den gleichen Querschnitt. Da somit die Menge des dem rotierenden Kolben oder Rade zuströmenden Wassers auf beiden Seiten gleich ist, so heben sich die Pressungen des Wassers auf beiden Seiten des Kolbens gegeneinander auf.

Die Abnutzung zwischen dem Kolben und dem Gehäuse wird durch Einführung eines Metallringes D ausgelöst. Die Kanäle A erstrecken sich abwärts durch die Bodenplatte des Gehäuses und vereinigen sich unterhalb des letztern zu einer Röhre, welche die Stelle der Saugröhre der gewöhnlichen Pumpen vertritt. In den zylindrischen Kanälen C sind fumme Scheibewände E angeordnet, um das Wasser allmählich in die Richtung der treibenden Kraft des rotierenden Kolbens zu leiten. Die Schaufen des letztern gehen entweder in radialear oder etwas geneigter Richtung und sind an ihren äußeren Enden rückwärts gebogen; ihre spezielle Form richtet sich übrigens nach der Geschwindigkeit der Rotation und nach der Höhe, auf welche die Flüssigkeit gehoben werden soll. An der Mitte des Kolbens sind die Schaufen so eingerichtet, daß sie mit einer schraubenähnlichen Wirkung und ohne Stoss in die Flüssigkeit treten.

Der Umfang des Kolbens, da wo das Wasser herausgeschleudert wird, ist nach einer sanften sich erweiternden Curve construirt, um das Auswerfen der Flüssigkeit zu erleichtern. Der Ausgussoanal F fängt an der Mitte des Kolbens an, und der letztere rotirt, ohne starke Reibung, jedoch in dichter Berührung mit der inneren Seite der Ausgussohre G.

Fig. 14 stellt ein verbessertes Bodenventil im Durchschnitte dar. Der Ventilfassen A ist glodensförmig, um eine volle Strömung der Flüssigkeit zu erzielen, und seine untere breite Seite ist mit einer scharfartig durchlöcherten Scheibewand B versehen, um fremdartige Stoffe abzuhalten. Das Ventil selbst besteht aus zwei lebenden durch eiserne Platten verstärkten Klappen C, die mit ihren freien Enden auf eine durch die Mitte der Öffnung gehende Quersänge D zu liegen kommen.
LXVIII.
Beiträge zur Bestimmung des richtigen Röhren-Durchmessers und des Minimalgefaßes der Drains.

Mit Abbildungen auf Tab. VI.

Der entschiedene Einfluß, den die Wahl des richtigen Durchmessers der Röhren auf die erfolgreiche Wirkung und die zu hoffende Dauer einer Drainanlage ausübt, darf als allgemein bekannt vorausgesetzt werden.

Ist der Durchmesser einer Röhrenleitung so klein, daß die zu bewältigende Wassermenge in dem zur Trockenlegung des Grundstücks festgesetzten Zeitraume nicht abgestaut wird, so ist die beabsichtigte Wirkung versagt, denn der Boden bleibt länger naß, als für zuträglich erachtet war. Ist der Durchmesser zu groß, daß die Röhren jährlich nicht ein- oder einigemal vollfließen und dadurch von den Boden- und Ober-Abzüchen gereinigt werden, so ist für die Dauer der Anlage zu sorgen, denn es werden nach längerer oder kürzerer Zeit Verstopfungen eintreten.

Bei der Berechnung des angewendenden Röhrendurchmessers sind drei Momente zu berücksichtigen:

1) die Ermittlung der abzuführenden Wassermenge;
2) die Festlegung des Zeitraumes, binnen welchem das Wasser aus dem Boden entfernt werden soll, und
3) die Berechnung der Geschwindigkeit, mit welcher das Wasser in den Röhren unter den verschiedenen Gefällevorsätzen abläuft.

Da die in der Gießelwein'schen Formel:

\[c = 6,42 \sqrt{\frac{50 \cdot d \cdot h}{1 + 50d}} \]

enthaltenen Größen, von welchen c die Geschwindigkeit des Wasserablaufs pro Sekunde, d den Röhrendurchmesser, h die Geöffnungsfläche, l die Länge der Leitung bedeutet, sich durchgängig auf preußische Maßeinheiten reduzieren, so ist in der Regel diese Formel als die bequemste und auch für den Zweck genügend genaue, von den preußischen Drain-Ingenieuren mit Rücksicht auf den größeren Bildestand modifiziert und der Geschwindigkeits-
berechnung für Drainrohrenleitungen untergelegt worden. Natürlich mussten die von verschiedenen Technikern gemachten gütlichen Modifikationen auch verschiedenartige Resultate ergeben, weil dieselben nur auf Annahmen, nicht aber auf direkten Versuchen beruhen, und deshalb können die von Vincent in seiner „Theorie und Praxis der Drainage“ Seite 36 und von Stoelen in Nr. 9 der Zeitschrift „für deutsche Drainierung und andere landwirt-
chaftliche Meliorationen“ Jahrgang 1852 vorgesagten Reduktionen nicht genügen.

Da bis jetzt Experimente zur Ermittelung des Coeffizienten nicht an-
gestellt, wenigstens nicht veröffentlicht worden sind, so müßte, um die
unsicher gütlichen Annahmen nicht noch neue hinzuzufügen, durch
inductive Versuche eine Grundlage erbracht werden.

Die behufs dessen von den Unterzeichneten angestellten Versuche zer-
fallen insofern in zwei Reihen, als der erforderliche constante Wassere-
spiegel bei der ersten Reihe in einem kleineren Wasserbehälter, nämlich
einem Holzgefäß, bei der anderen in einem größeren, nämlich einem
Mühlteich, hergestellt wurde.

I. Reihe. Der Apparat, welcher bei den auf der städtischen Zie-
geleif zu Görül veranstalteten Versuchen angewendet wurde, war folgender-
gestalt zusammengefaßt.

Durch ein Pumprohr a, Fig. 19, wurde das Wasser aus einem
Teich in die Rinne b gehoben, und in dieser bis in das obere, auf
einem Gestelle ruhende Reservoir A fortgeleitet. Der unmittelbar vor
demselben aus dem Erdreich stehende Regulator B empfing seine Füllung
aus dem Reservoir A durch ein Spundloch c, welches durch einen langen,
conischen gearbeiteten Zapfen, je nach der erforderlichen vergrößerten oder
verringerten Abströmung, mehr oder weniger geöffnet oder ganz geschlossen
werden konnte. In die Oberkante der Seitenwand des Regulators B war
eine halbrunde Deffnung d geschnitten, welche eine nicht ganz 2 Ruten
lange Rinne f aufnahm und unbeweglich festhielt. Das andere Ende g
der Rinne konnte durch die Winde w aus und wieder gehoben werden, und
die auf jeder Seite durch einen in die Erde getriebenen Pfahl p vor
seitlichen Verschiebungen gesichert. In die Rinne f wurden 24 Stück
Drainrohren hart an einander, wie in Draingräben, gelegt und mit
nässen Thon gut verstrichen, so daß kein Wasser aus den Stoßjüngen her-
vordringen konnte. Das erste Rohr ragte einen Zoll über die innere
Wand des Gefäßes B bei der Deffnung d heraus, das legte am Rinnen-
ende g ebenfalls einige Zoll über den Endpunkt der Rinne. Der Recep-
plent oder Wassermeter (C) am Ufer des Tieches, nach welchem hin das
Terrain Abfall hatte, stand unter dem Rinnenende g und war mit einem
Spundloche k versehen, um ihn vor Beginn jedes einzelnen Versuches
völlig entleeren zu können.

Dieser Recipient, welcher einen abgestumpften Kegel bildete, hatte
eine Tiefe von 24 Zoll, der Durchmesser der oberen Deffnung enthielt
4 Fuß 7 Zoll, der des Bodens 4 Fuß 3 Zoll.

Die Operation wurde in folgender Weise ausgeführt:

Nachdem die Länge (l) der Röhrenleitung gemessen und mittels eines
Röhrenhellen-Rénaü's und der Winde w das angenommene Gefälle g
sorgfältig hergestellt war, wurden das Reservoir und der Regulator
mit Wasser gefüllt, und die untere Röhrenmündung bei g so lange ver-
senkt, bis das in die Röhrenleitung getretene Wasser keine Blasen bei d
zurückwarf und dadurch der Beweis geliefert worden war, daß keine mit
Wasser gefüllten Räume in den Röhren mehr vorhanden waren. Zuletzt
erschliessigten die Absorptions in den zuvor völlig glesenen Recipien
ten C; die Röhrenmündung bei g wurde geöffnet, der Zeitpunkt nach einer Sekunde-
Uhr genau notiert, und der Wasserspiegel in dem als Regulator dienenden
Gefäß B durch größeres oder geringeres Öffnen des Spundloches c
während der ganzen Dauer des Abschusses in einer solchen Höhe erhalten,
daß der Wasserspiegel mit der äusseren Oberfläche der ersten Drainöhre
abschnitt. Hierdurch sollte vermißt werden, daß das Wasser unter Druck
in die Röhren trat. — Endlich ließ man die Röhren so lange fließen,
bis der Wasserspiegel im Recipienten C eine für den jedesmaligen Versuch
verhältnismässig genügende, genau gemessene Höhe erreicht, und beobachtete
bisher später ab nach der Sekundenuhr, wodurch die ganze Dauer
des Abschusses bis auf die Sekunde genau bestimmt war.

Sobald ein Versuch beendet war, wurde das Wasser aus dem Re-
cipienten abgelaßen, und entweder das Gefälle unter Beibehaltung der
Röhren mittels der Winde verändert und mit dem Nivellirinstrument ab-
gewogen, oder mit Belassung des Gefäßes andere Röhren-Dimensionen in die
Rinne s gelegt und alsbann dasselbe Verfahren wiederholt. — Nachdem
sechs Versuche mit zwei verschiedenen Gefäßverhältnissen und drei ver-
schiedenen Röhrendimensionen unternommen waren, wurde zur Berechnung
geschritten. Zunächst war die aufgefangene Wassermenge zu ermitteln,
Bezeichnet R den Halbmesser der Öffnung, r den Halbmesser des Fußbodens, H die gemessene Höhe des jedesmaligen Wasserstandes im Gefäß C, ferner p den zu suchenden Halbmesser des Wassertiegels, Q den Kubikinhalt der ausgesaugten Wassermasse, alles in preuß. Duodecimalsfuß, endlich noch t die beobachtete Zeitdauer des Ablusses in Sekunden, so ergibt sich, da die Gefäßtiefe 2 Fuß beträgt,

$$q = \frac{R - r}{2} H + r$$ und

$$Q = \frac{1}{3} \pi H (r^2 + \varphi^2 + r \varphi).$$

Sodann führen folgende Formelentwicklungen zu den nachstehenden Resultaten.

Als bekannt darf die Herleitung der Formel für die allgemeine Ausflußgeschwindigkeit

$$c = 2 \sqrt{gh}$$

vorausgesetzt werden, in welcher g die Beschleunigung für den freien fallenden Körper im luftleeren Raum $= 15,625$ preuß. Duodecimalsfuß und h die gesamte Druckhöhe bedeutet. Hieraus ergibt sich

$$c = (7,0007 \ldots) \sqrt{h}.$$

Bei dem Abluss des Wassers durch Rohrenleitungen treten indessen zwei verschiedene Ursachen auf, welche die Geschwindigkeit vermindern, die eine durch die Zusammenziehung des Strahles beim Eintritt des Wassers in die Rohren, die andere durch den, vermöge der Reibung des Wassers an den Rohrenwandungen sich erzeugenden Widerstand.

Es hat nämlich nicht allein die vor der Rohrenöffnung in der Richtung der Verlängerung der Rohrenleitung befindliche Wassersäule das Bestreben des Ablusses, sondern es übt auch die Seite dieser stehende Wasser einen Druck auf dieselbe, darin sich mit unter das abfließende Wasser, bewirkt dadurch eine Zusammenziehung des in die Rohre tretenden Wassers und hemmt offenbar die freie Beanspruchung des Ablusses, also die normale Geschwindigkeit. Eine ähnliche Bewandtnis hat es mit dem in den Drainröhren abfließenden, und während ihres Vollfließens in dieselben durch die Stoßflächen hinzutretenden Wassers. Denn wenn auch bei den Drains der Wassertreter nicht wie aus einem Ge- fäß oder Teiche mit einemmal am Anfange der Leitung in dem vollen Durchschnitte des Rohrs erfolgen kann, sondern sich die abführende Masse erst allmählich anmammelt, und endlich durch fortwährenden Zu- tragen den Stoßflächen aufgeschwemmt bis zur vollständigen Füllung der Rohren, so ist zwar eine Zusammenschiebung des eintretenden Wassers in der oben angeführten Art nicht vorhanden, aber die durch die Rohren fließende
und des Minimalgesäßes der Drains.

Wasserfalle erleidet von Fuß zu Fuß an jeder Stossfläche, die es zu überschreiten hat, einen in diesen kurzen Zwischenräumen sich fortwährend wiedervölligenden vertikalen und Seitendruck durch dasjenige Wasser, welches sich unter die Strömung mengt und hierdurch eine Ableitung von der geraden Richtung derfelben herbeiführt. Es erscheint daher einleuchtend, daß es gleichgültig sein muß, ob die das Rohr fillende Wassermasse gleich beim ersten Eintritte in die vordere Öffnung den Druck des Seitenwassers in dessen ganzer Menge erfährt und dann ungefähr weiterfließt, oder ob ein in bestimmten Unterbrechungen wiederkehrender Zufluss bergestalt stattfindet, daß der in Bewegung befindliche Wasserstrom derseits mit aufnehmen und fortführen muß. Mitin kann die Verminderung der Geschwindigkeit bei Rohrenleitungen, welche ihre Speisung an ihrem oberen vollen Durchschnitte empfangen, als gleich groß betrachtet werden mit der Verminderung der Abflussgeschwindigkeit in Drainröhren, weil dieselbe bei beiden aus gleichen Ursachen entspringt.

Hiernach ist es klar, daß nicht mehr der für den freien Fall berechnete Coefficient 7,9007 in der Formel für die Abflussgeschwindigkeit in Rohrenleitungen zur Anwendung gebracht werden kann, sondern daß ein anderer, ein Erfahrung-Coefficient, an dessen Stelle treten muß, welcher mit α bezeichnet und Contraction-Coefficient genannt wird.

Ebenso bedarf es auch zur Bestimmung des Einflusses, welchen die Reibung des Wassers an den Rohrenwandungen ausübt, eines zweiten Erfahrung-Coefficienten, welcher durch $\frac{1}{\beta^2}$ ausgedrückt werden soll und unter der Bezeichnung Reibungs- oder Widerstands-Coefficient bekannt ist.

Die gesamte Druchhöhe h äußert daher ihre Wirkung nach zwei verschiedenen Richtungen, einmal, indem sie den Eintritt des Wassers in die Rohren vermittelt und auf die Zusammenziehung des Stahles infuirt, das andere mal, indem sie die Hindernisse an den Rohrenwandungen zu überwinden hat. Wird nun derjenige Theil der Druchhöhe, welcher die ersterde Funktion erfüllt, mit h', der andere aber mit h'' bezeichnet, so ist die gesamte Druchhöhe

1) $h = h' + h''$

und es entsteht

$c = \alpha \sqrt{h'}$ oder

2) $h'' = \frac{c^2}{\alpha^2}$.
Der Widerstand, den das Wasser beim Durchlaufen der Röhren erfährt, ist proportional der Länge (l) der Röhren, proportional dem Quadrat der Geschwindigkeit (c²) und steht im umgekehrten Verhältnisse mit dem Durchmesser (d) der Röhren, woraus folgt:

3) \[h^2 = \frac{1}{\beta^2} \cdot \frac{c^2}{d} \], daher

4) \[h = \frac{c^2}{\beta^2} + \frac{1}{\beta^2} \cdot \frac{c^2}{d} \], also

5) \[c = \alpha \sqrt{\frac{\beta^2 \cdot d \cdot h}{\beta^2 \cdot d + \alpha^2 \cdot l}} \].

Du Buat hat aus 51 Versuchen mit Metallröhren für den Widerstandes-Coefficienten \(\frac{1}{\beta^2} \) den Mittelwert \(\frac{1}{47\,79^2} \) gefunden; wird derselbe für \(\frac{1}{\beta^2} \) eingesetzt, so ergibt sich

\[c = \alpha \sqrt{\frac{44\,79^2 \cdot d \cdot h}{44\,79^2 \cdot d + \alpha^2 \cdot l}} \].

Nach Cytelwein's Untersuchungen ist der Contractions-Coefficient \(\alpha \) auf 6,32 festgestellt worden, und man erhält durch Substitution

\[c = 6,32 \sqrt{\frac{44\,79^2 \cdot d \cdot h}{44\,79^2 \cdot d + 6,32^2 \cdot l}} \]

oder ziemlich nahe die Eingangs erwähnte bekannte Formel:

\[c = 6,32 \sqrt{\frac{50 \cdot d \cdot h}{1 + 50 \cdot d}} \].

Der Wassereintritt in die Röhren findet jederzeit in durchaus gleicher Weise statt, mag die Leitung aus metallenen, hölzernen oder gebrauchten Röhren bestehe, weshalb der Contractions-Coefficient stets derselbe sein wird. Es ist daher einsichtig, ob Cytelwein bei seinen Versuchen zur Ermittlung des Contractions-Coefficienten das eine oder das andere Material verwendete, die von ihm gefundene Größe 6,32 musste unter jeder Bedingung für jedes Rohrenmaterial als dieselbe hervorgehen und müßt daher auch für Drainrohrleitungen beibehalten werden.

Dagegen ändert sich die größere oder geringere Neigung, und es vermehrt oder vermindert sich der dem Wässerlauf entgegen tretende Widerstand, je nach der Unebenheit der Oberfläche des Materials, aus welchem die Röhren bestehen, und daher ist es der von du Buat aus seinen Experimenten mit Metallröhren gefundene Widerstands-Coefficient, welcher zur Umwandlung für Drainröhren gebraucht werden muß und von uns in
und des Minimalgesäßes der Drähte.

263
dem vorliegenden Falle durch Berechnung folgendenmaßen gesucht worden ist.

Da nämlich Q aus dem Produkt des Querschnittes der Röhrenleitung und der Geschwindigkeit des Wasseraufsees sich ergibt,

$$\text{Querschnitt} = \frac{d^2}{4} \pi$$

$\text{die beobachtete Zeit} = t \text{ Sekunden}$

$\text{und die Geschwindigkeit} = v \text{ ist,}$

so resultiert

$$Q = \frac{d^2}{4} \pi \cdot t \cdot c = \frac{2 \cdot \sqrt{\frac{\beta^2 \cdot d \cdot h}{\beta^2 \cdot d + 6 \cdot \frac{1}{42}^2 \cdot l}}}{4}$$

und hieraus

$$\beta = 6 \cdot \frac{1}{42} \cdot Q \sqrt{\frac{1}{25 \cdot \frac{1}{42} \cdot d^3 \cdot v^2 - d \cdot Q^2}}$$

Nach dieser Formel wurden die durch die Versuche auf der Görlitzer Ziegelfeuer erhaltenen Resultate berechnet.

Leider gewährte die Berechnung kein befriedigendes Resultat, sondern ließ unzweifelhaft erkennen, daß trog des Regulators B ein Druck auf das in die Röhrenleitung eingetretene Wasser ausübte worden war, weil in ihm eine drehende Bewegung des Wassers durch den comprimierten Ausfluss aus dem Reservoir A stattgefunden hatte.

Genügt durch das Mithilfe dieses ersten Experimentes, mußte daselbe wiederholt werden. Um aber den störenden Druck aufheben, wurde nunmehr zum Schalte das Wassereintritts in die Röhren ein aus drei 10 Zoll breiten Brettern rechtwinklig zusammengesetzter Vorleger v, dessen Länge mit der Höhe des Gefäßes B überestimmt, angestellt und mit seiner offenen Fläche hergestellt vor die Abflusöffnung a gebracht, das bis zum Boden des Gefäßes nur ein Raum von 1/4 Fuß verblieb, um die Verbindung zwischen dem innerhalb und außerhalb des Vorlegeys befindlichen Wasser frei zu erhalten. Außerdem wurde noch der Strahl aus dem Spundloch c durch einen Besen aufgenommen, um die Kraft der Zuströmung möglichst zu brechen. Hierdurch erlangte man innerhalb des Vorlegeys und vor der Einmündung der Röhren einen vollkommen ruhigen Wasserpiegel. Unter dieser Vorlegermaßregel wurden folgende sieben Verleger mit drei verschiedenen Röhrendimensionen zu $1\frac{1}{16}'' = 7/64'$, zu $1\frac{7}{8}'' = 5/32'$ und zu $2\frac{1}{8}'' = 23/96'$ Durchmesser, sowie unter den verschiedenen Gefäßverhältnissen von 6, 12, 18 und 30 Zoll Fall auf 10 Ruten Länge ausgeführt.
Erster Versuch.

Länge der Röhrenleitung ... \(l = 23 \frac{1}{4} \) Fuß
Röhrendurchmesser ... \(d = 23 \frac{3}{96} \) Zoll
Gefälle 12 Zoll auf 10 Rüthen, also \(h = 0.159 \) ft
Wasserhöhe im Gefäße \(C \), d. i. \(H = 20 \) Zoll
Zeitdauer des Abflusses ... \(t = 373 \) Sekund.

hieraus berechnen sich ... \(Q = 25.223 \) Kubff.
und \(\beta = 39.93^\circ \).

Zweiter Versuch.

\(l = 23 \frac{1}{4} \); \(d = 23 \frac{3}{96} \); Gefälle 18 Zoll auf 10 Rüthen, folglich
\(h = 0.295 \); \(H = 20^\circ \); \(t = 260 \) Sec., mit hin \(Q = 25.223 \) Kubff.
und \(\beta = 49.18^\circ \).

Dritter Versuch.

\(l = 23 \frac{1}{6} \); \(d = 5 \frac{1}{6} \); Gefälle 18 Zoll auf 10 Rüthen, folglich
\(h = 0.295 \); \(H = 15^\circ \); \(t = 672 \) Sec., mit hin \(Q = 18.613 \) Kubff.
und \(\beta = 35.91^\circ \).

Bisier Versuch.

\(l = 23 \frac{1}{6} \); \(d = 7 \frac{1}{6} \); Gefälle 18 Zoll auf 10 Rüthen, folglich
\(h = 0.295 \); \(H = 12^\circ \); \(t = 974 \) Sec., mit hin \(Q = 14.729 \) Kubff.
und \(\beta = 49.15^\circ \).

Fünfter Versuch.

\(l = 23 \frac{1}{6} \); \(d = 7 \frac{1}{6} \); Gefälle 12 Zoll auf 10 Rüthen, folglich
\(h = 0.197 \); \(H = 12^\circ \); \(t = 1180 \) Sec., mit hin \(Q = 14.765 \) Kubff.
und \(\beta = 49.79^\circ \).

Sechster Versuch.

\(l = 23 \frac{1}{6} \); \(d = 7 \frac{1}{6} \); Gefälle 30 Zoll auf 10 Rüthen, folglich
\(h = 0.49 \); \(H = 13^\circ \); \(t = 857 \) Sec., mit hin \(Q = 16.103 \) Kubff.
und \(\beta = 46.80^\circ \).

Siebenter Versuch.

\(l = 23 \frac{1}{6} \); \(d = 7 \frac{1}{6} \); Gefälle 6 Zoll auf 10 Rüthen, folglich
\(h = 0.098 \); \(H = 6^\circ \); \(t = 1080 \) Sec., mit hin \(Q = 7.233 \) Kubff.
und \(\beta = 35.77^\circ \).
Die Summe dieser sieben Coeffizienten ist \(= 306\), also ergibt die Durchschnittszahl aus den Versuchen der I. Reihe die in dem Übersandscoefficienten enthaltene Größe

\[\beta = 43_{\text{75}} \]

Hierbei wird bemerkt, daß zu den Versuchen zwar keineswegs die besten Röhren besonders ausgewählt worden waren, daß aber die Fabrication derselben auf der Görtz'schen Fischerei in großer Vollendung betrieben wird, und sich die Röhren durch vollkommen glatte innere Wandungen, mittelst Rollens hergestellt, durch scharfe und glatte rechtwinklige Schnittflächen ohne die mindste Spur eines Gratens, durch Stauchen und Bühen erreicht, und durch gleichmäßige Wandungsstärke aus der vortheilhafteste ausgezeichnet.

Die nach den ersten sechs Versuchen erkannte Notwendigkeit, einen gleichmäßigen und ruhigen Wasserspiegel herzustellen, führte außer dem eben beschriebenen noch ein zweites Verfahren herbei und gab so Veranlassung zu der zweiten Reihe von Versuchen.

II. Reihe. Diese Versuche wurden am Mühlteich zu Eiben bei Rauen a. ange stellt.

Die Einbettung der Röhren mittelt Thon in eine Holzrinne und die Auffangung und Messung des durch die Röhrenleitung gestossenen Wassers in einem Recipienten fand wie bei der I. Versuchsreihe statt. Dagegen bestand das Reservoir- und das Regulator-Fass in dem Teiche selbst, indem jene Vorrichtung in dem Gerinne einer der Teichschleusen angebracht, in das oberste Spundbrett ein der Breite der Holzrinne entsprechender und mittels eines Schiebers, Fig. 20, s verschließbarer Einschnitt d gemacht und in diesen die obere Entlassung der Holzrinne f, also auch der Rohrenleitung gelegt worden war. Der ruhige Wasserspiegel im Teiche mußte in gleicher Höhe mit der obem Culmination der ersten Röhre stehen und wurde nach Beginn der Versuche in dieser Höhe mittels Stellung einer anderen Schleuse derselben Teiches erhalten. Die Rinne und Rohrenleitung war genau 2 Ruten lang; sie hatte drei Unterstützungspunkte — der am Einschnitt im Spundbrett war unverrückbar, die beiden anderen in der Mitte ihrer Länge und am unteren Ende wurden je nach dem bestimmten Gesäß gebogen oder gesenkt. Die hier angewandten Röhren waren der Fabrik in Ziefersturt entnommen, wurden aus einer größeren Anzahl in den besten Exemplaren ausgewählt, so daß sie, wenn auch den in Reise 1 angewandten Röhren nicht völlig gleichstehend, eine ihrer vorliegenden Bestimmung entsprechende Güte hatten. Auch hier kommen drei Dimensionen in Anwendung, im Lichten von 17\(\frac{3}{4}\), 2\(\frac{1}{4}\) und 3\(\frac{1}{4}\) Zoll.
Die Bestimmung des Gefälles und der Zeit geschah wie bei Reihe I. Die beobachtete Wassermenge war bei allen Versuchen gleich groß und es betrug \(Q = 11\,\text{t} \).

In gleicher Weise, wie die Versuche der I. Reihe berechnet, ergeben die Versuche dieser II. Reihe:

<table>
<thead>
<tr>
<th>Lauflende Nummer</th>
<th>Durchmesser der Röhren</th>
<th>Gefälle auf 2 Ruten</th>
<th>Beobachtete Wassermenge</th>
<th>Zeit</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>34/898</td>
<td>0,1666</td>
<td>11/045</td>
<td>1140</td>
<td>42,50</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0,25</td>
<td></td>
<td>850</td>
<td>41,36</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0,3333</td>
<td></td>
<td>836</td>
<td>40,50</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0,4166</td>
<td></td>
<td>786</td>
<td>39,66</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1,0</td>
<td></td>
<td>492</td>
<td>39,99</td>
</tr>
<tr>
<td>13</td>
<td>3/16</td>
<td>0,0853</td>
<td></td>
<td>360</td>
<td>54,39</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>0,1666</td>
<td></td>
<td>254</td>
<td>54,58</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0,3333</td>
<td></td>
<td>193</td>
<td>48,57</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>0,5</td>
<td></td>
<td>160</td>
<td>47,98</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>1,0</td>
<td></td>
<td>127</td>
<td>40,68</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>1,25</td>
<td></td>
<td>112</td>
<td>41,65</td>
</tr>
<tr>
<td>19</td>
<td>23/8</td>
<td>0,28</td>
<td></td>
<td>115,5</td>
<td>41,58</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0,3333</td>
<td></td>
<td>112</td>
<td>35,35</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>0,4166</td>
<td></td>
<td>101,3</td>
<td>34,92</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>0,5</td>
<td></td>
<td>70,5</td>
<td>32,43</td>
</tr>
</tbody>
</table>

Durchschnitt 657,55

Aus beiden Reihen der Versuche geht somit ein fast völlig übereinstimmendes Resultat hervor, denn während die sieben Versuche I. Reihe im Durchschnitt \(\beta = 43,30 \) geben, geht aus den 15 Versuchen II. Reihe \(\beta = 43,92 \) hervor, und es beträgt nach dem Durchschnitt sämtlicher 22 Versuche \(\beta = 43,59 \).
der Widerstands-Coefficient für normale Drainröhren

\[\frac{1}{43,8^2} \]

In Formel (5) für \(\beta \) den Werth von 43,8 eingesetzt, gibt

\[c = 6,42 \sqrt{\frac{43,8^2 \cdot dh}{43,8^2 + 6,42^2}} = 6,42 \sqrt{\frac{46,5 \cdot dh}{1 + 46,5^2}} \]

Diese Formel wird nunmehr der Röhrenberechnung so lange zu Grunde zu legen sein, bis andererseits, von Sachverständigen angestellte zuverlässige Versuche eine gewisse nur erwünschte Berichtigung, resp. Bestätigung herbeigeführt haben werden.

Mit dem größten Danke würde es von allen Drainern anerkannt werden müssen, wenn sich Hydrauliker von Fach geneigt finden wüssten, im Interesse der Landeskultur ähnliche und bessere Versuche anzustellen und die Resultate in der „Zeitschrift für die deutsche Drainierung“ zu veröffentlichen. 49

Die Unterzeichneten geben nunmehr eine praktische Anwendung des ermittelten Coeffizienten, welche auch ohne ein näheres Eingehen auf die Eingangs subst 1 und 2 erwähnten Gesichtspunkte möglich erscheint.

Es betrifft dieselbe Berechnung des Minimalgesalles für die verschiedensten, in Anwendung kommenden Röhrenabmessungen.

Die Praxis hat nämlich vielfach ergeben, daß Drainröhren bestimmter Dimension bei schwachem Gefälle ihren Dienst nicht sowohl deshalb verrichten, weil die durch sie abzuführende Wassermasse zu groß gegenüber ihrem lichten Durchmesser und ihrem Gefälle ist, sondern deshalb, weil in Folge des zu langsamem Wasserlaufes in ihrem Inneren Einstosse — Sand, Dorn, Burzelfasern — sich ablagernd und die Röhren verbüßen können. Gesägt auf vielsch Male Beobachtungen, glauben wir die Geschwindigkeit des Wasserlaufes von 1/2 Fuß in der Sekunde als die Minimal-Geschwindigkeit, bei welcher das Wasser noch im Stande ist seinen Sand fortzuführen, annehmen zu müssen.

49 Der mit unterzeichnete Dr. G. Zohn, welcher die „Zeitschrift für die deutsche Drainierung und andere landwirtschaftliche Misserhebungen“ mit Benützung der Rechnung des königl. preuß. Ministeriums für landwirtschaftliche Angelegenheiten herausgibt, hat aus Nr. 9 und 11 vorgeschlagen diese Abhandlung für das volkstümliche Journal mitzuteilen.

A. d. Red.
Über Bestimmung des Röhrendurchmessers z. der Drainen.

Da nun \(h = \frac{c^2}{6 \eta_2^2} + \frac{1}{43,18^2} \frac{c^2 l}{d} \) und mit Anwendung unserer Widerstandszahlen die Geschwindigkeit

\[c = 6 \eta_2 \sqrt{\frac{46,5 \, d \, h}{1 + 46,5 \, d}} \]

ist, so ergibt sich für die Minimalgeschwindigkeit \(c = 0,15 \) das Minimalgefälle

\[h = \frac{0,15^2}{6 \eta_2^2} \left(3,94 + 3,1 \, d \right) = \frac{2 + 0,175 \cdot d}{127,77 \, d} \]

und berechnet sich nach dieser Formel das Minimalgefälle für 10 Rufen Länge

für 1 rollige Röhren aus 2,733 Zoll

- 1 1/4 " 1 1/8 "
- 1 1/2 " 1 5/32 "
- 2 " 1 1/20 "
- 3 " 0,82 "
- 4 " 0,93 "
- 5 " 0,93 "
- 6 " 0,44 "
- 7 " 0,39 "
- 8 " 0,155 "

In Zahlen können die durch diese Mängel bedingten Abweichungen von den auf normale Verhältnisse basirten Angaben nicht ausgebrückt werden; Drainer, welche sich denselben nicht zu entziehen wissen, kommen somit auf das böse Gebiet des Schädens.

LXIX.
über das Schmieden und Schweifen des Eisenbleches für Dampföfse, den Bau eiserner Schiffe zu; von Herrn William Bertram zu Woolwich.

Im Auszug aus dem Civil Engineer and Architect's Journal, Septbr. 1855, S. 321.

Mit Abbildungen aus Tab. IV.

Bis jetzt hat man bei dem Bau eiserner Schiffe, bei der Anfertigung von Dampfs- und andern Kesseln, zu Brücken- und andern Bauten, wozu viel Eisenblech verwendet wird, die einzelnen Tafeln an den Kanten durch Niete mit einander verbunden, und ebenso werden auch Verstärkungsrrippen und Winkeleisen durch Niete aus dem Bleche befestigt. Durch das dabei nötige Lösen des Bleches und des zur Verstärkung desselben angewendeten Eisens werden aber beide sehr geschwächt und durch die übergreifenden Kanten, so wie durch die Nieten muß das Gewicht des angewendeten Bleches und Eisens bedeutend erhöht werden.

Der Zweck der hier zu beschreibenden Erfindung ist zuvorher der, die Blechaufnähe an den Kanten für das Zusammenschweißen eine zweckmäßige Form zu geben, die in Fig. 16, 17 und 18 näher nachgewiesen ist; sie brauchen dann an den Kanten nicht stärker gemacht zu werden und befüllen dadurch keiner eigenthümlichen Form, da sie durch Übereinanderlegen der Kanten oder auf sonstige Weise zusammengeschweißt werden können. Man Winkeleisen oder anders geformtes Eisen zur Verstärkung angewendet werden, so werden an die Bleche Rrippen angeschmiedet oder angewalzt, dann zwei Tafeln mittels Befestlung an einander geschweißt; solche Rrippen werden entweder in der Querr- oder in der Längenrichtung der Platten angebracht.

Beim Schiffsbau kann der Kiel und die KielSchwinne, auch der Schacht oder Scheg (Bit) und der Hintersteven, aus einem Stück Eisen zusammengeschweißt werden, und die zum Bau des Schiffes erforderlichen Platten und Stäbe können dann damit und untereinander zusammengeschweißt werden. Oder statt den Kiel, den Schacht und den Hintersteven durch Zusammenschweißen der Platten zu bilden, können sie aus Platten geschmiedet und diese dann zusammengeschweißt werden, um aus dem Ganzen ein Schiff zu konstruiren.

Um nun das Zusammenschweißen in der erforderlichen Höhe zu bewirken, was in der gehörigen Stellung, welche die Platten am Schiff ein-
nehmen sollen, geschehen muß, wendet man zwei tragbare Schmiedesenf an, für jede Seite der zusammenzu schweißenden Platten oder Stücke eine. Diese Offen oder vielmehr Dfen bestehen aus einem Raum, der das Brennmaterial aufnimmt und auf der einen Seite mit einer Blase- form zur Aufnahme der Gebläsedüse, aus der eingegengestellten Seite mit einer Deffnung versehen ist, so daß, wenn durch seine Gebläseluft einge- führt wird und die zusammenschweißenden Platten oder Stücke sich vor der Deffnung befinden, die stärkste Höhe der Flamme dagegen strömt, während man auf der anderen Seite den zweiten Schweißsenf auf das zweite der zu schweißenden Stücke eben so wirken läßt. Sobald auf diese Weise beide Stücke schweißwarm geworden sind, werden sie durch das Hämmer der zweiten Schmiede, von denen aber der eine auch nur vorzuhalten, der ande re zu schmieden braucht, mit einander verbunden. Statt dessen kann man auch mechanische Vorrichtungen anwenden, z. B. zwei Dampfhämmer, die so eingerichtet sind, daß jeder von einer Seite wirkt, oder einen Dampfhammer mit Amando.

Wir wollen nun die Construction des Schweißens mit Hülfse der Fig. 16 und 17 verdeutlichen: er besteht aus einem verschloffenen Gefäß a, welches im Innern mit feuerfressen Steinen bestieft ist, damit es dem hohen Hitzegrade widersteht kann und welches das Brennmaterial, Kohle oder Holzkohlen, aufnimmt. Durch die Form b wird Gebläseluft in den Dsen geführt, welche eine konzentrierte Flamme des Brennmaterials erzeugt, die mittels der Deffnung c aus die zuzammenzuschweißenden Stücke strömt, welche in Fig. 18 dargestellt sind. Jeder Dsen ist mit einer Deffnung d zum Einbringen des Brennmaterials und zum Reinigen desselben von den Schlacken, so wie zum Reinigen der Form versehen. Die Form und die Gestalt der Deffnung e an jedem Dsen muß nach der Gestalt und Größe der zu schweißenden Stücke verschieden sein.

Sobald die Stücke schweißwarm gemacht sind, werden die Dfen aus ihrer Stellung entfernt und das Zusammenschweißen wird, wie schon bemerkt, durch Hände oder Dampfhämmer bewirkt. Um die Anwendung der locomobilen Dfen und Dampfhämmer zu erleichtern, stellt man sie auf mit Rädern versehene Gestelle, die sich aus Schienen bewegen, welche in verschiedenen zur Bearbeitung der Schiffstelle geeigneten Ebenen angebracht sind. Hinz und wieder wird es auch zweckmäßig sein, die zusammenschweißten Theile zwischen Walzen durchgehen zu lassen. — Mit den Hammergerästen sind auch Krahne verbunden, um die zusammenschweißenden Stücke besser handhaben zu können.
Fenton's Verfahren zur Anfertigung eiserner Achsen 1c. aus Blechplatten. 271

LXX.

Verfahren zur Anfertigung eiserner Achsen, Kolbenstangen 1c. aus Blechplatten; von Hrn. James Fenton zu Low Moor in Yorkshire.

Aus dem Civil Engineer and Architect's Journal, Erfrbr. 1855, S. 322.

Die Erfindung besteht in der Herstellung von Achsen, Kolbenstangen, Wellen, Spindeln, Balzen u. s. w. durch Aufwickeln von Blechplatten von beliebiger Dicke oder Größe zu einer feste Walze, welche in einen Schweißofen gebracht und dann zu der erforderlichen Gestalt ausgeglühtet oder ausgewalzt wird. Die Schweißung kann die ganze Masse oder nur einen Theil derselben betreffen; im letzteren Fall wird die Aichte oder ein anderes derartiges Stück, weder massiv noch hölz, aber kaum zu zerbrechen sein.

Das Verfahren bei der Anfertigung solcher Artikel ist folgendes: Man wählt eine Eisenplatte von zweckmäßigter Länge, Breite und Dicke und bildet daraus eine feste Rolle welche genug Metall enthält, um die Aichte u. s. w. darstellen zu können. Die Stärke und sogleich auch die anderen Dimensionen der Platte hängen von der Beschaffenheit des be- nutzten Eisens ab. Diese Platte wird rothglühend gemacht und dann biegen zwei oder drei Arbeiter mit Zangen die eine Kante um, hammers das Umgebogene nieder und bilden so den Ansatz einer Aufwickelung, worauf der Proces in derselben Weise fortgesetzt wird, bis die ganze Platte aufgerollt ist, worauf das Wickel nöthigenfalls durch ein Paar Balzen geht. Der auf diese Weise hergestellte feste Eisenslot kommt nun in einen Schweißofen, wird steißwarm gemacht, um ihn dann unter einem Hammer zu einer Aichte oder zu irgend einem der erwähnten Gegenstände auszuformen oder zwischen Holzkeilen auszuwalzen, oder beides nach einander zu bewirken; letzterer Doppelproces ist am zweckmässigsten bei der Anfertigung solcher Gegenstände. Die zum Aufwickeln angewendete Eisenplatte kann aus Eisen von verschiedener Art bestehen und es muss dann das Aufrollen so bewirkt werden, dass das bessere Eisen die Oberflache der Rolle bildet. In gewissen Fällen kann auch ein massiver Kern angewendet werden, um welchen die Platte gewickelt wird.
LXXI.

Verbesserungen in der Fabrication gewisser Eisensorten und an den dazu erforderlichen Maschinen oder Apparaten, von Hrn. James Griffith zu Wolverhampton.

Mit Abbildungen auf Tab. IV.

Diese Erfindung, welche in England am 26. October 1854 patentiirt wurde, besteht erstens in einem verbesserten Verfahren seiner Eisensorten dadurch zu fabriciren, daß man die Platten doppelt so breit macht, als die fertigen Stäbe, und sie dann der Länge nach durch einen Schneid- oder Spaltapparat von neuer Einrichtung und Form zerschneidet; ferner in der Abkürzung des Prozesses zum Vorbereiten der Platten für Schneideisen, indem Rohschienen oder Schienen von ausgeschiedenem Eisen hierzu der Länge nach zerspalten werden.

Zweitens besteht sie in Ergänzungen und Verbesserungen der gewöhnlichen Schneidwerke.

Drittens in einer verbesserten Combination und Einrichtung der mechanischen Theile zur Regulirung, Veränderung und Abtrennung der Entfernung zwischen den Schlichtwalzen, welcher Mechanismus auf alle Walzgeräthe anwendbar ist, deren Matzen einer häufigen Stellung bedürfen, wie z. B. die Leiffelschleif- und die sogenannten Dünneisen-Walzen (für das Material zum Weißblech).

Der Zweck der Erfindung ist der, den Prozeß mit vermindelter Arbeit, Zeit und weniger Brennmaterial, folglich wohlseliger auszuführen. Dies wird zum Theil dadurch bewirkt, daß man die breiten Schienen und Platten in schmälere Stäbe zerschneidet, statt sie durch den langsamen Walzprozeß auszustrecken, und daß man andererseits das doppelte Quantum des Materials auf einmal verarbeitet, so daß, da die Masse breiter ist, sie nicht so leicht erkalten und daher der doppelte Küeheffekt in jeder Periode des Prozesses erlangt wird, die eine solche doppelte Quantität durchmacht.

Bei der Vorbereitung der Platten kürzt Hr. Griffith den Prozeß dadurch ab, daß er eine breite Rohschiene oder eine Schiene aus geschweiftem Eisen der Länge nach, durch den verbesserten Schneidapparat, der unten beschrieben ist, zerschneidet, statt daß die Stäbe durch den langwierigen Walzprozeß zu der erforderlichen Dieke ausgereckt werden. Das
angewendete Materialesisen oder die Schienen haben die vierechte Breite von derselben, welche zu demselben Zweck bei dem gewöhnlichen Processe angewendet wird.

Diese Schienen werden zu Platinen von derselben Länge und Stärke, wie sie zur Fabrication der gewünschten Stäbe erforderlich ist, ausgewalzt, erhalten jedoch die doppelte Breite. Die Platinen gehen dann durch ein Schneidwerk, welches sie in der Mitte zerschneidet. Die Schneiden können Theile von einem Walzenpaar bilden, so daß der Walzprocesse gleichzeitig mit dem Schneiden oder Spalten vorgesehen werden kann. Die beiden Stäbe oder Rüthen, welche durch das Zerschneiden der Platinen erlangt wurden, werden dann dadurch vollendet, daß man sie der Einwirkung hartgesoffener und polierter Schlichtwalzen unterwirft, wie dies bei dem gewöhnlichen Verfahren auch der Fall ist.

Wir wollen z. B. annehmen, daß zu fabricirende Eisen halbförmiges Reisefisen sein soll. Die gewöhnliche Verfahren zur Fabrication solchen Eisens besteht darin, daß man zu jedem Reisfack einen Kolben von etwa 1 1/2 ölmäßigem Quadratesisen verwendet; jeder Kolben wird zu einem zweiten von 3/4 Zoll im Quadrat ausgewalzt und daraus wieder in den Glühanen zurückgebracht, worauf man ihn auf 5/16 Zoll im Quadrat ausstreift, um ihn für die Platinenwalzen vorzubereiten. Dadurch erlangt der Stab die erforderliche Stärke und wird nun mittels Durchwalzen im Schlichtwalzverfegerstück vollendet.

Um Eisen dieser Art nach der verbesserten Methode zu fabriciren, wird für jede zwei Stäbe ein Kolben vorbereitet, der etwa 1 1/4 Zoll im Quadrat stark ist; derelbe kann entweder auf gewöhnliche Weise angesetzt werden, indem man ihn aus einer Rohschiene oder aus einem Packe auswalzt, oder durch den kürzeren Processe, indem man eine solche Schiene der Länge nach mittels des verbesserten Schneidwerks in zwei theilt. Man hat alsbann das vorbereitete Material zu zwei Stäben des darausstehenden Eisens. Beide werden geglättet und jeder zu 3/8 ölmäßigem Quadratesisen ausgewalzt, welches dann das Materialesisen zu dem Platinen-Walzwerke ist. Von diesem werden die Quadratsäbe zu Flachstäben oder Platinen ausgewalzt, die etwas stärker als die fertigen Rüthen, und so breit als zwei zehnehen sind, d. h. 1 Zoll. Die Platinen gelangen nun zu dem Schneidwerk, welches sie in zwei halbförmige Rüthen theilt; diese werden auf gewöhnliche Weise mittels der Schlichtwalzen vollendet.

Fig. 2 stellt ein Paar Schneiden oder zwei arritte Spindeln dar, die zur Anfertigung von halbförmigen Reisfen eingerichtet sind, und die eine Dingler’s Polyt. Journal Bd. CXXXVIII. S. 4.
Spindel ist in der Seitenansicht, die andere im Längendurchschnitt abgebildet. Sollen solche Schneiden breitere Platinen zerschneiden, so müssen sie auch verhältnismäßig breiter sein. Die Schneiden bestehen aus zwei Paar concentrischen Scheiben von Stahl oder von, an der Peripherie verhärtetem Eisen. Von den beiden Scheibenpaaren, mit denen jede Spindel armtirt ist, hat die eine einen grössern Durchmesser als die andere — der Unterschied ist größer oder geringer, je nach derDicke der Platine, welche geschlittten werden soll. In Fig. 2 sind a, a diese Scheiben, und in diesem Beispiel ist der Unterschied im Durchmesser der einen grössern Scheibe gegen die andere ungefähr 1/8 Zoll, so dass die Kante der grössern Scheibe über die der kleinern etwa 1/8 Zoll hervortritt. Die grössere Schneide aus der einen Spindel steht der kleinern aus der andern gegenüber, so dass die vorstehenden Kanten der grössern Scheiben etwas über einander greifen und ein Paar schneidende Kanten bilden. Die cylindrischen Oberflächen der Schneide-Scheiben, welche in dem vorliegenden falle etwa 1/2 Zoll breit sind, wirken als Walzen und schlichten die beiden Stäbe zu verseilen Zeit ab, als die schneidenden Kanten sie trennen oder spalten. b, b sind Längsdurchschnitte von dem zu zerschneidenden und theils schon zerschlittenen Eisen; o, o sind Hälfte an den Spindeln und d, d sind Schraubengewinde an den legtern, über welche eine Mutterschraube e geschaubt wird. t ist eine, zwischen der Mutterschraube e und den Schneiden a, a befindliche Scheibe. Durch festes Anziehen der Muttern e auf beiden Spindeln werden die Schneiden a, a fest gegen den Halb e gepreßt und auf diese Weise in ihrer Lage erhalten. Die beiden armtirten Spindeln werden von den Enden so abjustirt, dass die schneidenden Kanten in gegenseitige Berührung treten; ihre horizontale Lage aber vielmehr ihre grössere oder geringere Entfernung von einander muss nach der Dicke des zu schneidenden Eifens abjustirt werden.

Die Verbesserungen an dem Mechanismus zum Stellen der Walzen betreffen eine eigenthümliche Vorrichtung statt der gewöhnlichen Schrauben- oder Selbststellung. Diese Vorrichtung besteht in einer in dem Gerüst angebrachten und in einer zweiten an einer Spindel befestigten Schnecke (serroll); die Spindel wird mittels eines Schraubenganges und einer endlosen Schraube umgedreht. Die allgemeine Einrichtung ist aus Fig. 3 zu ersehen; dieselbe ist ein Aufriß von dem einen Walzenständer nebstd Walzenstell-Apparat. h, h ist der Ständer oder die Hälfte des Gerüstes; k, k sind die Walzen und j ist die Kappe. Gegen letztere tritt die Spindel s und bewirkt mittels ihres Rieder- oder Anfänges den Stand der Kappe und solglich auch der obere Walze, so daß zwischen ihr und der unteren Walze ein geringerer oder größerer Raum bleibt. l und m sind die beiden Theile der Schnecke an der Spindel s, beide sind in Ver- tiefungen in dem Ständer h angebracht. Die Spindel s geht durch die Schnecke m und ist an ihrem oberen Ende mit einem Schraubenrade n versehen, in welches die endlose Schraube o greift, deren Spindel sich in Lagern dreht, die in einer beweglichen Platte auf dem Ständer ange- bracht sind. Am Ende dieser Spindel und vor dem Walzengerüst befindet sich das Handrad p, mittels dessen der Vorwalser die Spindel s und die Schnecke l dreht, so daß der untere Fläche gegen die Schnecke m tritt und sie gegen die Kappe j brängt oder von derselben entfernt, je nach- dem das Rad in der einen oder anderen Richtung gedreht wird.

LXXII.

Verfahren zur Gewinnung des Zinks aus seinen Erzen, von
Hrn. Lesoinne zu Lüttich.

Aus Armengaud's Genie industriel, August 1855, T. 80.

Mit Abbildungen auf Tab. IV.

Dieses Verfahren besteht im Wesentlichen in der Behandlung der Zinnerze in einem Schachtofen, in welchen man ein Gemenge von Brennmaterial, Erz und Zufuhr von oben aufgibt und worin die Verbrennung durch die atmosphärische Luft und vorzugsweise durch ein Gebläse unterhalten wird.

Erz, Brennmaterial und Zufuhr oder Flussmittel werden in solchen Verhältnissen angewendet, daß aller Zink, welchen das Erz enthält, sich

18 *
reducieren und verflüchtigen kann, und daß alle fremdartigen Stoffe mit dem Zuschlage eine Schlacke von der erforderlichen Flüssigkeit bilden. Als Brennmaterial wendet man entweder Kohlfs, der Holzkohlen, oder rohe Steinkohlen, oder Anthracite, Braunkohlen und Torf an, jedoch unter der Bedingung, daß sie hinreichend fest sind, um nicht durch die Last der Gicht zu zerdrückt zu werden.

Das Brennmaterial wird in solcher Menge ausgegeben, daß es nicht nur zur vollständigen Reduction des Zinks hinreicht, sondern in bedeutsendem Überschuß vorhanden ist, damit vor den Formen durch seine Verbrennung nicht in ein oxydierendes gasförmiges Produkt, wie Kohleneis, erzeugt werden kann.

Der Zuschlag, dessen Wahl, so wie diejenige des Brennmaterials, von der Beschaffenheit des Zinkerges abhängt, wird so genommen, daß bei der Schläfenbildung in keinem Fall eine oxydierende Substanz frei werden kann. Wenn z. B. die Beschaffenheit des Erzes die Benutzung von Kalk als Zuschlag erfordert, so verwehren man denkbar nur im äugsten Zustande, d. h. gebrannt, und nicht als kehlsäuren Kalk oder roh.

Um eine andere oxydierend Neuschäfte zu vermeiden, führt man vorzugsweise getrocknete Luft d. h. solche ohne alle Wasserdämpfe, in den Ofen.

Die Produkte dieser Behandlung sind zu überbringt die bei der Verbrennung der Brennstoffe erzeugten Gase, sener Zünddämpfe und drittens die nicht flüchtigen Stoffe, wie Schlacken, Stein (Schweinmetal) und reducirte Metalle, was von der Beschaffenheit der zu behandelnden Erze abhängt.

Die festen Stoffe sammeln sich im Herde, und die Schlacken laufen über den Ballstein ab.

Um die metallischen Produkte, welche bitter als die Schlacken sind und den Boden des Herdes einnehmen, zu gewinnen, läßt man sie ab, nachdem sich eine hinreichende Menge davon angesammelt hat.

Die nicht zu verdichtenden Verbrennungsgase, welche im gasförmigen Zustande entweichen, werden unten an den Condensationsteilungen aufgesogen und können benutzt werden: 1) um den Kessel der Gebläses...
Dampfmaschine zu feuern; 2) um den Kalk zu brennen, der als Flüss verwendet werden soll; 3) um den destillierten Rohzink umzuschmelzen; 4) um die Erze zu trocknen und zu rösten, wenn es ihre Beschaffenheit erfordert.

Die Zinkdämpfe verdichten sich in den abgefeuerten Kanälen, deren Länge hiernach berechnet ist. Der metallische Zink, so wie das Zinfnorf, welches durch allensallige Dörpation von bereits reduziertem Zink entstand, lassen sich mit der größten Leichtigkeit mittels eines Hafens aus den Kanälen ziehen, die deshalb viereckig sind; dieser Zink wird wieder umgeschmolzen und in Barren geformt, in welcher Form er in den Handel kommt.

Dieser Prozess eignet sich zur vollständigen Reduktion aller Erze, welche Zink enthalten, sei der Gehalt daran oder ihre Beschaffenheit welche sie wolle. Diese Erze zerfallen in zwei Clässen: 1) in solche die den Zink im oxydierten Zustande, sei es als freies Zinfnorf, oder mit Kohlen säure oder Siedensäure verbunden enthalten; oder 2) die ihm mit Schwefel verbunden enthalten.

Das allgemeine Verfahren wird, nach der besonderen Beschaffenheit der Erze beider Clässen, folgendermaßen modifiziert:

Drybirte Erze (Galmei). Dieselben werden getrocknet und, wenn sie kohlenäuren Zink enthalten, geröstet.

Der Zuschlag, welcher bei der Zugumachung dieser Erze angewendet wird, ist gebrannter Kalk. Die Menge desselben ist nach der Menge der erdigen Beimischungen dieser Erze verschieden; er muß der Art sein, daß er zur Bildung eines Basislates, oder einer guten Hohofenschlacke hinreicht.

Die Menge des anzuwendenden Brennmaterials ist schon oben angegeben worden.

Falls diese Zinkerze andere Metalle, z. B. Eisen und Blei enthalten, so werden letztere vollständig reduziert und färben im metallischen Zustande in den Herd, wo sie nach ihrer Dichtigkeit über einander liegen, daher man jedes für sich, ohne allgemeinen Verlust ablassen kann.

Geschweifte Erze (Blende). Es gibt zwei Methoden zur Zugumachung dieser Erze:

Zuvorderst indem man sie röstet, also in den Zustand des Drybes überführt. Man streicht dasfelbe mit etwas feuchtem Zinn vermengt zu Ziegeleisteen.

Diese Ziegelsteine werden getrocknet und dann ebenso wie oxydirt Erze behandelt; jedoch macht man die Blende lieber direct zu Gute.
Die direkte Zugtemperung dieser Erze besteht darin, eine solche Menge von Eisenerz zuzuschlagen, daß die Blende gänzlich entschwefelt und der Zink frei gemacht wird.

Als Zusatz wird man in diesem Falle gebrannter Kalk an, und wenn das Erz Schwefelspath oder Gips als Gangart enthält, so muß man auch Flusspath zuzuschlagen. Die Menge des Kalkzusatzes hängt von der Menge der erdigen Substanzen ab, welche das zu behandelnde Erz enthält, und auch von der Menge des zugeschlagenen Eisenerzes.

Bei der Auswahl der Eisenerze hält man vorzugsweise auf solche welche Zink enthalten, jedoch in zu geringer Menge, um aus dieses Metall allein zu Gute gemacht werden zu können. Enthalten die zuschlagen- den Eisenerze Wässer oder Kohlenfärbe, so muß man letztere durch eine vorläufige Niederschlagung, mit einer Substanz in den Hohofen gelangen, welche den reduzierten Zink wieder oxydiren kann.

Wenn das Eisenerz, welches zur Reduction der geschwefelten Erze dient, Veranlassung zur Entschwefelung zu weiter oxydierender Substanzen gibt, würden in den Canälen eine verhältnismäßig zu bedeutende Menge von Zinsfuss oder Schwefelsäure niedergegeschlagen würden, so muß man die Blende direkt mit Kühler oder Schwedenzise zu Gute machen.

Dieses Verfahren hat den Vorteil, daß absolut alle Substanzen abgeschieden werden, welche den reduzierten Zink wieder oxydieren konnten. Der allgemeine Gang des Prozesses bleibt der oben beschriebene.

Beim Zugtemachen eines Gemisches verschiedener Schwefelmetalle, z. B. von Eisen, Kupfer, Blei, Zink usw., sammelt sich in dem Herbe, außer der Schlace, metallisches Silberhalbmetal, das den Boden einnimmt und auf welchem eine Rohferronichte, die von überschüssigem Eisenerz herrührt, liegen kann.

Auf dieser Ebene findet sich, als Masse und Hauptprodukt, ein Stein, der im Wesentlichen aus Schwefeleis besteht, welches alles Kupfer der Erze als Schwefelkupfer und einen Theil der andern Schwefelmetalle ausgenommen hat.

Diese verschiedenen Produkte, d. h. die nicht flüchtigen Metalle, der Stein und die Schlace, werden aus dem Herbe abgekocht.

Der Zink sammelt sich, wie bei dem vorhergehenden Verfahren, in den Canälen.

Der Apparat und diese Prozesse geschildern die möglichst vollständige Gewinnung des Zinks und der übrigen Metalle aus sehr gemengten Erzen, ohne daß man sie stets ausbereiten muß.

Dieser Apparat und diese Verarbeitungsarten können auch ohne wesentliche Veränderungen und mit dem größten Ruhen, zur Gewinnung des Quec-
sichtbar aus seinen Erzen und namentlich aus dem Silber in angewendet werden, indem sich dieser wie die Blende behandeln lässt, wenn man nur die Berichtigung der metallischen Dämpfe etwas abändern.

Fig. 4 stellt einen senkrechten Durchschnitt und Fig. 5 einen horizontalen Durchschnitt des Öfens und seiner Ver-
dichtungsanále dar.

Der untere Theil des Zink-Desulfrozofs besteht aus einem Herde C von feuerfesten Ziegeln oder andern Steinen, der auf einem Fundament angelegt ist und welchen oben die Formen T begrenzen; das Ganze hat die Einrichtung eines Hohlzirng von kleinen Dimensionen; ebenso verhält es sich mit dem Gestell, der Raft und dem Schacht U.

In einer gewissen, nicht bedeutender Höhe über dem Kohlenfack ver-
engt sich der Schacht plötzlich bei I, so daß die oben auf der Seite aus-
gegebenen Materialien, indem sie niedergehen, einen leeren, ringsförmi
gen Raum zwischen sich und dem Dienstfutter lassen, der eine wichtige Rolle spielt und welchen der Wort Leistinne der „Aufnahmezirng für die Gasen und die metallischen Dämpfe“ nennt.

In diesem Krann sammeln sich nichtwendig die flüchtigen Stoffe, so- wohl wegen des dort vorhandenen leeren Raumes, als wegen der plö-
zlichen Berichtigung des Öfens an diesem Punkte. Von diesem ringsförmi
gen Raum gehen die vier Leitungen F aus, welche rechtwinklig zu ein-
ander stehen und, indem sie sich nach unten neigen, in einer geraden Linie nach außen gehen. Durch diese Canäle entweichen die Gase, und in ihnen verdichten sich die Zinnfämpe.

Diese Canäle bestehen aus Gusszeis oder Blei; sie sind, bis auf eine gewisse Entfernung von ihrem Anfang, mit einem ringsförmi gen blei-
bernen Mantel G umgeben, in welchen durch eine Röhre P kaltes Wasser eingeschaltet wird. Dieses Wasser wird beim Auffleiben auf Kosten der aus den Öfen strömenden Gase und Dämpfe warm und entweicht dann durch die Röhre S. Es ist natürlich jeder Kanal mit einem solchen Mantel und mit Wasser umgeben.

Am unteren Ende eines jeden von den vier Canälen befindet sich eine Röhre A, durch welche die Öfen gasen an den Punkt geleitet werden, wo sie als Brennmateriul benutzt werden können. Bei dieser Benutzung der Gase ist der untere Theil des Apparates durch eine Schieberfahur ver-
schlossen.

Die Berichtigung, welche den Krann bildet, wird mittels feuierfester Steine M hergestellt, so daß der obere Theil der Schachttes I gegen den untern hinreichend hervorragt.
Von I aus geht der Ofenschacht mit unmerklicher Verengung bis zur Gießöffnung, die mit einem beweglichen gusseisernen Deckel W verschlossen ist. Dieser Deckel hat eine kleine Öffnung, welche man, wenn es erforderlich ist, die reduzierten Gase in dem obem Theil des Schachtes anzusammeln, verschlossen hält.

Die Raft und das Gestell bestehen aus feuerfesten natürlichen oder Ziegelssteinen.

Das äußere Mauerwerk ist mit gewöhnlichen Ziegelssteinen ausgeführt.

Dieses Rauchgemäuer ist von dem Schachtbretter durch einen leeren, mit feuerfesten Materialien locker ausgesüßten Raum getrennt.

Das unter Gemäuer wird über den Feuer- und Arbeits-Gewölben durch gusseisene Balken H getragen.

Sobald diese Kalfgicht vor dem Ofen angetommen ist, werden Gichten ausgegeben, die aus einem Gemenge von Erz, Zuschlag und Brennmaterial bestehen, und es wird das Gebläse in langsamem Befugung geschaltet.

Der produzierte Zink verdichtet sich in den Canälen und manicago ihn aus denselben mittels eines Hahnes sehr leicht heraus. Dieser Zink wird alsdann in Kesseln von Ziegelssteinen oder feuerfestem Thon umgeschmolzen und zum Verkauf in Eingiffe gegossen.

Wenn sich in den Canälen zufällig weisse, graue oder gelbbliches Zinfördr bildet, so könnte man es direkt als Kärbestoff verkaufen und benutzen; man kann es aber auch mit Thon vermengen, aus diesem Gemenge Ziegelssteine streichen, dieselben trocknen und auf dem Ofen ausgeben. In letzter Falle muß man eine hinreichende Menge gebrauchten Kalk zuschlagen, um allen dem Zinfördr beigemengten Thon in eine flüssige Schläufe zu verwandeln.

Hat man Erze zu Gute zu machen, welche den Zink als Dryd enthalten, so muß man das Erz zuerst aus seinen Metallschale probiren.
und auch untersuchen, wie viel erdige und zu verschlackende Substanzen es enthält, wonach man die Menge des Zuschlages von gebranntem Kalk bestimmt. Besonders ist die Menge der dem Erz beigemengten Kalk- und Bittererde zu berücksichtigen.

Das beizumengende Brennmaterialquantum muß nach dessen Beschaffenheit und so bestimmt werden, daß eine vollständige Reduction bewirkt und die für dieselbe erforderliche Temperatur hervorgebracht wird.

Im Allgemeinen muß man den Öfenbetrieb ebenso leiten, wie den Gährung eines auf Gießereihoheisen betriebenen Höhens.

Die metallischen Substanzen welche außer dem Zink in den Erzen enthalten sind, werden sich in dem Herde sammeln, aus welchem man sie abscheiden kann; sie befinden sich dort in der Ordnung ihres spezifischen Gewichts, zu unterst das Blei, dann das Roheisen und zu oberst die Schlacke.

Das Blei wird umgeschmolzen, in Mühlen geöffnet und kommt dann in den Handel, wenn es nicht silberhaltig ist und also vorher abgetrieben werden muß.

Das Roheisen wird unmittelbar in Gänge abgestochen.

Hat man Erze zu behandeln, welche den Zink mit Schwefel verbunden enthalten, so bestimmt man vorher durch docimastische Proben den Schwefelgehalt, so wie die Erden und die Metalle, die das Erz enthält.

Wie wir schon oben bemerkt haben, muß man die Entschwefelung direct mit Roh- oder Schmiedeisen bewirken, wenn anzunehmen ist, daß die Eisenerze bei ihrer Reduction behufs der Entschwefelung des Zinkerzes zuviel oxydierende Substanzen erzeugen, wodurch verhältnismäßig zuviel Zinkoxyd gebildet würde.

In diesem Falle berechnet man die Menge des zuzuschlagenden Roh- oder Schmiedeisen nach dem Schwefelgehalt des Zinkerzes, indem man immer etwas mehr von dem Eisen anwendet, als erforderlich ist.

Die Menge des Kalk- oder auch des zuweilen erforderlichen Fluss- sath-Zuschlages bestimmt man nach der Menge der erdigen Beimengungen im Zinkerz und auch im Eisenerz, wenn letzteres zur Entschwefelung ange- wendet wird, indem stets eine leichtflüssige Schlacke gebildet werden muß.

Die erforderliche Brennmaterialmenge hängt außer dem weiter oben bemernten auch von dem Reichthum der anzuwendenden Eisenerze ab.
Calvert und Johnson, über Legirung.

In allen Fällen muß sie so sein, daß der Dienstbedarf dem Fahrgange eines Eisenhofsens entspricht.

Da die Blende gewöhnlich noch andere Metalle außer dem Zink enthält, so werden sich in dem Herde sehr viel reduzierte Metalle und Stein (der im Wesentlichen aus Schweifeisen besteht und das genannte Schwefelkupfer, so wie einen Theil der übrigen Schweifemetalle aufgenommen hat) ansammeln. Es muß daher in diesem Falle weit häufiger abgestochen werden als in dem vorhergehenden; es fällt dabei Blei und Stein. Mit dem Blei wird wie oben angegeben verfahren. Der Stein wird auf die bekannte Weise behandelt, um das Kupfer daraus zu gewinnen; aller Zink wird, wie im vorhergehenden Falle, reduziert und in den Kanälen verdichtet, aus denen man ihn herausnimmt.

LXXIII.

über Legirungen; von Professor F. Trace Calvert und Richard Johnson in Manchester.

Aus dem Philosophical Magazine, October 1855. S. 240.

Bis jetzt wurden die Legirungen nach Gewohnheit dargestellt; die Verhältnisse, worauf man sie zusammensetzte, waren das Resultat willkürlicher Urtheile, anstatt bestimmter chemischer Proportionen. Da alle chemischen Verbindungen durch Vereinigung ihrer Bestandtheile in stöchiometrischem Verhältniss entstehen, so schien es uns wahrscheinlich, daß dieses auch bei den Metallen der Fall sein muß, wenn die Umstände ihnen gestatten sich frei zu vereinigen. Daß sich unter gewöhnlichen Umständen Verbindungen in stöchiometrischen Verhältnissen nicht bilden, ruht daher, daß eines oder mehrere von den Metallen, woraus die Legirungen bestehen, in Überschuß vorhanden sind, und daß die wirkliche (stöchiometrisch zusammengesetzte) Verbindung in der Masse des im Überschuß vorhandenen Metalles erschien; gerade so, als wenn man Bismuth oder Schwefel in einem Tiegel schmilzt und hierauf erkalten läßt, wo dann bekanntlich die deutschen Krystalle von Bismuth oder Schwefel sich in dem Überschuß von Bismuth oder Schwefel befinden, welcher nicht kry stallisiert konnte.

Wir sind daher der Ansicht, daß man mittels Darstellung von Legirungen welche eine stöchiometrische Zusammensetzung haben, wohlseilere
und bessere Compositionen erhielte, als bisher gebräuchlich waren; denn ohne Zweifel rührt die Unregelmäßigkeit in der Qualität der im Handel vorkommenden Legierungen nicht nur von einem unbestimmten Metall, sondern auch von dem Umstand, daß ein Theil dieses Nichte-
schusses sich mit einer bestimmten (stochiometrisch zusammengesetzten) Legi-
ierung verbindet und die Zusammenlegung abändert; ist d. d. das in Nichte-
schuss vorhandene Metall ein sehr schmelzbares, so wird es stärker
bleiben und sich mit dem letzten Antheil der würtzischen Legierung ver-
binden, also eine Legierung erzeugen, welche eine andere Zusammenlegung
hat, als diejenige, welche sich anfangs an der Außenseite der Masse bil-
dete; wohingegen, wenn das in Nichte-schuss angewandte Metall ein we-
niger schmelzbares ist, daßselbe früher erstarrt wird als die vorherstehende
Legierung der Masse, so daß man keinen homogenen Guss erhalten kann.
Um diesen ernstlichen Nebenstand zu vermeiden, werden jetzt die bronzenen
Kannten kurz nach dem Guss abgeschnitten, damit die Masse gleichsinnig
als möglich bleibt; in Folge hiervon fällt jetzt nur beiläufig ein Zehntel
der bronzenen Geschüße mangelhaft aus, wogegen es früher ein Drittel
war.

Während unserer Versuche veröffentlichten die Hrn. Levol, Rieffel
und Joule Abhandlungen über einige Legierungen und Analysen von
stochiometrischer Zusammenlegung. Die Legierungen von Gold und Silber,
von Gold und Kupfer, dann von Silber und Blei, welche Levol ana-
lysierte, sind sehr interessant, und viele derselben sind gewiß bestimmte Ver-
bindungen, weil das relative Verhältnis ihrer Aquivalente ein niedriges
ist; hinsichtlich der von Rieffel analysirten bezweifeln wir dies aber, da
z. B. folgende Verhältnisse vorkommen:

1 Aquivalente Kupfer,
48 Aquivalente Zinn,
oder

98 Aquivalente Kupfer,
1 Aquivalente Zinn.

Unsere Absicht war nicht, einige besondere Fälle zu untersuchen, oder
nur die im Handel vorkommenden Legierungen, sondern zahlreiche neue
Legierungen in stochiometrischen Verhältnissen darzustellen und deren phys-
ische und chemische Eigenschaften zu bestimmen.

Die erste Classe von Legierungen welche wir beschreiben werden, ist
nicht nur ganz neu, sondern auch höchst interessant, denn es sind diese
die ersten Legierungen, welche mit Eisen in stochiometrischen Verhältnissen
dargestellt wurden. Es ist gewiß merkwürdig, daß man bei dem niedrigen
Breite des Eisens sich nicht bestrebt, dieses nützliche und wohlsaitige Metall mit den kostspieligeren Metallen zu legieren, z. B. mit Zinn oder Kupfer, um wohlsaitere Legierungen als die jetzt gebräuchlichen zu erhalten.

Unser Hauptzweck bei der Darstellung der Eisenlegierungen war, das Eisen weniger oxydierbar zu machen, indem wir es mit einem Metall legierten, welches mehr elektro-positiv als es selbst ist. Wir gingen nämlich von der Annahme aus, daß mittels solcher Legierungen des Eisens das Roßen dieses schädlichen Metalls in Berührung mit der Atmosphäre am sichersten vermieden werden könnte; in dieser Voraussetzung täuschten wir uns jedoch, denn die Verwandtschaft des Eisens zum Sauerkohle ist derart, daß sie nicht vermieden wird, ausgenommen in einem Falle, wenn nämlich das Eisen mit Aluminium verbunden ist.

Legierungen von Eisen und Kaliun.

Unser erster Versuch bestand darin, etwa 16.8.1 eisten (zweifach-kohlensauren Kali) und Eisen, gemischt mit überschüssigem Weinestein, einer sehr hohen Temperatur auszusetzen; wir erhielten aber nur eine geschmolzene Masse von kohlensauren Kali, nebst einem Knopf Gussisen, ohne Zweifel weil das sein zertheilte Eisenc sich zuerst mit Kohlenstoff verbund und dann nicht mehr mit Kaliun verbunden konnte.

Wir machten dann eine Mischung von seiner Eisenstelle und Weinestein in folgendem Verhältniss:

Dieses Gemisch wurde in einem Tiegel einer hohen Temperatur ausgesetzt, wodurch wir einen großen Knopf erhielten, der bei der Analyse folgende Zusammenstellung ergab:

| Eisen | 74,60 |
| Kaliun | 25,40 |

100,00

welche der Formel entspricht:

| 4 Aequiv. Eisen | 112 = 74,17 |
| 1 Aequiv. Kaliun | 39 = 25,83 |

151 = 100,00

Anstatt also eine Legierung in dem angewandten stoichiometrischen Verhältniss zu erhalten, besamen wir eine welche viel mehr Eisen enthielt. Diese Legierung hatte ganz das Ansehen von hammersbarem Eisen, und ließ sich schmieden und schweißen; sonderbarerweise war sie aber außerordentlich hart, so daß bei gewöhnlichen Temperaturen ein schwerer Vor-
Caloriet und Johnston, über Legirungen.

Wir machten einen andern Versuch mit demselben Verhältniß von Weinstein und Eisen, nur legten wir ein wenig seingepulverter Holzstaube zu; der Knopf bestand aus:

<table>
<thead>
<tr>
<th>Eisen</th>
<th>81,42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalium</td>
<td>18,58</td>
</tr>
<tr>
<td></td>
<td>100,00</td>
</tr>
</tbody>
</table>

das der Formel entspricht:

6 Äquiv. Eisen	168 oder 81,16
1 Äquiv. Kalium	39 " 18,84
	207 oder 100,00

Wir vermuteten, daß diese Legirung einen Ueberbouß von Eisen enthielt, denn auf ihrer Oberfläche befand sich eine dünne Schicht Oxyd-eisen; wir fanden dieselbe so farbig, als möglich, ohne Zweifel war sie aber zum Theil in die Masse eingedrungen. Da diese Legirung alle Eigenschaften der vorhergehenden zeigte, so bemerken wir weiter nichts darüber. In der Abstichte, diese Legirung wo möglich auf einem wohlseileren Wege zu erhalten, setzten wir ein Gemisch von seiner Eisenfeile und Kohlenzuaralen Rali (welches eben so viel Kalium enthielt als der bei den vorhergehenden Versuchen angewandte Weinstein) mehrere Stunden einer sehr starken Hitze aus, jedoch ohne den Zweck zu erreichen.

Legirungen von Eisen und Aluminium.

Wir füllten zahlreiche Versuche an, um diese neuen Legirungen herzustellen, und zwar wegen der merkwürdigen Eigenschaften welche das Aluminium besitzt; es ließ sich nämlich einerseits erwarten, daß diese Legirungen nützliche Eigenschaften besitzen, und andererseits daß es möglich warf, dieselben Eisen feine, das Aluminium wohlseiler darzustellen ließe als bisher.

Wir übergehen hier unsere fruchtlosen Versuche und beschränken uns auf diejenigen welche genügende Resultate lieferten.

Die erste Legirung von Aluminium und Eisen erhielten wir, indem wir folgendes Gemisch zwei Stunden lang der Weißglühtige auszogen:

8 Äquiv. Chloraluminium	1076
40 " seine Eisenfeile	1120
8 " Malz	224
Der Käff wurde der Mischung zugefügt um das Chlor aus dem Chloraluminium zu entfernen und so das Metall Aluminium frei zu machen; ziehen wir den Käff (als Chlorcalcium) von obigen Verhältnissen ab, so hätten wir eine Legierung von folgender Zusammenstellung erhalten sollen:

1 Acquiv. Aluminium $\quad \times \quad 14 = \quad 9,09$
5 $\quad \times \quad$ Eisen $\quad \times \quad 140 = \quad 90,91$
154 = \quad 100,00

Die Legierung welche wir am Boden des Tiegels fanden, bestand hingegen in 100 Theilen aus:

Aluminium $\quad \times \quad 12,00$
Eisen $\quad \times \quad 88,00$
100,00

entsprechend der Formel:

1 Acquiv. Aluminium $\quad \times \quad 11,11$
4 $\quad \times \quad$ Eisen $\quad \times \quad 88,89$
100,00

Wie man sieht, hat diese Legierung dieselbe Zusammenstellung wie eine der erwähnten von Kallium und Eisen, war auch, wie letztere, außerordentlich hart und rostete in Berührung mit feuchter Luft; doch konnte sie geschmiedet und geschnitzt werden.

Wir erhielten eine ähnliche Legierung, als wir obiger Mischung ein wenig sehr sein gepulverter Holzkohle beigaben und das Ganze zwei Stunden lang einer hohen Temperatur in einer Schmiedeöfen aussetzten. Diese Legierung ergab bei der Analyse folgende Zusammenstellung:

Aluminium $\quad \times \quad 87,91$
Eisen $\quad \times \quad 12,09$
100,00

In der Masse von Chlorcalcium und Kohle, welche im Tiegel zurückblieb, befand sich aber eine große Anzahl Kugeln, von der Grösse einer Erbsen bis zu derjenigen eines Stecknadelkopfes herab; diese Kugeln waren silberweiß und außerordentlich hart; was die Legierung (der Kugeln) besonders interessant macht, ist ihre Eigenschaft, in Berührung mit der feuchten Atmosphäre (und selbs mit Salpetergas) nicht zu rosen; ihre Analyse ergab folgende Zusammenstellung in 100 Theilen:

Aluminium $\quad \times \quad 24,55$
Eisen $\quad \times \quad 75,45$
100,00

entsprechend der Formel:
Calvert und Johnson, über Legirungen.

<table>
<thead>
<tr>
<th>2 „ Aluminim</th>
<th>28 = 25,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 „ Eisen</td>
<td>84 = 75,00</td>
</tr>
<tr>
<td></td>
<td>112 = 100,00</td>
</tr>
</tbody>
</table>

Diese Legirung hat also dieselbe Zusammenstellung wie die Thonerde, indem das Eisen die Stelle des Sauerstoffs in der letzten einnimmt. Wir behandelten diese Kugelchen mit schwacher Sulforsäure, welche das Eisen auszog und die Aluminium-Kugelchen zurückließ; diese hatten genau dieselbe Form wie vor dem Auslösen des Eisens, und das so gewonnene Aluminium besaß alle Eigenschaften dessen aus dem bisherigen Wege dargestellten.

Wir haben noch Versuche mit folgender Mischung angestellt:

- Kaolin oder Thonerde-Silicat ... 1750 Theile
- Kochsalz ... 1200
- Eisen ... 875

Diese Mischung lieferte eine metallische Masse und Kugelchen; die Resultate genügen uns aber noch nicht, und wir behalten uns vor, in einer zweiten Abhandlung darauf zurückzukommen.

Legirungen von Aluminium und Kupfer.

Um diese Legirungen zu erhalten, benützten wir dieselbe chemische Reaction wie zur Darstellung der Eisenlegirungen; wir wendeten nämlich an:

- 20 „ Aluminim Kupfer ... 640
- 8 „ Chlordaluminium ... 1076
- 10 „ Kalk ... 280

Wir mischten diese Substanzen innig mit einander, und nachdem wir sie eine Stunde lang einer hohen Temperatur ausgesetzt hatten, sanden wir am Boden des Theilchens eine mit Chlordaluminium bedeckte geschmolzene Masse, und in dieser Masse Kugelchen, welche bei der Analyse folgende Zusammenstellung ergaben:

<table>
<thead>
<tr>
<th>Kupfer</th>
<th>91,53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>8,47</td>
</tr>
<tr>
<td>100,00</td>
<td></td>
</tr>
</tbody>
</table>

entsprechend der Formel:

- 5 „ Kupfer ... 160 = 91,96
- 1 „ Aluminium ... 14 = 8,14

Wir machten dann wieder eine Mischung von Chlordaluminium und Kupfer in obigem Verhältnis, ließen aber den Kalk weg; dadurch erhielten wir eine Legirung, welche folgende Zusammenstellung ergab:
Legirungen von Eisen und Zink.

Wir analysierten auch einen Niederschlag der sich beständig am Boden eines Metallbades bildet, welches aus geschmolzenem Zink und Zinn besteht und zum Galvanisiren des Eisens angewendet wird. Dieser Niederschlag ergab folgende Zusammensetzung:

Eisen \[\begin{array}{c}
\text{6,06} \\
\hline
\text{93,94}
\end{array}\]
Zink \[\frac{93,94}{100,00}
\]

entsprechend der Formel:

1 Alquiv. Eisen \[\begin{array}{c}
28 = 6,79 \\
\hline
384 = 93,21
\end{array}\]
Zinn \[\frac{93,21}{100,00}
\]

Diese Legierung hatte nicht das blätterige Ansehen des Zinks, aber ein krystallinisches; sie war außerordentlich hart und kaum schmelzbar. Wir kamen auf die Vermuthung, dass das Bad mit Eisen gefästigt war, welches sich mit dem Zink verbunden und allmählich abgelöst hatte; wir nahmen daher an verschiedenen Stellen des Bades Proben der geschmolzenen Legierung von Zink und Zinn, und untersuchten diese, fanden aber nur Spuren von Eisen darin. Es ist gewiss merkwürdig, dass in dem Metallbad, welches beständig in geschmolzenem Zustande erhalten wird, das Eisen nicht vertieft bleibt, sondern mit dem Zink eine krystallinische Verbindung bildet, welche sich bei einer Temperatur von wenigstens 800° F. (426° C.) abspaltet.

Diese Thatsache veranlasste uns die Zusammensetzung des Metallbades zu untersuchen; da daselbe sehr goss ist, so benützten wir diese Gelegenheit, um über eine sehr interessante Frage ins Reine zu kommen, nämlich ob bei Anwendung eines aus Zink und Zinn in bestimmtem Verhältniss zusammengesetzten Bades die geschmolzene Masse eine gleichförmige oder je nach ihrer Tiefe verschiedene Zusammensetzung hat. Das von uns angewandte Bad war 2½ Fuß breit, 10 Fuß lang und 3½ Fuß tief; es enthielt von geschmolzenem Zink und Zinn 14 Tonnen (280 engl. Entr.).
Da die erwähnte Verbindung von Eisen und Zink in großer Menge am Boden des Metallbades vorhanden war, so ließen wir zum Herannahmen der Proben eine schmiedeeiserne Höhre von zweiter Querschnitten anfertigen, mit Flaschen auf ihrer ganzen Länge, welche durch Schrauben mit einander verbunden und in bichte Berührung gebracht wurden. Diese, am oberen Ende mit einem luftdichtschließenden Hahn versehene Höhre wurde in das geschmolzene Metallbad getaucht, und nachdem sie eine gewisse Tiefe erreicht hatte, ließen wir ein wenig Legierung einbringen, indem wir den Hahn schwach öffneten und dann schlossen. Auf diese Weise erhielten wir folgende Proben; eine am oberen Ende, eine in 21 bis 24 Zoll Tiefe, und eine am Boden, welche folgende Zusammenfegung ergaben:

<table>
<thead>
<tr>
<th>Tiefe (Zoll)</th>
<th>Oben</th>
<th>21 bis 24 Zoll</th>
<th>Boden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zink</td>
<td>81,48</td>
<td>87,72</td>
<td>90,04</td>
</tr>
<tr>
<td>Zinn</td>
<td>13,60</td>
<td>10,03</td>
<td>8,64</td>
</tr>
<tr>
<td>Blei</td>
<td>4,92</td>
<td>2,25</td>
<td>4,32</td>
</tr>
<tr>
<td>Summe</td>
<td>100,00</td>
<td>100,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Diese Tabellen zeigen klar, dass das Metallbad von Zink und Zinn (denn das Blei ist als eine Unreinheit des Zinks zu betrachten) in verschiedenen Tiefern eine verschiedene Zusammenfegung hatte, und dass die chemische Verwandtschaft nicht stark genug war, um in der ganzen Masse eine gleichförmige Zusammenfegung zu unterhalten. Es ist auch merkwürdig, dass die schwersten Metalle, nämlich Zinn und Blei, am oberen Theile des Bades in grösserem Verhältniss vorhanden sind, als am Boden. Bis wir weitere Daten haben, wollen wir keine Erklärung dieser That sache ausstellen.

Bemerkenwerth ist ferner, dass wenn man bei den analytirten Proben das Blei unberücksichtigt lässt und bloß das Zink und Zinn auf Procente berechnet, sich Legirungen von stochiométrischer Zusammenfegung ergeben, nämlich:

<table>
<thead>
<tr>
<th>Tiefe (Zoll)</th>
<th>gefunden</th>
<th>berechnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinn</td>
<td>14,30</td>
<td>13,89</td>
</tr>
<tr>
<td>Zink</td>
<td>85,70</td>
<td>86,11</td>
</tr>
<tr>
<td>Mitte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinn</td>
<td>10,26</td>
<td>9,98</td>
</tr>
<tr>
<td>Zink</td>
<td>89,74</td>
<td>90,02</td>
</tr>
<tr>
<td>Boden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinn</td>
<td>8,76</td>
<td>8,54</td>
</tr>
<tr>
<td>Zink</td>
<td>91,24</td>
<td>91,46</td>
</tr>
</tbody>
</table>

Obgleich die analytischen Resultate so nahe mit den berechneten übereinstimmen, beweisen wir doch, dass die Metalle in dem Bad in stochio-

Dingler's polyt. Journal Bd. CXXXVIII. S. 4. 19
metrischem Verhältniss verbunden sind, um so mehr, da das Äquivalent des Zinks so hoch im Vergleich mit demjenigen des Jinkes ist.

Legirungen mit vorherrschendem Zink.

In der Abicht, wohlseltere Legirungen zu erhalten, als die jetzt unter dem Namen Messing und Bronze gebräuchlichen, in welchen das Kupfer vorherrscht, stellten wir mehrere Legirungen in stochiometrischen Verhältnissen dar, worin der Zink vorherrschte. Um diese Legirungen zu erhalten, schmolzen wir Zinn, fügten ihm allmählich den Zink, oder den Zink und das Blei zu, und gossen dann diese Mischung in geschmolzenes Kupfer; wir rührten hierauf die Mischung gut um und gossen das Ganze in Barren. Auf diese Weise erhielten wir folgende Legirungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Gefunden</th>
<th>Berechnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>68,32</td>
<td>68,55</td>
</tr>
<tr>
<td>1</td>
<td>20,02</td>
<td>20,34</td>
</tr>
<tr>
<td>1</td>
<td>11,06</td>
<td>11,11</td>
</tr>
<tr>
<td>2</td>
<td>100,00</td>
<td>100,00</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>62,64</td>
<td>62,85</td>
</tr>
<tr>
<td>1</td>
<td>11,32</td>
<td>11,48</td>
</tr>
<tr>
<td>1</td>
<td>19,94</td>
<td>19,86</td>
</tr>
<tr>
<td>1</td>
<td>6,10</td>
<td>6,11</td>
</tr>
<tr>
<td>1</td>
<td>100,00</td>
<td>100,00</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>69,56</td>
<td>69,77</td>
</tr>
<tr>
<td>2</td>
<td>12,58</td>
<td>12,41</td>
</tr>
<tr>
<td>1</td>
<td>11,06</td>
<td>11,04</td>
</tr>
<tr>
<td>2</td>
<td>6,80</td>
<td>6,78</td>
</tr>
<tr>
<td>1</td>
<td>100,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Legirungen mit vorherrschendem Kupfer.

Wir stellten auch eine Reihe von Legirungen dar, worin das Kupfer vorherrschte, indem wir dasselbe Verfahren befolgten wie bei den vorhergehenden; die Analyse derselben ergab folgende Zusammenziehung:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Gefunden</th>
<th>Berechnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>56,25</td>
<td>56,45</td>
</tr>
<tr>
<td>3</td>
<td>43,75</td>
<td>43,55</td>
</tr>
<tr>
<td>1</td>
<td>100,00</td>
<td>100,00</td>
</tr>
<tr>
<td>Nr.</td>
<td>Legierung</td>
<td>Kupfer</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>100,00</td>
<td>86,29</td>
</tr>
<tr>
<td>2</td>
<td>100,00</td>
<td>77,77</td>
</tr>
</tbody>
</table>

Die Legierung Nr. 1 dieser Reihe, aber eine sich ihr annähernde, kommt bereits im Handel vor und wurde von Herrn. Kießel analysirt.

Die Legierung Nr. 2 kam kürzlich in den Handel, und wird wegen ihrer außerordentlichen Härte besonders beim Locomotivunterbau verwendet.

Die Legierung Nr. 3 kommt noch nicht im Handel vor, wir glauben aber, daß sie wegen ihrer physischen Eigenschaften die Legierung Nr. 2 bei vielen ihrer Hauptanwendungen ersetzen kann, während sie viel wohlfühler ist.

Wir haben auch die Wirkung verschiedener Säuren auf obige Legierungen ermittelt; denn wenn dieselben bloß Gemische von Metallen waren, so ist ein Grund vorhanden, weßhalb ihre Befähigung von den Säuren nicht gerade so angegriffen werden sollten, als wenn sie in freiem Zustande vorhanden wären; vorgegen, wenn die Metalle chemisch mit einander verbunden sind, die Wirkung der Säuren eine andere sein muß.

Salzsäure von 1,24 spec. Gewicht, welche bekanntlich auf das Kupfer schwach, hingegen auf den Zinn und das Zinn heftig wirkt, löste in zwei Stunden von 100 Theilen der Legierung Nr. 1 nur 0,2, von Nr. 2 nur 0,18 und von Nr. 3 bloß 0,12 auf. Diese Legierungen werden also viel weniger angegriffen als die Metalle wovoraus sie bestehen; interessant ist, daß die Legierung Nr. 1, welche nahezu 50 Proc. Zink enthält, von Salzsäure so schwach angegriffen wird.

Schwefelsäure von 1,50 spec. Gewicht, welche bekanntlich auf das Zinn und das Kupfer schwach, auf den Zinn aber heftig wirkt, löste in zwei Stunden von den drei Legierungen gar nichts auf.

Salpeterlösung von 1,100 spec. Gewicht, welche auf die dreierlei Metalle sehr heftig wirkt, löste in zwei Stunden von 100 Theilen der Legierung Nr. 1 nur 0,03, von Nr. 2 nur 0,02, und von Nr. 3 bloß 0,06 auf.

Diese Resultate bestätigen vollständig unsere Ansicht, daß Legierungen von hochmetallischer Zusammensetzung gegen die Einwirkung der Säuren einen außerordentlichen Widerstand darbieten.
lieber die Färbung des Glases durch die altsalischen Schwefelmetalle und deren dem Schwefel analogen Farbenveränderungen beim Erhitzung, von D. G. Splitterher.

Aus Bogendorff's Annalen der Physik, 1855, Nr. 7.

Man hielt früher dafür, daß diese Färbung von Kohle herrühre; ich habe aber dort gezeigt, daß diese gelbe Farbe vom Schwefel oder vielmehr von der Verbindung desselben mit den altsalischen Metallen veranlaßt werde, welche aus dem, die angewandten Polariette oder Soba verunreinigenden schwefelsauren Salzen durch den rothenhaltigen Zusatz reducirt worden sind, und eine sehr stark tingirende Kraft haben.

Dieses Glas, wenn es hinreichend intensiv gefärbt ist und bei vier Millimeter Dicke eine braungelbe Farbe hat, wird bei einem schwachen Röthglühren von ungefähr zehn bis fünfzehn Minuten, wobei es nicht weiter, immer dunkler und unbrauchbarer; bis es aber ganz undurchsichtig, sichtig geworden ist, lässt es nur das einfache rothe Licht hindurch und gibt das sogenannte schwarze Glas, welches man zu den Polarisations-
Apparaten verwendet, und welches bei dem richtigen Grab der Durchsichtigkeit sich auch sehr gut zur Beobachtung der Sonne eignet, die dadurch ihres Glänzes beraubt wird.

Wird dieses möglichst undurchsichtig gewordene Glas (welchen Punkt genau zu treffen einige Übung erfordert), und welches bei der ersten Erhitzung seine scharfen Kanten behalten hatte, einem höheren Hitzegrad ausgesetzt, so dass dieselben sich abbruben und die Flächen gebogen werden, so wird es wieder durchsichtig, und man stellt dadurch die ursprüngliche Farbung wieder her; und wiederum etwas erhitzt, wird es wieder dunkler gefärbt.

In dem früheren Auffass wies ich schon auf die große Analogie dieser Erhöhung mit der beim Erhitzen des Schwefels hin; und beim Erhitzen der Schwefelmetalle für sich finden auch ähnliche, aber weniger befriedgende Farbenwechsel statt.

Der Vorgang nun bei dieser merkwürdigen Farbenveränderung des gelben Glases, bei welcher eine chemische Verfettung der verschiedenen Bestandtheile nicht angesehen ist, besteht also wohl darin, dass bei einer geringeren Temperaturrehöhung das Schwefelmetall in seine zuerst dem rothen und dann dem schwarzen Schwefel analoge Modifikation übergeht und sich im letzten Zustand auscheidet, und endlich dadurch das Glas ganz undurchsichtig macht, insofern das Schwefelmetall in hinreichender Menge darin aufgelöst war, denn ein nur hellgelb gefärbtes wird gar nicht dunkel, viel weniger undurchsichtig beim Erhitzen. Bei beginnendem Schmelzen des Glases wird die Ausscheidung des schwarzen Schwefelmetalls aber von der Masse wieder aufgelöst und dasselbe in seinen früheren Zustand, das gelbe Modifikation zurückgeführt.

Bei der Analyse fand ich ein solches braungelbes Glas, welches die Veränderung der Färbung sehr schön zeigte, zusammengesetzt aus:

- 62,43 Kieselerde,
- 9,46 Kalkerde,
- 1,72 Tonerde, Eisenoxyd und Manganoxyd,
- 20,04 Kali,
- 0,85 Schwefel,

also ungefähre ein Drittel Procent Schwefel enthaltend, der aus dem schwefelsäuren Barst berechnet wurde, welcher gleich nach Abstreichung der Kieselerde durch Chlorbarium niedergeschlagen worden, nachdem beim Ausschieden des Glases Kristalle von Salpeter zu der im glühenden Fluss befindlichen Masse gelegt waren, um den Schwefel zu oxydiren. Bei der Darstellung eines solchen Glases gab z. B. der Zusatz von 18 Procent schwefelsaurem Natron zum reinen weissen Glasfas bei gleichzeitigem Zusatz
von Zucker schon eine starke braungelbe Farbung, in welcher Glasmasse sich also auch ungefähr nur ½ Procent Schwefel befindet.

Beim Zuzug von Zucker allein zum reinen Säz blieb das Glas weiss, wie vorauszusehen war, da derartige sortenbraune ohne eine Spur im Glas zu hinterlassen; übriges mag wohl unter besonderen Umständen, z. B. in einem verschlossenen Tiegel geschmolzen, Kohle im Glas bleiben, und will ich darüber noch Beurtheile anstellen.

Auch darin hat, wie früher erwähnt worden, das gelbe Glas bei seinen verschiedenen Veränderungen die grösste Neigunglichkeit mit dem erhitzten Schwefel, das das Farbenvorspектum dadurch betrachtet bei zunehmender Dichte und Farbung alle starker gebrochenen Strahlen auslöschts, bis zuletzt das äusserste Roth nur noch allein sichtbar bleibt; während beides in bünneren Schichten außer dem rothen Licht noch oranges, gelbes und etwas grunes hindurchläuft. Unangerauchtes Glas läßt dagegen mehr gelbe als rothe Strahlen hindurch.

Was die Fähigkeit von der Wärme durchstrahlt zu werden, die Däthermantotheit dieses Glasees betrifft, so wohl, wenn es gelb, als wenn es nach dem Erhitzn beim durchfallenden Licht dunkelrot, und zugleich beim zurückgeworfenen schwarz ertheint, so fand sich zwischen beiden, wenn sie von derselben Dichte waren, kein Unterschied, wie dies auch mit der bisherigen Erfahrung übereinstimmte; dagegen bemerkte ich, daß ein weisses Spiegelglas mehr Wärmestrahlen hindurchließ und zwar, wenn die Nabel des Galvanometer im ersten Fall nur vier Grad abgesenkt wurde, im letzten sechs Grad, welche beiden Zahlen bei der geringen Ablenkung auch als das Verhältniss der hindurchgegangenen Wärmestrahlen angenommen werden können.

I. Pariserblau.

Im Nachfolgenden sollen einige der bewährtesten und billigsten Methoden zur Fabrication dieses Artikels mitgetheilt werden.

Erstes Verfahren.

Es beruht auf der Anwendung des Chlors im Königswasser zur Zersetzug des weissen Niederschlags. Man verfährt damit folgendermaßes.

Der Niederschlag aus Blutlaugen salz und Eisenvitriol wird in bestimmter Weise gemacht. Man hat sein Augenmerk darauf zu richten, daß der Eisenvitriol so viel als möglich oxydirt ist, was man am besten dadurch erreicht, daß man in den Bodich, in welchem sich die Blutlaug salzen soll, stets etwas metallisches Eisen vorrückig hält, wodurch man denn auch einen etwaigen Kupfergehalt des Eisenvitriols beseitigt.

Man hat ferner zu beobachten, das der Niederschlag in der noch heißen Blutlaugen salz Lösung vorgenommen werde, um dadurch eine Sauerstoffabsorption und vorzeitig herbeigeführte Blauung des Niederschlags soweit als möglich zu vermeiden. Aus demselben Grunde hat man auch die Filtration des weissen Niederschlags gleich vorzunehmen und möglichst zu beschleunigen. Nur das durch Einwirkung des Chlors, der Salpetersäure re. auf den noch weissen Niederschlag erzeugte Blau hat die dem
Farbenfabrikanten notwendige Farbenintensität, während der an der Luft blau gewordene Niederschlag, selbst nach dem man ihm das beigemengte Eisenoxydhydrat durch Salsäure entzogen hat, stets eine wenig ausgiebige Farbe liefert, die nicht einmal für die Fabrication des gemeinen Glühövers genügt.

Was die Quantität des zuzuführenden Eisenvitriols anlangt, so wird darin häufig ein Fehler begangen, indem man zu wenig Eisensalz zusetzt. Wenn auf 100 Pfund Blutlaugenfals 90 Pfund Eisenvitriol verwendet sind, so bringt ein Tropfen der Eisenlauge in einer abfiltrirten Probe keinen Niederschlag mehr hervor; der weiße Niederschlag hat dann eine Quantität Blutlaugenfals mit zu Boden gerissen, die ihm mechatanisch beigemengt ist und durch Auswaschen mit Wasser entzogen werden kann. Diese Quantität des kostbaren Arbeitsmaterials würde also für die Ausbeute theilweise verloren gehen. Um diesem Verluste vorzubeugen, schlägt man am besten folgendes Verfahren ein. Man setzt unter fleissigem Umrühren so lange von der Eisenlösungs zu, bis sein Niederschlag mehr entsteht und sät dann noch den neunten Theil von der bis dahin verbrauchten Menge der Eisenlauge bei. Hörst man jetzt das Gemenge noch eine Viertelstunde um, so kann man sicher sein, alles mechanisch beigemengte Blutlaugenfals völlig zerstört und die öconomischen Vorteile, welche bei diesem Theile der Operation möglich sind, errungen zu haben.

Um diese Prüfung vorzunehmen, bringt man ein wenig der gebläuteten Farbe in ein Glas und setzt einen Tropfen des Säuregemischs zu. Von dieser Probe füchtet man einen Tropfen auf weißem Papier aufeinander und vergleicht ihn dagegen gegen eine Probe der Farbe, wie sie in dem Botitich ist. Hat der Säurezusatz die Intensität der Farbe gesteigert, so war zu wenig vom Säuregemisch verbraucht und es muß noch nachträglich davon zugefüttert werden. Hat die Probe aber einen Stich ins Grünliche bekommen, so war vom Säuregemisch zuweniger gerade hinreichend, der die Probe zweifelhaft zugelegt werden. Um dies zu entscheiden, nimmt man eine neue Probe ins Glas und setzt einen Tropfen von dem in Wasser aufgeschwemmten weissen Niederdrucks hinzuzusetzen. Zeigt sich die Farben-Intensität dadurch erhöht, so war zu viel Säuregemisch verbraucht und dieser Fehler wird dadurch repariert, daß man so lange kleine Mengen des weissen Niederdrucks (von welchem man sich in gut verschlossenen Glasflaschen oder Einträgen immer etwas Vorrath hält) hinzusetzt, bis die höchste Stufe der Intensität erreicht ist.

Man schreitet nun zum Auswaschen u. J. w. wie gewöhnlich.

Zweites Verfahren.

Hierbei gescheht das Anbläuen des weissen Niederdrucks aus Blutlauge und Eisenwirtels durch eine Auflösung von Eisenchlorid, welche durch diesen Prozeß in Eisenchlorür (welches dann als Erguß des Eisenwirtels dient) umgewandelt wird.

Um das Eisenchlorür herzustellen, versetzt man sich zunächst einen möglichst reinen, d. h. von thönigen und fälsigen Beimengungen freien

Zu unserm Gegenstände zurückkehrend, schreitet man — bei hinreichendem Vorrath von Eisenlauge (Eisenchlorid) — zur Anbläueung.

Zu dem Ende bereitet man sich einen Niederschlag aus Blutlauge, Kali und Eisenvitriol auf die bereits angegebene Weise, filtrirt ihn und erhitzt den breiösen Rückstand in einem kupfernen Kessel zum Sieden, worauf man dieselben rasch in einen unter dem Kräne des Kessels befindlichen Bottich entleert und unter fortwährendem Umrühren mit dem Eisenchlorid verseift, bis die höchste Farben-Intensität erreicht ist. Man braucht bei dieser Operation nicht so ängstlich zu sein, wie bei dem früher erwähnten Anbläuen mit Königswasser; — überzünsichtigtes Eisenchlorid hat der Reinheit der Farbe keinen Eintrag. Deshalb seht man solange vom
Eisenchlorid zu, bis ein geringer Ueberschuß bestehen vorhanden ist, d. h. bis in einer abfiltrirten Probe des Flüssigen durch einige Tropfen Blutlaugenflüssigkeit sein weißer, sondern ein deutlich blauer Niederschlag entsteht. Ist dieser Punkt erreicht, so filtrirt man die eisenhaltige Flüssigkeit ab (wenn man ziemlich Alles gewinnen will) oder läßt die Farbe bloß abgießen undzapft das Blaue ab (wenn man einen größeren Theil der Flüssigkeit verloren geben will).

Diese Flüssigkeit ist — wie schon erwähnt — eine Auslösung von größentheils Eisenchlorid (salsvaarem Eisen oxydul). Um sie ganz baren zu verwandeln, bringt man sie auf Bruchstücke von altem Eisen (Rohrfeisen oder Blech), wo sie dann nach kurzer Zeit anstatt des Eisenvitriols zum Niederschlagen des Blutlaugenflüssches dient, — ein besonderer Vorteil dieser Fabrikationsmethode.

Die Farbe wird ausgewaschen z. wie allgemein bekannt.

Drittes Verfahren.

Diese Methode gründet sich darauf, daß das Anbläuen des weisen Niederschlags auch durch eine Auslösung von Manganchlorid (salsvaares Manganoxyd) zu bewirken ist. Die Wirtschaftlichkeit derselben ist lediglich durch locale Verhältnisse bedingt, und es ist dabei von Wichtigkeit zu merken, daß der Handelswerte der Manganeze abgabefst ist ihrem Gehalte an Mangansuperoxyd, — daß die gewöhnlichen Erze aber meistens eine ziemliche Beimengung von Mangansyd enthalten, die denselben durch Salzsäure in der Kälte entzogen werden kann, — daß also durch Extraktion der gewöhnlichen Manganeze mit Salzsäure der Handelswerte denselben gesteigert und gleichzeitig ein Anbläuungsmittel für unsere Fabrikation gewonnen wird.

IViertes Verfahren.

Auch eine Auflösung von Chromsäure bildet ein vortreffliches Mittel um den weißen Niederschlag von Blutlaugensalz und Eisenvitriol anzubläuen, — indessen ist diese Methode wiederum nur eine unter Bedingungen anempfehlenswerte, da das resultierende Chromoxydbalsalz in der Regel schwer zu verwerten sein wird.

Um sie zum Anbläuen zu verwenden, macht man erst in bekannter Weise einen Niederschlag von Blutlaugenfalsz und Eisenvitriol, filtriert, erhitzt zum Sieden und bringt dann so lange nach und nach von der chromsäuren Flüssigkeit hinzu, bis das Maximum der Intensität der Farbe erreicht ist.

man allen Verlust vermeiden will, so muß man auch die beim Absittriren des weissen Niederschlages erhaltenen Filtrate, welche fast immer wieder etwas Blutlaugenkalk enthalten, sammeln und gelegentlich mit Eisenvertrioß füllen.

(Die Fortsetzung folgt.)

LXXVI.

Chemisch-technische Notizen: von Dr. Alexander Müller in Chemnitz.

A. Sogenanntes salpeterjaures Eisenoxyd als Färberbeige.

Von einem hiesigen Färber wurden mir drei Sorten Eisenbeige zur Untersuchung übergeben, mit dem Bemerken, daß die eine (Nr. I aus Chemnitz), Baumwollengarn stark angegriffen habe, die andere (Nr. III aus Charlottenburg) von vorzüglicher Beschaffenheit sei, und die dritte (Nr. II aus Chemnitz) zwischen den ersten beiden stehe, der zweiten aber näher komme. Eine von dem Gewerbchüter Hrn. Hoß he ausführte Analyse gab folgende Resultate.

<table>
<thead>
<tr>
<th></th>
<th>I.</th>
<th>II.</th>
<th>III.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwefelsaures Eisenoxyd (Fe₂O₃, 3SO₃)</td>
<td>57,06</td>
<td>53,77</td>
<td>46,39</td>
</tr>
<tr>
<td>salpeterjaures Eisenoxyd (Fe₂O₃, 3SO₃)</td>
<td>2,52</td>
<td>2,07</td>
<td>3,85</td>
</tr>
<tr>
<td>Gifengier (Fe₂O₃)</td>
<td>10,23</td>
<td>9,30</td>
<td>15,40</td>
</tr>
<tr>
<td>Gifenerbar (Fe₂O₃)</td>
<td>0,78</td>
<td>—</td>
<td>1,09</td>
</tr>
<tr>
<td>Gifenerbar (Fe Cl)</td>
<td>0,40</td>
<td>2,23</td>
<td></td>
</tr>
<tr>
<td>Eisen (Fe) in Summa</td>
<td>[20,03]</td>
<td>[18,75]</td>
<td>[21,03]</td>
</tr>
<tr>
<td>freie Selsäure</td>
<td>0,23</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>freier Chlor</td>
<td>0,17</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Kupferoxyd</td>
<td>Spur</td>
<td>Spur</td>
<td>Spur</td>
</tr>
<tr>
<td>Kaffl.</td>
<td>Spur</td>
<td>Spur</td>
<td>Spur</td>
</tr>
<tr>
<td>Talerde</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Tönnerde</td>
<td>Spur</td>
<td>Spur</td>
<td>Spur</td>
</tr>
<tr>
<td>Phosphorsäure</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Wasser</td>
<td>29,19</td>
<td>33,33</td>
<td>30,08</td>
</tr>
<tr>
<td>Summa</td>
<td>100,00</td>
<td>100,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Verhältnis zwischen Eisen und Schwefelsäure nach Normaläquivalenten

<table>
<thead>
<tr>
<th></th>
<th>Fe = 1</th>
<th>Fe = 1</th>
<th>Fe = 1,079</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₃</td>
<td>1,196</td>
<td>1,204</td>
<td>1,079</td>
</tr>
<tr>
<td>SO₃</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>1,536</td>
<td>1,511</td>
<td>1,514</td>
</tr>
</tbody>
</table>

Das spezifische Gewicht betrug 1,536
So unwahrscheinlich es nach ermittelten Zusammensezungen war, daß die Beize Nr. I das Vermögen der damit behandelten Baumwollengarnes beidigen sollte, so lehrten auch direkte Festigkeitsproben, welche mit gebeiztem Garn angestellt wurden, die Unhaltbarkeit der erhobenen Bezeichnung, indem die Festigkeit des Fadens nach Anwendung der Beize I (sowohl in konzentriertem als verdünntem Zustand, in der Wärme und Kälte, mit warmer und kalter Trocknung des geprüften und ungeprüften Fadens) ziemlich unverändert blieb. Indes stand die Beize I den beiden anderen doch insofern nach, als diese die Festigkeit des damit gebeizten Fadens nahe um ein Fünftel erhöhten. Daß vom Färber beobachtete Vermögen hatte also jedenfalls einen andern Grund und zwar wie sich später herausstellte, in dem Umstand, daß das Garn vor dem Färben längere Zeit an einem feuchten, modrigen Platz gelegen hatte.

Mit mehr Recht kann den Beizen I und II der Vorwurf gemacht werden, daß ihre Anwendung eine andere Mischung bei nachfolgendem Ausfärbung bebringe; denn bei ziemlich gleichem Eisengehalt besteht die Beize III anderthalbmal soviel Eisenchlorid und salpetersaures Eisenoxyd, als die Beizen I und II, und dagegen weniger schwefelsaures Eisenoxyd. Wenn man das Atomverhältnis zwischen Schwefelsäure und Eisen berechnet, so wird man zu der Annahme gelangen, daß alle drei Beizen zwar aus Eisen- vitriol durch Drybation mit Königswasser hergestellt worden seien, daß man aber zu I und II, sei es in Form von ungelöster Schwefelsäure oder als Verunreinigung des Königswassers, noch ein Fünftel soviel Schwefelsäure, als die Eisenmitglut enthält, hinzugebracht hat, während man die Beize Nr. III durch etwas übersüßig hinzugebrachtes Eisenoxyd von der freien Säure befreit zu haben scheint.

Es ist übrigens interessant, wie beratige Beizen immer noch unter dem Namen: salpetersaures Eisen curiren, obgleich sie eine kaum nennenswerte Menge von diesem toxischen Prüfafflo enthalten.

B. Analyse des Bleiessigs, welcher bei der optischen Zuckerprobe zur Fällung des Rübenfasers dient.

Dem Mittlerlichen Sacharometer wird von Lühme in Berlin ein Fläschchen voll Bleiessig beigegeben, von welchem Reagens dem zu prüfenden Rübenfasers eine bestimmte Menge zuzufügen ist, bevor die lichtabsorbenende Kraft des Eises im Polarisationsapparat geprüft wird. Um eine beratige Lösung von basisch-salpetersaurem Bleiessig nach Verbruch der ersten selbst wieder darstellen zu können, wurde die Lühm’sche Fülligkeit von dem Gewerbschüler Hrn. Hesse auf volumetrischem Weg unter-
sacht; indem man je 10 Kubikzentimeter Bleisäure mit soviel Kubikzentimetern einer titrierten Schwefelsäure versetzte, das nach Aussättigung des Bleior dys ein geringer Überschuss von Schwefelsäure in Lösung blieb, und indem man von den erhaltenen sauren Flüssigkeiten die eine unmittelbar durch titrierte Natronlauge, die andere aber nach völliger Berauchung der Essigsäure neutralisiert, wurde gefunden:

1) die Menge der an das Bleiorid gebundenen Essigsäure plus der überflüssigen Schwefelsäure;
2) die Menge der überflüssigen Schwefelsäure;
3) aus der Differenz von 1 und 2 die Menge der vorhandenen Essigsäure;
4) aus der Differenz der angewendeten Schwefelsäure gegen 2, die Menge der mit dem Bleiorid niederschlagenden Schwefelsäure und somit die Menge des vorhandenen Bleiorids selbst.

Es berechnet sich hieraus die Zusammensetzung des fraglichen Bleisäges in 100 Theilen zu

2,69 Theilen Essigsäure (C\textsubscript{4}H\textsubscript{4}O\textsubscript{2}),
11,54 " Bleiorid (PbO)
und 85,77 " Wasser

in 100,00 Theilen.

Das atomistische Verhältnis von Essigsäure zu Bleiorid ist wie
\[
\frac{2,69}{11,54} : \frac{11,54}{2,69} = 0,227 : 1,033 = 1 : 4,96,
\]

b. i. das Verhältnis, wie es im zweibasisch essigsauren Bleiorid bestehst.

Zur Darstellung eines ähnlichen Bleisättlictes löse man 100 Gramme frischlauferten Bleisäure in etwa 900 Kubikzentimetern destilliertem (oder Regen-)Wasser, bringe zu der erwärmten Flüssigkeit allmählich 70 Gramm fein gepulverte, frisch ausgeglühte Bleiglätte und digerire in einem wohl bedeckten Gefäß (leichtverstopften Gläschen), bis keine weitere Lösung des Bleiorids erfolgt. Im Fall die Bleiglätte füßerhaftig war und die Flüssigkeit grünlich erscheint, schütte man sie mit Bleiglätten bis zur Entfärbung; man verdünne nun aus 1 Liter und filtriere in eine gut verschließbare Flasche.

C. Darstellung des Lithion aus Lepidolith.

Vor einigen Jahren beschrieb Hugo Müller eine Methode der Gewinnung des Lithions aus Triphylit — da indes dieses Mineral an manchen Orten nur um ziemlichen Preis zu erlangen ist, während der

Die decantirte Lösung wird durch Kochen mit Kalkmilch, welche man bis zur starbsäuren Reaction zusetzt, von Eisenoxyd, Thonerde, Mangan und Magnesia befreit, filtrirt und zur Krystallisation verdampft; es scheidet sich nach und nach Gips und schwefelsaures Kali aus. Sobald die Krystalle der letzteren nach dem Abspülen mit Wasser eine deutliche Lithiumreaction zeigen, wird die verdünnte Lösung mit überschüssigem kohlensaurem Natron saft bis zur Krystallisation verlocht und dann von dem ausgeschiedenen kohlensaurem Lithion abfiltrirt, welches letztere noch mit taltem Wasser gewaschen wird. Da der früher gelöste Kiesalkal während
der langsamen Krystallisationen sich fast vollständig als Carbonat abscheibet, so enthält das ausgefallte Lithion nur noch die geringe Menge Kali, welche als Oxyd gelöst geblieben ist; eine Trennung von diesem hat bei weiterer Verarbeitung des Lithions keine Schwierigkeit. Die Lithion haltenden Mutterlaugen können, wenn sie sich in bedeutenderen Quantitäten angesammelt haben, durch phosphaurosures Natron zu Gute gemacht werden; im Kleinen lohnt es die Mühe nicht, weil ja nur wenig Lithioncarbonat gelöst bleibt.

Vorliegende Methode hat mir entschieden günstigere Resultate geliefert, als die Glühung des Glimmers mit Kali oder mit Essigcarbonsäure u. s. w.; sie eignet sich zudem recht wohl zur Gewinnung des Lithions im Großen, da die Glühoperationen im Flammenofen vorgenommen werden können (nur über die Nachbehandlung des Lithions aus dem Fluor haltenden Glimmer im Flammenofen möge man sich durch einen Versuch Gewissheit verschaffen!), und es könnten die Auslagerungsstänke hier und da noch als Farben ein verfärungsches Nebenprodukt abgeben, indem man je nach der angewendeten Temperatur und der mehr oder weniger vollständigen Schmelzung durch Abschlämmen verschiedene Nuancen in Rot — Gelbrot, Rose, bis Blaurot bis über ohne eingewendete schillernde Glimmerblättchen — gewinnen kann.

D. Darstellung von Seifen betreffend.

a. Verwendung des Nappéselaubins.

Wie bekannt, liefert Rapsöl sich mit Alkalien verfarben, eine schlechte, schaumige und kräftige Seife; diese üblichen Eigenschaften fallen weg, wenn die vorhandenen Delfarben (nach Weber und Strädel oder vielleicht identisch mit den Sensiblen) in die entsprechenden Einbinzäuren übergeführt werden, was am einfachsten auf folgende Weise geschieht:

In einen hölzernen Bottich gießt man zu je einem Centner Rapsöl 1 Pfund Scheidewasser, welches mit 3 bis 4 Schöppen Wasser verdünnt wird, wirft einige eiserne Nagel dazu und rührt Del und die saure Flüssigkeit mit einem hölzernen Instrument wiederholt so durch einander, daß möglichst viel Luft in das Del gebracht wird. Indem sich hierbei das Del mit salzhaltiger Säure sättigt, erschafft es allmählich zu einem gelben Schmalz, welches nach 14 Tagen bis 3 Wochen, wenn die Consistenz nicht mehr zunimmt, in einer hölzernen Wanne mit Wasser durch Dampf umgeschmolzen oder direkt mit Sobalange verfeift werden kann.

Dingler’s polyt. Journal Bd. CXXXVIII. 6. 4. 20
Borstendes Verfahren wird vorteilhaft sein, wenn die Delpreise um vieles niedriger als die Talgpreise sind; es läßt sich vielleicht auch mit Nutzen auf die Darstellung von Talglichten ausbeuten, welche, aus mit falscher Säure befeuchtetem Talg verfestigt, jedenfalls härter als die gewöhnlichen ausfallen müssen.

b. Wasserglasseife.

c. Ricinusölseife.

Zur Gewinnung des sogenannten Capvallkohols stellte Hr. Seебer die Natronseife des Ricinusöls dar und beobachtete, daß sich dieses Del dem Cocosnusßol sehr ähnlich verhält. Es läßt sich leicht durch Zufammenrühren mit concentrirter Natronlauge verseifen; das Product zeichnet sich aus durch schöne weisse Farbe, durch seine Amorosie und Durchscheinheit, und besitzt bei 70 Procent Wasser eine ziemliche Härte. Wenn die Ricinusseife, wie in Frankreich die Aussichten dazu vorhanden sind, eine ausgedehntere Cultur wird erfahren haben, dürfte das Ricinusöl einige Wichtigkeit für die Seifenfabrication erlangen.

LXXVII.

Über die Ursachen, welche die Veränderung der positiven Lichtbilder herbeiführen, und über ein Mittel dieselben wieder herzustellen; von den Hrn. Davanne und Girard.

Aus den Comptes rendus, Oct. 1855, Nr. 17.

Von den positiven Lichtbildern auf Papier dürften nur wenige einer mehrjährigen Berührung mit den atmosphärischen Agentien widerstehen.
können; wir meinen hiermit die nach dem gewöhnlichen Verfahren mittels unterschweissigauren Natrons dargestellten Bilder, und keineswegs diejenigen bei deren Darstellung die Goldfäule verwendet werden.

Bekanntlich besteht die erstere von diesen Verfahrensarten, welche bisher allgemein von den Photographen angewendet wurde, darin, daß aus dem Copixabanten genommene positive Bild in einem Bad von unterschweissigauren Natron einzuweichen, um das nicht zerlegte Chlorsilber auszulösen; das Bild kommt aus diesem Bad mit einem salbtreten Ton, welchen man durch einen angenehmen bläulichschwarzen Ton zu ersetzen sucht. Zu diesem Schönen (virage) dienen Bäder von unterschweissigauren Natron, welches entweder mit Essigsäure oder mit Chlorsilber versetzt worden ist; aus diesen Bädern kommt das Bild mit einer schönen Färbung, welche jedoch, wie die Erfahrung längst gezeigt hat, sich nicht unverändert konserverit.

Bisher wurden verschiedene Hypothesen über die allmähliche Zerstörung der positiven Lichtbilder aufgestellt, ohne daß jemals eine ernstliche Untersuchung angestellt wurde; wir waren bemüht, diese Lücke auszufüllen und diese interessante Frage durch die chemische Analyse aufzulösen. Als wir über die angegebenen Operationen nachdachten, hielten wir es für höchst wahrcheinlich, daß ein rothes Bild, welches fixirt aber nicht geschönt wurde, durch zerfallenes metallisches Silber gebildet ist, und nicht durch Halb-Chlorsilber, wie man gewöhnlich annimmt; ferner das dieses Silber, in Verbindung mit den erwähnten Schönungsbadern, sich in Schwefelsilber umwandelt, welches die atmosphärischen Einflüsse, hernach modifiziren. Versuche haben die Richtigkeit dieser Hypothesen dargethan.

Wir stellten uns bei der analytischen Untersuchung folgende Fragen: 1) in welchem Zustand ist das Silber aus einem positiven Lichtbild, welches fixirt aber nicht geschönt wurde (indem wir nebenbei ermittelten ob unterschweissigaures Natron in dem Papierzeug zurückgeblieben war); 2) in welchem Zustand ist das Silber aus einem positiven Bild, das nach dem gewöhnlichen Verfahrensarten geschönt wurde, nämlich mittels unterschweissigauren Natrons, welchem Chlorfurer oder Essigsäure zugefügt worden ist. 50

Das Verfahren, welches wir zur Analyse anwenden, war sehr einfach; es bestand darin, das Papierblatt mit einer Anlösung von salpetersaurem Kali und von kohlenstoffm Natron zu trennen, es dann zu verbrennen und die Asche zu analysiren; nach dem Einäschern blieb das Silber

50 Die französischen Photographen nennen diese Bäder „alte unterschweissigaure“ (hyposulfites vieux).

Um die erste Frage zu entscheiden, ließen wir ein mit Chlorölsilber getränktes Blatt sich am Licht vollständig schwarz, dann wischen wir es in reinem darunterweseligsauren Natron, hierauf in bestilltem Wasser, endlich verbrannten wir es. In der Asche fanden wir keine Spur von schwefelsaurem Salz; die Menge des Chlors betrug 0,002 Gr.; diejenige des Silbers 0,124 Gr. Hieraus folgt einerseits, daß das reine unterweseligsaure Natron keine Spur von Schwefel zurückgelassen hätte; andererseits war die Menge des Chlors im Verhältnis zu derjenigen des Silbers so gering, daß man sie als Unreinheit des Papiers betrachten konnte; um Chlorölsilber zu bilden, hätten sie sonst mehr betragen müssen, nämlich 0,020 Gr. Mehrmals wiederholt, gab diese Analyse stets dasselbe Resultat. — Folgender Versuch beweist in auffallender Weise, daß das Silber auf dem positiven Lichtbild kein Chlor enthält: wir bereiteten eine gleichmäßige beträchtliche Menge Chlorölsilber, welches wir in einer Schale ausbreiteten, dann einen Tag lang am Sonnenlicht umrührten, hierauf mit unterweseligsaurem Natron und dann mit bestilltem Wasser wischen; der mit reinem wasserfreien Natron geschmolzene Rückstand gab einen König von metallschem Silber; der Flüss enthielt aber keine Spur von Chlor. — Wir bemerken noch, daß die Oberfläche der Bilder in Salpetersäure vollkommen unaustößlich ist, während man das Halb-Chlorölsilber als unaustößlich betrachtet.

Aus diesen Versuchen glauben wir schließen zu können, daß das positive Lichtbild durch metallsches Silber gebildet wird, und nicht durch Halb-Chlorölsilber, wie man bisher angenommen hat.

Um nun noch zu bestimmen, in welchem Zustand das Silber auf den geschönten Bildern ist, haben wir eine Anzahl solcher analysirt, auf denen wir den gewünschten schwarzen Ton mittels der gewöhnlichen Schönbäder (unterweseligsauren Natron, gemischt mit Essigsäure oder Silbersalz) hervorgebracht hatten; wir fanden darin immer nicht nur Silber, sondern auch Schwefel, und zwar nahezu in dem zur Bildung von Schwefel-
welche die Veränderung der positiven Lichtbilder herbeiführen. 309

Wir gingen hierauf zur Untersuchung der veränderten Bilder über; wir analysirten nämlich Bilder, welche seit mehreren Jahren dargestellt worden waren und deren schwarze Färbung sich in eine gelbe verwandelt hatte; ferner Bilder welche wir selbst verändert hatten, indem wir sie nach dem Schonen mehrere Tage im Wasser liegen ließen; endlich Bilder welche wir direkt auf unten angegebene Weise geschwefelt hatten; in allen sanden wir wieder Schwefel und Silber, und merkwürdigerweise war deren Verhältnis ziemlich dasselbe wie in den schwarzen Bildern welche aus den Schönungsbädern kommen.

Sonach hatte die Analyse in den fixirten Bildern nur Silber nachgewiesen, während in denjenigen welche geschönt worden waren, sie mochten schwarze oder gelb seyn, Schwefel und Silber vorhanden war, und zwar nur diese zwei Körper. Es fragte sich noch, ob diese Schwefelung wirklich die Ursache der Verfärbung der Bilder ist. Um darüber Gewissheit zu erlangen, haben wir gut fixirte Bilder geschweflet, theils nach den photographischen Versuchsarten, theils in Schwefelwasserstoff-Wasser, theils in einem Strom von Schwefelwasserstoffgas; jedesmal wenn diese geschwefelten Bilder auf irgend eine Weise der Feuchtigkeit ausgesetzt waren, verschwand ihre schwarze Farbe racht und verwandelte sich in eine gelbe, während die bloß fixirten (nicht geschönten) Bilder gar keine Veränderung erlitten. Wir begnügten uns von der in dieser Hinsicht angestellten Versuche zwei anzuführen; beim ersten wurde ein Blatt lange Zeit in einer Lösung von Schwefelwasserstoff gelassen; es durchlief racht alle gewöhnlichen Farben und behielt endlich in demselben Bade die gelbe Farbe der veränderten Bilder bei; bei dem zweiten Versuch wurde ein Bild zweis in der Wärme getrocknet, dann 24 Stunden lang in einem Strom von ganz trocken Schwefelwasserstoffgas gelassen; es behielt seine schwarze Färbung, wurde aber racht gelb, als wir es nachher mit Wasser in Berührung brachten.

Wir glauben aus den mitgetheilten Thatsachen folgern zu können, daß bei den gewöhnlichen photographischen Versuchsarten die Schwefelung der Bilder das Schonen derselben verursacht, und bei Gegenwart
von Feuchtigkeit deren Zerstörung. Die Anwendung der Goldfälsche, welche Reaktionen ganz anderer Art veranlassen, hat diese Nachtheile nicht.

Es wäre nun noch zu untersuchen, warum dieses schwarze Schwefel-
füller bei Gegenwart von Feuchtigkeit gelb wird. Da in beiden Fällen keine Änderung im Verhältnis der Bestandtheile eintritt, so muß man entweder eine Hydratbildung der Verbindung annehmen, oder eine dem rothen und schwarzen Schwefelquellsulfur analoge isomerische Modification.

Schließlich bemerken wir, daß einem so dargestellten (geschönten) Bild, wenn es durch die Zeit zerstört worden ist, die schwarze Färbung leicht wieder in beliebiger Stärke ertheilt werden kann; es genügt dazu, das Bild einige Stunden lang an einem dunklen Orte in Wasser zu tauchen, welches per Liter 2 bis 3 Gramme Chlorgold enthält; siedet erfolgt eine doppelte Zerstörung und das Gold lagert sich an der Stelle des Silbers ab; man befeitigt hernach mittels einer schwachen Aufsulzung von unterschwefligauarem Natron das gebildete Chlorsulfur, wascht das Bild und dasselbe ist nun vollkommen wieder hergestellt.

LXXVIII.

Verfahren zur mineralischen Gerbung der Härte; für A. C. Bellford in London am 12. Januar 1855 als Mit-
theilung patentirt.

Es wurden schon verschiedene mineralische Substanzen zum Gerben der Härte in Vortheil gebracht, dieselben konnten aber nicht mit Erfolg anstatt der Lebke und übrigen vegetabilischen Gerbmaterialien in Gebrauch kommen, weil das nach diesen Verarbeitungsorten erzeugte Leder nicht die erforderliche Biegamkeit und Zähigkeit besaß; auch verlor solches Leder mit der Zeit an Festigkeit, weil ziemlich viel Säure in demselben zurück, blieb, welche nach und nach die tierischen Fasern angriff.

Das Prinzip des mir patentirten Verfahrens besteht in der Anwen-
dung des (rothen) Eisenoxyds, welches unter gewissen Umständen mit der Gallerte (dem tierischen Leim) eine befähnige Verbindung bildet.

Sich auf die Anwendungsort dieses Principes übergehe, will ich einige theoretische Bemerkungen über die Wirkung der Eisenoxydsalze auf gallerthaltige Substanzen mittheilen. Wenn man die Härte in die Aus-
lösung eines Eisenoxydsalzes legt, so entsteht bekanntlich eine Verbindung ihrer Gallerte mit dem Eisenoxydsalz. Man hat diese Verbindung zum Gerben angewendet, aber bisher kein genügendes Resultat erzielt. Wenn man jedoch die Haut eine gewisse Zeit lang in der Lösung des Eisenoxydsalzes läßt und dabei ein Metallsalz zusetzt, welches das Eisenoxydsalz nicht zerlegt, so absorbiert die Gallerte der Haut immer mehr Eisenoxydsalz und gleichzeitig nimmt der Menge der Säure in den Hautoberflächen immer mehr ab, welche dadurch in Leder verwandelt oder geerbt werden. Daraus ersieht man, daß die Verbindung der Gallerte mit dem Eisenoxydsalz eine unbefriedigende ist, weil die Säure des Salzes nach und nach frei wird; ferner daß eine befriedigende Verbindung von bloßem Eisenoxyd mit Gallerte entsteht, wenn mit dem Eisenoxydsalz zugleich ein (letzteres nicht zerlegendes) Dryb angewandt wird, welches die Säure, in dem Maße als sie frei wird, absorbiert kann, so daß die Gerbeständigkeit in neutralen Zufällen bleibt. Als Eisenoxydsalze kann man schwefelsaures, essigsaures etc. anwenden; als absorbierendes Dryb läßt sich Eisenwasserstoff, Thonerde, Zinkoxyd etc. benutzen. 51

Ich gehe nun zur praktischen Ausführung des Verfahrens über.

Man wendet als Eisenals das schwefelsaure Eisenoxyd und als absorbierendes Dryb das Eisenoxyd selbst an. Um beide Substanzen gleichzeitig zu bereiten, behandelt man eine Ausschüttung von schwefelsaurem Eisenoxydul (Eisenwasserstoff) mit Manganperoxyd (Braunstein) und Schwefelsäure. 51

säure, in den siediometrischen Verhältnissen wie auf der rechten Seite der chemischen Gleichung. Dabei bleibt ein Theil des Eisenoyds als Niederichlag in der aus schwefelsaurer Eisenoyd befeuchtenden Lösung zurück, wie auf der linken Seite der Gleichung ersichtlich ist, und die entstandene (trübe) Flüssigkeit genügt daher als Gerbematerial.

\[3 \text{SO}_3 \text{Fe}_2 \text{O}_3 + 2 \text{SO}_3 \text{Mn O} + \text{Fe}_2 \text{O}_3 = 4 \text{SO}_3 \text{Fe O} + 2 \text{Mn O}_2 + \text{SO}_3. \]

Dieser Flüssigkeit legt man eine Quantität holzkauzer Eisenoyd zu, welches als Gerbematerial wie das schwefelsaurer Eisenoyd wirkt, überdies dem Leder eine braune Farbe erteilt, deren Stärke von der Menge des angewandten holzkauzen Eisens abhängt. Nachdem die rohen Hauto in gewöhnlicher Weise gewaschen worden sind, kommen sie in die Gerbepolitische, welche obige Gerbelfüssigkeit enthalten. Dieser Theil des Prozesses ist dersehe wie bei dem gewöhnlichen Gerben mit Lebe; man muss daher zuerst schwache Flüssigkeit anwenden und deren Stärke gegen das Ende der Behandlung auf 10 bis 13° Baumé steigern. Nachdem die Hauto in die Gerbepolitische gebracht sind, legt man gegebene Gerbentgift in; und wenn die Flüssigkeit nach und nach färberisch geworden ist, legt man ihr Eisenoydhydrat zu, um sie zu neutralisiren. Nachdem die Hauto auf die Weise etwa drei bis vier Wochen lang in den Bottichen eingeweicht waren, legt man sie ebenso lange Zeit in die Gruben, worin sie durch Ratten, dünne Brette, Stroh etc. von einander getrennt erhalten werden müssen, damit die Gerbefüssigkeit zwischen ihnen circuliren kann. Nachdem die Hauto so in die Gruben eingeteget worden sind, sätt man letztere vollständig mit Gerbelfüssigkeit, deren Stärke von 14° Baumé angesogen allmählich und stufenweise erhöht wird, bis zur Maximalstärke in welcher die Flüssigkeit dargefeht werden kann. Während der Zeit wo die Hauto in den Gruben liegen, müssen sie einem Druck ausgefebt werden, welcher zeitweise aufgehen wird, und der je nach der Concentration der Lösung mehr oder weniger stark ist. Diesen Druck erhält man mittels einer Platte, auf welche Leile oder eine Schraube etc. wirfen; sein Zweck ist, ein außerordentliches Schwellen der Hauto zu verhüten, zugleich aber die Wirfung der Gerbelfüssigkeit zu beleumigen, indem er derselbe veranlasst die Haut ganz zu durchdringen. Im Gegensatz mit dem Verfahren beim gewöhnlichen Gerben müssen die aus den Verfeuchtung genommenen Hauto vollständig ausgewaschen werden, z. B. mittels eines Waschapparates, oder indem man sie einige Tage in den Fluss hängt. Das Waschen der Hauto muss fortgesetzt werden, bis das ablaufende Wasser weder Säure noch Eisensalz enthält. Für gewisse Lederarten, welche
nicht stark mit Fett bestrichen werden, kann man die Häute nach dem Waschen noch mit Seifenwasser, oder mit einer Auslösung von Glycerin, Soda etc. behandeln.

Das mittels des beschriebenen Gerbenprozesses erhaltene Leder gleicht im Ansehen und der Dauerhaftigkeit dem mit Lobe gegerbten; es besitzt überdies eine größere absolute Festigkeit, da es durch Zug bedeutend weniger ausgedehnt wird. Die beschriebenen Verfahrensarten sind auch zum Gerben solcher Häute anwendbar, welche als Rauchware benutzt werden sollen. 32

Miszellen.

Leder-Rammarbeiten.

Ein von dem Ingenieur Burnell in dem Verein englischer Architekten stärklich geäußertes Bemerkung über Rammarbeiten verdient durch die reichen Erfahrungen, von welchen die Mitteilung zugezogen zeugen, wie durch die bestimmten und klar geformten Folgerungen eine weitere Verbreitung, zu welcher die folgenden, dem Bericht entnommenen Notizen beitragen mögen. — Die praktischen Folgerungen, auf welche Burnell durch die Verwendung der verschiedenen Rammen gesetzt war, sind so zusammengesetzt. Die Ergebnisse sind nur geeignet, kurze Bemerkungen in einem Grund von mäßiger Härte einzuführen. Bei sehr bedeutenden Anlagen ist ein Ge-

braucht dieser Rammen schon durch die große Anzahl der erforderlichen Mannschaft ausgeschieden. — Die gewöhnliche Rammmaschine, bei welcher ein Rammler von 12 bis 16 Cr. auf die Höhe von 12 bis 18 Fuß gewunden wird, ist die wirtschaftlich billigste, wenn die Zahl der zu rammmenden Pfähle klein oder der Grund von besonderer Harte ist. — Dagegen erweist sich der Rammer mit dem Dampfhammer am meistens, wenn die Anzahl der Pfähle sehr hoch und der Grund von einer mäßigen Harte ist. — Bei dem Rammer ist der Hammer, wie er jetzt bei größeren Ramm-

arbeiten in England vielfach verwendet wird, ist der Dampfhammer unentbehrlich an der Holzbank den senkrecht über dem Pfahl angebrachten Cylinder befestigt. Die Hubhöhe ist daher durch die Länge des Cylinder bestimmt und diese übersteigt fast niemals 2½ Fuß; das Gewicht des Dampfmofes variiert zwischen 32 und 45 Centner. Die Wirkung eines einzigen Schlages mit dem Dampfhammer ist im Vergleich zu der gewöhnlichen Maschine unter normalen Verhältnissen, wie sich aus den angeführten Daten ergibt, bei weitem geringer; aber die außerordentliche Geschwindigkeit, mit welcher die Schlage aufeinander folgen, steigert unter gewissen Verhältnissen den Effekt bedeutend über jenes Maß, welches sich mit der gewöhnlichen Maschine erreichen lässt. Während bei dieser die Schläge auf etwa 35 bis 40 in der Stunde angenehmt ist, werden dagegen mit dem Dampfhammer 50 bis 60 in der Minute ausgeführt. Die große Geschwindig-
keit bedingt denn auch einen stärkeren Verbrauch an Holz. Ist daselbe weich, so wird der Kopf leicht mürbe und ungenügend den Schlag mit unvermindertem Stärke durch den Pfahl fortzubringen, wird dagegen härteres amerikanisches Holz verwendet, so tritt nach selten eine Eingründung ein. So berichtet der Verfasser über einen sehr ungünstigen Fall, in welchem 1 Pfahl durch 5880 Schlage in 1½ Stunden kaum 3 Poll eingetrieben werden konnte, wobei 6 bis 8 führer Aufsichtsleute be

Die Erhaltung von geschlossenen und polirten Marmorarbeiten, welche dem Better ausgeführt sind, mit einfachen und billigen Mitteln; von

In Grabmonumenten, besonders marmorinen und andern Denkmälern, die dem Better ausgeführt sind, könnte vieles ungebraucht erhalten und ausgebrochen werden, ich sehe mich daher als Marmorier veranlasst, in dieser Beziehung folgendes einfache Mittel mitzuteilen.
Es ist nicht unbedeutet, daß der Marmor sowohl, wie alle übrigen Steinarten und die Metalle, welche dem freien Wetter ausgesetzt sind, und nach und nach angegriffen werden, und das die außergewöhnlichen Erscheinungen, Läger, Fleckigkeiten, von denen der Marmor wie alle übrigen Steinarten nicht frei ist, welche aber der Marmor-Arbeiter bei der Bearbeitung gar nicht bemerken kann, durch Käse, Luft und Frost nach längerer Zeit sichtbar und schädlich werden. Um diesem Wedel abzuhelfen, und zu verhüten, daß der polierte Marmor im Freien nicht verwittern kann, empfiehlt sich folgende einfache Mittel.

Die Auffüllung von Denkmälern, welche versprengt werden, geschieht gewöhnlich durch Mauer, in der Regel aber sehr mangelhaft, weil seine von Versiftungen sich noch wenig, thiel's auch gar nichts versiehen. Dieselben nehmen daher zwischen die Fugen, wo die Einse aufeinandergefergt werden, einen sehr flüssvoll oder Kalt, was sich wohl nicht zu vermeiden ist, wobei jedoch alle Fugen unbedingt mit einem Delkett, so weit es möglich ist, zu versiehen sind, damit kein Regen zwischen die Fugen eintritt, was dem Marmor nicht sehr schädlich ist.

Der hierbei zu verdendende Delkett ist sehr einfach, nämlich der gewöhnliche Glaserkett, er muß jedoch nach der Farbe des Marmors oder sonstigen Steinze zu verfeinert werden, was die Glaser sehr wohl vertheilen. Bei Denkmälern, welche schon längere Zeit im Wetter gefunden, und mit Leinölflüssiges angetrieben werden sollen, müssen die Fugen so viel als möglich von Aussen gereinigt und ausgetrocknet werden, dann mit dem Leinölfüssiges in den Fugen etwas angetrichen und nun erst von dem Delkett so viel als möglich, in dieselben eingepreßt werden. Man glattet dann den Klett, überstreicht die Fugen noch einmal mit dem Leinölfüssiges und es wird sein Wetter mehr schädlich sein.

Die Versiftungen an Brunnenbärgen und Brunnenstecken hat es eine andere Bewandtnis, und der genannte Klett kann bei denselben nicht verwendet werden.

Alle Brunnenfäre, sowohl wärmer als auch von allen anderen Steinarten, sind daher vor Eintritt der Kälte, wenigstens diesejenigen, welche nicht tief genug im Boden stehen, und bei denen daher die strenge Kälte unter den Boden eindringen kann, von Wassertiefen ganz leicht zu umgeben und von Innen so viel als möglich bei strenger Kälte voll Wasser zu halten, die allensfähige Eisdecke auf dem Wasser zeitig genug einzubrechen, und der Brunnenfass wird unschädlich bleiben.

(Mittheil. f. d. Gewerbeveen d. Bergsgehms Nassau, 1855, S. 64.)
Das englische Verfahren bei Gelbbrunnen.

Auffallend hängt die rötliche oder heller gelbe Farbe des Metalls von den Verhältnissen ab, in welchen sich Kupfer und Zink in der Legierung befinden; rötliches Metall hat mehr Kupfer, gelbes mehr Zink. Das Kupfer, der wertvollere Bestandteil, gibt der Kupferlegierung die schönste Farbe und Wärme, welche bei einem größeren Anteil von Zink hierhergebracht werden kann.

1) Um zu erzielen, eine reine Metallösung bei den zu behandelnden Gegenständen zu erhalten, taucht man dieselben in verdünnte Schwefelsäure. Das richtige Verhältnis der Verdünnung muß durch Versuche gefunden werden; genügend mag es sein, wenn bemerkt wird, daß die Lösung nicht stark zu sein braucht. Die Behandlung mit verdünnter Schwefelsäure werden zugleich auch die Unreinigkeiten entfernen, welche etwa von dem Lötwerk mit Betrug noch vorhanden sind.

Es ist gleichmäßig, die Gegenstände vor dem Eintauchen noch einmal abschleifen, namentlich um sie auch von allem Feit zu befreien. Das Ausläugchen geschieht in Wasser, um den Rauch abzuscheiden; Dunstrohr-Ölöl is sich hierzu. 2) Nach dem Abschleifen und Eintauchen in die verdünnte Säure werden die Gegenstände in einen Trog geworfen, welcher mit verunreinigtem Schwefelwasser gefüllt ist. Der Trog ist von Holz und mit Bleiplatten ausgezogen; zur Hüllung verwendet man das Schwefelwasser, welches bei den derzeit existierenden Fabriken bereits gebietet hat und nicht mehr zu diesen letzteren gebraucht werden kann. Man hat bei dem Eintauchen der Gegenstände darauf zu sehen, daß die chemische Einwirkung nicht zu rasch und heftig sei, was aus der Menge des sich entwickelnden Gases zu ersehen werden kann. Die Praxis muß auch hier wieder den Maßstab finden lassen. 3) Das Metall vollständig rein und von durchaus gleichmäßiger Farbe, so nimmt man die Gegenstände heraus, schwenkt und wäscht sie mit Wasser und trocknet sie in Sägespänen. Gewöhnliche Sägespäne von Fichtenholz, frei von Harz sind genügend.

3) Hierauf folgt das Nassen (deadening), der schwere Prozeß. Dies geschieht, indem man die Gegenstände in ein Bad von Salpetersäure bringt, die mit etwa einem Drittel Wasser verdünnt ist. Ein ganz genaues Mischungsverhältnis kann hier nicht angegeben werden, indem die Stärke der Salpetersäure auch die Temperatur in Betracht gezogen werden muß. Man kann sich leicht leicht überzeugen, ob die Lösung die richtige Wirkung hat; die Einwirkung muß nämlich eine gleichmäßige sein, daß also die eingetauchten Gegenstände auf ihrer ganzen Oberfläche sich mit einem gleichmäßigen Schaum überschreiben, welcher nach einer oder zwei Minuten der Einwirkung weder verschwindet, noch die Gleichmäßigkeit der Legierung in Bedingung des guten Erfolges. Ist der Gegenstand nach diesen kurzen Ein- tauten festig oder blossig, so ist der Prozeß unvollkommen und der ganze Prozeß muß wiederholt werden, indem man die Gegenstände wieder in den a 2 erwähnten Trog bringt.

4) Ist die Gleichmäßigkeit in gewünschter Weise durch vorhergehende Behandlung erzielt, so taucht man dann die Gegenstände in eine Salpetersäure (doppel- tes Schwefelwasser) und bringt sie dann angenähert in zweite Wasserhähne, um sie überfließend und vollständig abzuspülen, damit der Gegenstand Verdünnungen, in denen sich die Säure halten könnte, so ist es erforderlich, daß man besonders sorgsam in einer warmen Retorte anlegen taucht. Man läßt sodann die gewaschenen Gegenstände in einem Wasser liegen, dem etwas pulverisierter rohen Wein-
sein beiseht. Dies gibt dann die schöne Mattfarbe, welche im Handel so sehr geschätzt wird.

Galvanische Verzinnung der Metalle; von Roselieuc und Boucher.

Roselieur und Boucher werden die galvanische Verzinnung, namentlich auch aus Zufällen an und zwar sowohl aus zufälligen Verhältnissen zum Küchengebrauch u. s. w., als aus andre zufälligen Verhältnissen, wie Ornamente u. s. v. Ihre nach ihrem Verfahren verzinnte Zügseisen besitzt ein schönes ästhetisches Aussehen, weil darauf sehr viele Ornamente aufgebracht werden können und es somit in vielen Verhältnissen eine wertvolle Anwendung finden kann. Die zur Verzinnung des Zügseisens dienende Zufälligkeit bereitet sie aus 500 Litern destilliertem oder Regenwasser, 6 Kilogram pyrophosphorsaurem Zinn, 1 Kilogram Zinnchlorid, 1/2 Kilogram ausgetrocknetem und geschmolzenem Zinnlauge.

Je nachdem das pyrophosphorsaure Zinn, welches nicht immer von gleicher Zusammensetzung ist, eine zu hart eine zu wenig alkalische Reaktion bringt, lässt man die Mengen des geschmolzenen oder sauren Zinnlauge variieren. Das Bad muss auf einer Temperatur von 70 bis 80° Cent. erhalten werden. Die hier angegebene Zusammensetzung des Bades erscheint den Erfordernissen der angegebenen, weil die schwach alkalische Beschaffenheit deselben die Nebelwände der sauren Bänder, welche die
Drydation, begünstigen, ausschließt, und doch auch nicht die Nebelstände der stark alkalischen Bäder, die Sint von bläulicher Farbe abgeben, und viele Wasser nötig machen, um nicht dem Gussseifen ihren Geschmack zu lassen. Früher benutzte man die Gründen zur Nießwürflung des Fins eine besonders galvanische Batterie, gegenwärtig werden sie aber, außer zur Verginnung des Zinks, eine solche nicht mehr an, sondern um Schmiedeken, Gussseifen, Stahl, Küfer, Blei, Antimon, Zinn (wohl minder reines) u. s. w. zu versinnern, tauchen sie die Gegenstände, nachdem sie gut abgedeckt und gereinigt sind, durch einander mit einigen Einheiten Zinn in das erwärmte Bad. Wenn sie nach zwei bis dreitägigem Verweilen in demselben herausgenommen werden, zeigen sie ein weisses matres Ansehen, welches durch Bearbeitung mit einer Kugelwürfel von Messingdraht glänzend wird. Soll der Nießwürflzug bis fein, so wird das Gießen mehrere Male wiederholt. Das Bad kann fast immerfort benutzt werden; es genügt ihm, bevor man neue Gegenstände hineinbringt, 300 Gramme prophosphorfaures Natron und eben so viel Natriumsulfat zuzufügen. Die Zinnflüche verjüngen sich natürlich nicht, sondern lösen sich allmählich auf. Will man Zinn verjüngen, so muss man eine besondere galvanische Batterie anwenden.

Das zur Verginnung des Zinks anzuwendende Bad bereitet man aus 600 Litern destilliertem Wasser, 5 Kilogrammen prophosphorfaurem Natron und 1 Kilogramm geerntetem und geschmolzenem Zinn sulfat (aus dem Technologische, durch das polytechn. Centralblatt, 1864, S. 1319).

Versahren zum Verplatiniren der Metalle; von Rosleus u. Lauer.

Ueber die Wirkung des Blutlangensalzes auf eine Mischung von Eisen- und Kupfersalz; von J. W. Slater.

Ueber die Entglasung des Glases; von Professor Schubart.

Dr. Prof. G. L. Schubart begleitet die Abhandlung von Pelouze und die Beobachtungen von Dumas über die Entglasung des Glases (pohlistisch. Journal Bd. CXXXVII S. 182) in den Verhandlungen des Vereins zur Förderung des Gewerbelebens in Preußen (1855, vierte Rieser) mit folgender Nachschrift:

Bei Gelegenheit einer Mitteilung über das Nuß und klares Glas, welche ich im Jahre 1844 durch die Verhandlungen des Vereins für Gewerbeförderung abgegeben habe, erwähnte ich auch das Alabastrglas und die Art und Weise seiner Darstellung. Ich erlaube mir hier die in jenem Anfänge gegebene Weisheit auf wiederholen: Zur Darstellung des Alabastrglases wird derselbe Glashüt man wie zu Krystallglas verwendet, bei dem Schmelzen verfärbt man aber also, so wie der Glas so eben geschmolzen ist, wird das Glas ausgeschnitten und abgestreift. Ist dann eine neue Portion eingeschmolzen, so wird das halbe abgeschiedene Glas davon beigemischt, abwogen die Masse abgekühlt, und das niedergeschmolzene Glas bei möglichst geringer Hitz verarbeitet. Das Glas bleibt während der ganzen Zeit des Verarbeitens rühre und weich (z. B. nicht durchsichtig und klar, farblos); würde man aber die Hitz bedeutend erhöhen, so würde es farblos werden. Ich möchte die Ursache der Beschaffenheit des Glases in einer 'Discontinuität der Materie' suchen, ebenso wie Schnee gegen klares durchsichtiges Eis, wie zu Schnee geschlagenes Eisweiss gegen das klare, Glasspulver gegen Glasschäfte, Wasserstrahl gegen Wasser sich verhält."

Zugleich füge ich noch eine bereits im Jahr 1844 mitgetheilte Thatfache hier an, nämlich, dass das Abbauglas durch Kristallhobel tüftelblau gefärbt wird, während es es das Krystallglas, aus einem vollkommenen gleichen Gase erzeugt, blau-grün, aber ganz anders hell grün färbt.

Mittel gegen Kesselsteinbildung; von C. Duclos de Boussois.

Der Erfinder bereitet in einem halsernen oder sonstigen Gefäß folgende Lösung:

Wasser 450 Kilogr.
krystallisierte salpetersaure Barbit 125
concentrierte Salzsäre (120 spec. Gewicht) 25

600 Kilogr.

Mauméjé's Verfahren zur Kühlenzucker-Fabrikation.

Die Kältung würde in der Kälte von 30° umgangen und die Kälte Flüssigkeit kann in dem Masse, als man sie verarbeiten kann, mit Kohlenstodt behanbeln werden, damit der Zucker bis zu dieser Zeit gegen Veränderung geschützt bleibt.

Prof. Runge bemerkt über dieses Verfahren, dass nur die Praxis über dessen Wert entscheiden kann, dass sich aber nach der Theorie gute Resultate von demselben erwarten lassen, weil es die Veränderungen des kristallinischen Zuckers verhindern würde, vermitteln man die Zeit der Verarbeitung der Monatsbüden auf vier Monate befränzen müs. (Armengaud's Publication industrielle, 1855, t. IX, p. 440.)

Bereinfachung des Frankeschen parabolischen Centrifugalregulators für Dampfmaschinen.

Mit einer Abbildung aus Tab. V.

Der empfindlichste und beste Regulator für Dampfmaschinen ist bekanntlich der von Fräulein erfindene (beschrieben im polytechn. Journal Bd. CVIII S. 321), wobei die Schwungsiegelien gewogen sind, nach einer Parabel aufzusteigen, was durchaus erreicht wird, daß die Kugeln mittels Gabelstäben je an einer kleinen Rolle hängen, welche Rollen auf einer parabelähnlichen Curve laufen, die mit der durch den Schwerpunkt der Kugeln gezogen gedachten eigentlichen Parabel entsprechend.

Der Grund warum dieser Regulator noch nicht häufiger in Anwendung gefunden ist, mag wohl darin liegen, daß dessen Ausführung, wenn er richtig wirken soll, mehr Aufmerksamkeit erfordert, als bei dem gewöhnlichen Watten.

Fig. 10 stellt nun einen neuen Regulator dar, der die Theorie des Frankeschen Regulators mit der Einfachheit der Ausführung des Watten vereinigt.

Es seyen m B und An Theile der nach der Umbrechungszahl des Regulators berechneten Parabel, B und A die tieffste, m und n die höchste Stellung der Kugeln. Nun halbire man den Parabelast m B in q, so läßt sich durch die drei Punkte m q B ein Kreisbogen beschreiben, dessen Mittelpunkt auf die entgegengesetzte Seite der steienden Welle f, nämlich nach b fallen wird. Wendet man daselbe Verfahren für den Parabelast An an, so wird für Bogen An n der Mittelpunkt nach a fallen.

Überrascht man sich durch Verzeichnung in Naturgröße, so wird man finden, daß die Kreisbogen sehr wenig von der Parabel abweichen, fast weniger als man beim Aussteilen einer Curve sieht kann. Man hat

somit gewissermaßen wieder einen Watt'schen Regulator, nur ist die Lage der Pendeldrehungspunkte a und b und sind die Pendellängen aA und bB genaugenommen. Es ist daher notwendig, die Welle S auf ein kurzes Stück zu schlagen, um die sich kreuzenden Arme aA und bB durchzulassen.

Der Parameter der Parabel ist aber nach Franke gleich der doppelten Endgeschwindigkeit, welche ein freifallender Körper in der ersten Sekunde erlangt, dividiert durch das Quadrat der zu erhaltenden normalen Winkelgeschwindigkeit der Kugeln. Sehnen wir den Parameter \(p \), so hat man \(p = \frac{2g}{v^2} \); ferner sey \(n \) die für den Regulator festgelegte Umdrehungszahl in der Minute, so ist \(v = \frac{2n \pi}{60} \), woraus man dann erhält:

\[
p = \frac{5653 \cdot 839}{n^2} \text{ in Wiener Füssen, oder}
\]

\[
p = \frac{1788 \cdot 8}{n^2} \text{ in Metern.}
\]

lässt man die Mittelpunkte der Kugeln bis auf \(1\frac{1}{8}, \) d. i. \(1,125 \) p auseinandergehen, wie dies in \(m \) und \(n \) der Fall ist, so dürfte sich so ziemlich die gefälligte Form herausschneiden, und wenn man nachfolgende Regel beobachtet, so kann man sich auch das Verzeichnen der Parabel ersparen und hat unter obiger Bedingung für die Entfernung der Mittelpunkte a b von einander, a b = \(\frac{1}{2} \) p; Entfernung m n = 1,125 p; die Pendellängen aA und bB genau = 1,062 p. Die Kugeln, welche nicht kleiner als 0,29 p seyn sollten, rathet man, um sie recht schwer zu befördern, mit Blei voll zu gießen.

In Wien, woher auch dieser neue Regulator stammt, wurden bereits vier Stück deselben ausgesucht, welche mit grösster Empfindlichkeit arbeiten, daher die allgemeine Anwendung deselben bestenfalls empfohlen werden kann.

Bei dieser Gelegenheit sey noch der Bewegungs-Uebertragung von der liegenden Welle I. auf den Regulator Erwähnung gethan, welche dort sehr anwendbar ist, wo man die Normalgeschwindigkeit der Maschine zeitweise ändern muß.

Die Scheibe T an der feststehenden Welle ist unten ganz flach, und ruht durch das Gewicht des Regulators auf der schmalen Scheibe K der liegenden Welle, da der untere Zapfen der stehenden Welle nicht auf dem Grund seines Lagers aufführt, somit die Scheibe K die Scheibe T

Wien, im April 1855.

A. D.

LXXX.

Diese Erfindung besteht in einer eigentümlichen Construction der vier Seitenwände sowie der Decke des Feuerfassens, deren Zweck die Erzielung einer größeren Heizoberfläche ist. Diesen Zweck erreicht ich durch Construction eines Locomotivwassersells mit senkrechten parallelen Erweiterungen, welche aus den Wassertänen in den Feuerfassen hineinragen und mit geneigten Enden versehen sind. Die unteren Enden dieser Hervorragungen reichen nicht bis zu den Roststangen hinauf, so daß die allgemeine Form des feuererigen Feuerfassens unverändert bleibt. Ähnliche Hervorragungen des Wasserraumes befinden sich an der Decke des Feuerfassens. Fig. 30 stellt den Feuerfassen eines Locomotiv-Dampfsellers im Grundrisse, Fig. 31 in der Frontansicht dar.

Fig. 32 ist ein Verticaldurchschnitt nach der Linie AB in Fig. 31 von vorn nach hinten; a ist die Feuerstür; b die Linie der Roststange; c die Rückwand, in welche die Siederohren aus gewöhnliche Weise befestigt werden. An den Seiten, vorn und oben, befinden sich die hereinragenden Wasserräume d, d, welche die Heizoberfläche vergrößern. Dieselben erstrecken sich, wie Fig. 32 zeigt, von oben abwärts, und sich etwas versiegend, gegen den Rost hin; von d aus laufen sie dann gegen die Seiten d² hin schräg zu. Die Räume e zwischen diesen Hervorragungen
Mallet's Verbesserungen an Buffern

wirken als eben so viele Feuerkanäle an den Seiten des Feuerkastens. d, d sind die seitlichen, f, f die vorderen und g, g die oberen hervorragenden Wasserräume; sind dieselben tief, so werden sie durch Staffelholz h, Fig. 30, verstärkt.

Fig. 33 stellt den Feuerkasten eines Schiffsdampffahrgasts mit den Wasserräumen d in der Seitenansicht, Fig. 34 im Querschnitt dar.

LXXXI.

Mit einer Abbildung aus Tab. 7.

a, Fig. 13, ist ein solider oder höhler Kolben, der an seinem einen Ende vier Hervorragungen b enthält; c ist eine Kammer, welche bis zu einer gewissen Höhe mit Del oder einer andern Flüssigkeit gefüllt ist. In dieser Kammer befindet sich eine freisrunde Devision d, d, weit genug, um den Kolben a mit seinem Vorprung b hinauszuschließen. Die Scheibe e verhindert das völlige Herausgleiten des Kolbens. In dem cylindrischen Ansaß f, f der Kammer e befindet sich ein umgestülpter lebender Ring g, g (Bramah'sche Liederung), welcher durch den aufgesetzten Deckel h an einer Stelle festgehalten wird. Der letztere aber enthält einen gespaltenen Messingring i, durch welchen der Kolben gleitet. Die Lage dieses Rings kann mit Hülfe der Schrauben k adjustirt werden. l ist ein Ventil, durch welches erforderlichen Falles von Zeit zu Zeit Del und Luft in die Kammer e gepreßt werden kann.
LXXXII.

Mit einer Abbildung auf Tab. V.

Soll der Apparat z. B. dazu angewendet werden, die beiden Treibräder einer Locomotive einer Achse abzunehmen, so wird das Gestell G durch Drehen der Schraubenstiftele F der Art gehoben, dass die Schienen N mit den oberen Schienen B zusammenfallen. Das Gestell wird dann durch Bolzen O in seiner Stellung erhalten, welche aus Steckn in der Grube bei P unter das Gestell geschoben werden. Die Locomotive C wird dann so über die Grube gefahren, dass die Treibräder in der Mitte der Schienen N und so stehen wie die Abbildung zeigt. Die Räder R werden nun von dem Maschinengetriebe gelöst; die Bolzen O werden unter dem Gestell G zurückgeschoben und in die Stellung hinausgeschraubt, welche die Abbildung darstellt, d. h. in welcher Treibräder und Achse gänzlich von der Locomotive trennt sind. Darauf wird der Wagen E mit dem Radpaar auf den unteren Schienen unter einen anderen Bahnszug geschoben, der zur Reparaturwerksstätte fährt, worauf das Gestell G mittels der Schrauben F gehoben wird, bis die Schienen N in eine Ebene mit den Schienen dieses Bahnszuges kommen, worauf die Räder R zur Werksstätte gerollt werden.

Sollen die Treibräder wieder an die Locomotive befestigt werden, so befolgt man das umgekehrte Verfahren. Die Räder werden auf die Schienen N gestellt, das Gestell G wird niedergeschraubt, der Wagen E unter die Locomotive gefahren, das Gestell G wird wieder in die Höhe geschraubt bis die Achsenenden in das Maschinengetriebe treten, worauf sie wieder befestigt werden und die Locomotive entfernt werden kann.

Die hier beschriebene Einrichtung wird natürlich nur da angewendet, wo sich keine Werkstatt befindet; soll der Apparat hingegen bloß zur Erleichterung der Untersuchung der Räder und der Achsen und Achsbüchsen dienen, so kann er in der gewöhnlichen Grube eines Lokomotivschuppens oder eines Bahnszuges auf einer Station angebracht sein; denn es ist alßdann nur ein Senken und Heben der Räder und Achsen erforderlich. — Der Hebeapparat kann eine verschiedenartige Einrichtung haben, z. B. mit Bahnsangen und Getrieben statt der Schraubenstiftele.
Über das Conserviren von Bahnschwellen und andern Hölzern gegen Fäulnis; von Ingenieur Ad. Schweizer in Hannover.

Aus der Zeitschrift des hannoverschen Architekten- und Ingenieur-Vereins, 1855, Br. I Heft 2.

Mit Abbildungen auf Tab. V.

Das schon früher angegebene Präparirverfahren, nach welchem die zu behandelnnden Hölzer zunächst mit Wasser dampf ausgedämpft und sodann durch hydraulischen Druck mit einer Mischung von Chlorzink und Wasser imprägnirt werden, ist bisher im Wesentlichen unverändert in Anwendung geblieben; theils zu besonderen Zwecken, theils verfuchsweise zur Gewinnung demnächstiger gründlicher Erfahrungen sind indessen einige Modifikationen des Verfahrens eingeschlagen, die hier berührt werden mögen. In ersterer Beziehung ist namentlich das vorgängige Dämpfen der Hölzer als stellenweise nicht ausgeführt zu erwähnen. Es hat hierzu einesheils die Ergrührung geführt, daß große, nicht sehr starke Hölzer durch das Dämpfen leicht windschief werden und dadurch die Benutzung verhindern oder verfehlen, andernheils auch beobachtet wurde, daß durch das Ausdämpfen eine nicht so bedeutende Quantität der Saftbestandtheile, als anfänglich erwartet wurde, aus dem Holze entfernt werden konnte; es lag daher die Idee nahe, das ohnehin zeitraubende und kostspielige Ausdämpfen zu unterlassen und statt dessen sogleich die Präparirfähigkeit in das Holz zu pressen, um mittels dieses Fäulnis verhindender Stoffes die ganze Menge der Saftbestandtheile des Holzes unschädlich zu machen,

Bei einem der Präparirapparate (dem des heutigen Centralbahnhofs, der übrigens unvollkommener eingerichtet, als die später zu beschreibenden, neueren) ist dem allgemeinen Verfahren des Dämpfens und Pressens noch hinzugefügt, daß die Präparirflüssigkeit, in welche die Hölder gebracht werden, durch Einleiten von Dampf zum Kochen gebracht wird. Es ist dies eine Operation, die wohl nur eine vollständigere Gerinnung des Sattes im Holze bewecken kann, als durch Dämpfen erreichbar, dabei aber allerdings durch den Aufwand an Brennmaterial förderlich wird. Bei den
größeren, neueren Apparaten ist ein Ausschweis nicht in Gebrauch, da folches dort nur mit bedeutendem Zeitverlust ausführbar sein würde.

1) Das dem Chlorzink in manchen Beziehungen sehr ähnliche Chlor magnesium, welches in den Mutterlaugen der Salinen ausgebracht vor- kommt und in der der Saline Lüneburg besonders vorkommt. Die Mutter- lauge der Lüneburger Saline besteht in 100 Theilen aus:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>schwefelsaures Kali und Gips</td>
<td>8,031</td>
</tr>
<tr>
<td>schwefelsaure Magnesia</td>
<td>1,098</td>
</tr>
<tr>
<td>Chloromagnesium</td>
<td>13,621</td>
</tr>
<tr>
<td>Chlornatrium</td>
<td>60,649</td>
</tr>
</tbody>
</table>

außerdem erheblichen Spuren von Brom.

Das Chloromagnesium ist übrigens zu gedachten Versuchen nicht aus den angegebenen Verbindungen geschieden, sondern die Mutterlaugen direkt so benutzt, daß die daraus bereitete Präparirflüssigkeit denselben Gehalt an Chloromagnesium besaß, als die gewöhnlich benützte an Chlorzink.

2) Der zur Erhaltung anatomischer Präparate ausgedehnt benutzte Zinbfriol (schwefelsaures Zinksulph, weißer Bitriol), welcher auf dem Harze sehr billig gewonnen wird und als Nebenprodukt einiger gewerblichen Industrien geringen Werth besitzt. Bei den angestellten Versuchen hat sich übrigens gezeigt, daß das Holz von der Zinbfriollösung weit weniger aufnimmt, als von Chlorzink mit Wasser; das Verhältnis hat sich bei gedämpftem Eichenholz wie 1 : 1,467

Buchenhölz 1 : 3,97

herausge stellt. Die Zinbfriollösung ist so stark gemacht, daß sie denselben Gehalt an metallischem Zink besaß, wie die übrigens verwandte Chlorzinkflüssigkeit.

Diese Bemerkungen vorausgeschickt, möge eine Beschreibung der Apparate, welche zum Präpariren von Holz beim Baue der Süd- und Westbahn in Benutzung sind, hier Platz finden. Es sind von diesen Apparaten 4 Stück im Betriebe, die zum Theil durch mehmalige Versetzung von einem Orte zum andern für verschiedene Districte haben arbeiten können.
Fig. 8 zeigt einen solchen Apparat mit seinen wesentlichsten Einrichtungen im Durchschnitt, Fig. 9 im Grundris. Die Haupthebelteilie sind:

Jeder der großen Kesseln ist mit Sicherheitsventil, Lufthahn, Manometer und den später zu bezeichnenden Höhren versehen, welche die Verbindung beider Kessel unter einander, sowie mit dem Dampfkeffel, den Luftpumpen, den Druckpumpen, den Gisernen etc. bewirken.

2) Dampfmaschine und Dampfkeffel.

Die Dampfmaschine, für 4 Pferdekräfte, freistehend, mit untenliegender Schwungradachse eingerichtet, hat zwei Luftpumpen, eine Druckpumpe und eine Speisepumpe zu treiben, die Luftpumpe zum Luftleermachen der großen Präparatkeffsel, die Druckpumpe, um in diesen Kesseln durch Einpressen von Präparatflüssigkeit den zum Tränken der Hölzer erforderlichen hydraulischen Druck zu erzeugen, die Speisepumpe zur Herbeischaffung des zum Anmachen der Präparatflüssigkeit notwendigen Wassers. Die Maschine bewegt außerdem zur Speisung ihres Dampfkeffels die gewöhnliche Kaltwasserpumpe, und ist stark genug, um neben ihrem eigentlichen Zweck...
kleine Arbeitsmaschinen, wie Mörtelwerke, Schleifsteine u. in Bewegung zu setzen.

Der benutzte Dampf der Maschine wird zum Vorwärmen des Wassers benutzt, welches dem Dampfkessel zugeführt werden soll.

3) Die zum Anmachen und Aufnehmen der Präparierflüssigkeit bestimmten Eisternen (in der Zeichnung nicht angegeben) sind außerdem des Gebäudes unter einem Schutzdach bis zu ihrem oberen Rande in den Erdboden eingegraben und bestehen beispielsweise aus 13 1/2 langen, 4 1/4 breiten und eben so hohen Bottichen, welche aus eichenen, 2 bis 2 1/2 ölligen Bohlen, nicht falzfreit, zusammengesetzt sind und durch umgelegte, hölzerne Heilwangen oder mittels durchgezogene, eiserne Schraubbolzen zusammengehalten werden. Die Eisternen müssen groß genug sein, eine solche Quantität der Präparierflüssigkeit aufzunehmen, dass beide große Kessel gleichzeitig bearbeitet werden können; von den Bottichen der angegebenen Größe sind zu diesem Zweck 4 Stück erforderlich.

Die Apparate werden benutzt wie folgt:

Während der Operation des Dämpfens im großen Kessel wird ab und zu die im Kessel angesammelte Lauge von Säffsöffern, das kondensirete Wasser, sowie der von den Höldern abgelaufene Schmutz durch Öffnen des Rohres g abgelassen, durch dieses Rohr auch nach Beendigung des

Der gleichmässigeren Vertheilung der Arbeit unter die beim Apparate beschäftigten 10 bis 14 Handarbeiter, sowie des Umstandes wegen, dass eine gleichzeitige Behandlung der Holzer in beiden grossen Präparierkegeln eine starke Maschine, einen grösseren Dampfessel und der Unterbrechung der Maschinенarbeit wegen verhältnismässig grösseren Aufwand an Brennmaterial verursachen würde, wird die Präparation so eingerichtet, das in dem einen grossen Kessel gedämpft wird, während im andern der hydraulische Druck hervorgerufen. Der eine Kessel kann dabei entleert und von Neuem beschickt werden, während im zweiten Kessel die Operation im Gange; außer einem nöthigenfalls unterbrochen Betriebe wird auf solche Weise an Handarbeitern (die in den Zwischenzeiten mit Hobeln der Schwellen, Transporten derselben beschäftigt werden) wesentlich gespart. Die Dauer der einzelnen Operationen der Holzpréparation beträgt:
für Abführen der präparierten Hölzer, Einfahren neuer und
für Dichten des Kesselloches 1 Stunde,
für Dämpfen der Hölzer 3 Stunden,
für Ablassen des Dampfes vom großen Kessel, Luftleerpumpen
deselben und Auffangen der Praparirflüssigkeit 1\(\frac{3}{4}\) "
für Erwärmen u. Festhalten des hydraul. Druckes im Kessel 1—3 "
für Ablassen der Praparirflüssigkeit und Öffnen des Kessels 3/4

Summa 7\(\frac{1}{2}\) bis 9\(\frac{1}{2}\) Stunden.

Man sieht hieraus, daß, ohne die Nachtzeit zu Hülfe zu nehmen,
in jedem Kessel täglich zweimal operirt werden kann, pro Tag also nach
der früheren Angabe über die Capacität der Kessel durchschnittlich 480
Stück gewöhnlicher Bahnischwellen zu imprägniren sind. Da dies in den
meisten Zeiten nicht erforderlich, so werden meist nur 2 bis 3 Kessel-
füllungen pro Tag gemacht und die dadurch gewonnene Zeit zur Ver-
längerung des Dämpfens und zu längerem Festhalten des hydraulischen
Druckes benutzt. Die letzte der täglichen Füllungen für jeden Kessel ver-
bleibt in demselben bis zum Beginne der Arbeit am andern Morgen, so
daß die Hölzer dann während der Nachtzeit in der Praparirflüssigkeit liegen
und davon noch einwaagen können.

Was den Erfolg des Ausdämpfens und des Einpressens der anti-
septischen Mischung hinsichtlich der Menge der aus- und resp. eingetric-
denen Stoffe betrifft, so ist über das erstere Genaues nicht anzugeben,
ba die Menge der vom Kessel abzulassenden Lauge des damit verbundenen
Condensationswassers wegen eben so wenig maßgebend sein kann, als das
Gewicht des Holzes vor und nach dem Dämpfen, da durch letztere Ope-
ration offengbar Wasser in das Holz gebracht wird, welches das Gewicht
modifizirt und durch das Luftleerpumpen der Kessel schwach ganz wieder
zu entfernen seyn wird.

Die Angaben über Auffahme von Zinnschlorid durch Einpressen in
das Holz weichen bei den einzelnen Apparaten stark von einander ab,
nach gröberem Durchschnitte stellt sich das folgende heraus.
Es nimmt auf an Jinkshorid:

| Apparat | 1 gewöhnliche Schwellen | 1. Radil ex. | 1. Radil ex.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>zu</td>
<td>von Glöbenholz</td>
<td>von Rispernholz</td>
</tr>
</tbody>
</table>

Göttingen: 2.42 bis 2.58 2.78 bis 3.75
Hannover: 1.0 1.07 1.96 2.25 2.70

2. Sinkshorid von 30 Proc. metallichem Zink, spec. Gewicht 1.8

Leer: 1.30 3.93 3.36

b. 1. Radil ex.

<table>
<thead>
<tr>
<th>Glöbenholz</th>
<th>Buchenholz</th>
<th>Rispernholz</th>
</tr>
</thead>
</table>

Hildebrand: 0.354 0.969 1.44

Leer: 0.33 0.98 0.84

Es sind diese Verschiedenheiten durch die verschiedene Beschaffenheit der zu behandelnden Hölder, die zum Theil sehr jung, zum Theil aber auch zur Verwendung gekommen sein mögen, der Theil dadurch zu erklären, dass bei dem Mischen der Präparirefähigkeiten wohl nicht ganz gleichmässig verfahren sein wird. Bei einigen Apparaten ist die Mischung wirklich nach Raumtheilen von Sinkshorid und Wasser, bei anderen nach Mischen mit Aräometern bestimmt, und ist das letztere schon deswegen wenig zuverlässig, weil die Lösung von Chlorzink in Wasser bei geringen Temperaturunterschieden bereits stark verschiedene specifische Gewichte zeigt.

Schon diese Abweichungen in den Angaben über Aufnahme von Sinkshorid im Holze machen die Kosten der ganzen Operation von einander bedeutend abweichend; die Preisunterschiede in den verbrauchten Materialien an den verschiedenen Orten (namentlich Leer gegenüber) machen dies noch erheblicher.
Die Arbeit des Präpariren's ohne Transport des Holzes zu und von den Apparaten hat durchschnittlich gekostet:

<table>
<thead>
<tr>
<th>Material</th>
<th>Kosten pro Stück (in Leer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buchenholz</td>
<td>2,98</td>
</tr>
<tr>
<td>Kiefernholz</td>
<td>4,73</td>
</tr>
<tr>
<td>Eichenholz</td>
<td>9,24</td>
</tr>
</tbody>
</table>

Von diesen Kosten fallen 5,3 bis 9,98 Pf. pro gewöhnliche Schwelle (durchschnittlich 2,00 Pf. pro Zubisfs) auf den Arbeitslohn der Präparation.

Außerdem müssen die Kosten der Apparate selbst aus den verarbeiteten Zubisfs Holz reparaft werden, um die Gesamtkosten der Präparation zu erhalten.

pro Kubitsch Eichenholz 1 gGr. 0,9 Pf.
" " Buchenholz 1 " 10,5 "
" " Kiefernholz 1 " 8,4 "

Anlangend die bisher gewonnenen, präfektischen Resultate zur Beur-
thellung des Werthes der eingeschlagenen Präparationsmethode, so lässt
sich darüber, obwohl der Kürze der Zeit wegen durchschlagende Erfahrungs-
gen noch nicht haben gemacht werden können, das Folgende anführen:

Mitte Juliius 1847 wurden zu Bremen 6 Stück Probenschwellen nach
zuworigen, dreiständigem Dämpfen mit einer Mischung von 1 Raumtheil
Zinkchlorid von 1,8 spec. Gewichte auf 60 Raumtheile Wasser imprägnirt.
(Wie vorher schon angegeben, ist bei den späteren Präparationsen die
Mischung der Sicherheit wegen doppelt so stark an Zinkchlorid genommen.)
Diese Schwellen (8' lang, 6 und 12' Querschnitt) waren der Holzart
nach: Jitterpappel, Eichen, Pappel (deutsche), Fichten, Tannen und
Buchen. Die Holzer wurden kurze Zeit nach der Präparation in ein
Oleos auf dem Bahnhof zu Bremen verlegt, Ende December 1849 aber
hier angestellter Beobachtung wegen nach siegigem Bahnhofe geschafft
und an einer zur Erhaltung des Holzes nicht günstigen Stelle in das Bahn-
gleis verlegt. Die letzte am 7. April d. J. (also nach Verlauf von acht
Jahren, welche die Holzer im Boden gelegen) angestellte Besichtigung ergab
folgendes Resultat:

1) Jitterpappel, vollständig gesund und ohne irgendein Zeichen an-
gehender Vermoderung.
2) Eichen wie Nr. 1.
3) Deutsche Pappel. Die gange Schwelle ist etwa 1 Zoll tief stark
angegangen, das Holz dieser Schicht schwarz gefärbt, leicht abzulösen
und zwischen den Fingern zerreiblich. Bei 1" Tiefe zeigt sich festes,
helles Holz, in welchem die Nägel zum Befestigen der Schienen noch
halten können.
4) Fichten. Die Schwelle zeigt im Allgemeinen völlig verbreitet, gesun-
des Holz; nur in der Nähe des einen Schieneansatzes zeigt sich
eine angegangene Stelle, an welcher sich etwa ¥ Zoll tief das be-
schädigte Holz leicht abtrennen lässt.
6) Buchen. Völlig gesund. Auf der ganzen Schwelle zeigt sich eine
stark bläulich gefärbte Schicht von etwa 1 Linie Stärke, welche sich
breitartig leicht abzuschaben und die frühere Holzbeschaffenheit nur noch
sehr wenig erkennen lässt. Unter dieser Schicht ist das Holz frisch,
wie so eben bearbeitetes.
Probeschläger verschiedener Art, von denen ein Theil der Präparation unterworfen, ein anderer Theil im gewöhnlichen Zustande seit Mitte 1851 im Erdboden vergraben, haben bisher genügende Resultate nicht ergeben. Das Pappelholz (an eine Stelle verlegt, welche durch spätere Holzhausfassung sehr geschützt ist) hat zwar ein aus der Oberfläche beginnendes Weichwerden des unpräparirten Holzes, keineswegs aber einen bedeutenden Unterschied des unpräparirten von dem präparirten Holze ergeben, so daß direkte, relative Vergleichen noch fehlen.

Nichts desto weniger dürfte sich aus dem erzogenenamenm Versuche, jemals mit Berücksichtigung des Umstandes, daß von den auf der Hannover-Mindener Bahn nahezu gleichzeitig mit den Probeschlägen verlegten, einige Schwellen bereits ein erheblicher Theil, als durch Fäulnis unbrauchbar geworden, ausgewechselt werden mußte, ein für die Präparation sprechendes, günstiges Urtheil schon jetzt ziehen und mit Juwelsichtlichkeit die Erwartung aus sprechen lassen, daß die Präparation mindestens die Kosten des Verfahrens decken wird, zu welchem Ende bei den oben berechneten, ungünstigen (für Leer geltenden) Preisen eine Mehrbauer von circa 1⅔ Jahren für Eichenholz (6 gBr. pro Kubikfuß Schwellholz, Erhaltungsbauer unpräparirter Schwellen zu 10 Jahren angenommen) und von circa 2½ Jahren für Buchenhölz (4 gBr. Kosten, Erhaltungsbauer des unpräparirten Holzes zu 5 Jahren gerechnet) erforderlich seyn würde.

LXXXIV.

Methode zur Erzeugung ganz reiner Munition.

Mit Abbildungen auf Tab. I.

Hr. Bergrath Morchisch theilt in dieser Hinsicht in der Österreichischen Zeitschrift für Berg- und Hüttewesen, 1855 Nr. 46, folgende Notiz mit:

> „Um nütz einen reinen Guss bei der Munitionserzeugung zu erhalten, habe ich v. B. die achtsechspunder Kugeln so gießen lassen, daß das Gusseisen in einer tangentialen Richtung in der halben Höhe des abzugsseihen Kugelkörpers in die Formsache gelangte. Durch die rotirende Bewegung des Eisens wird der oft unvermeidlich mitgerissene Formsand und jede andere unreine Absorption aus dem Gießen gegen die Mitte des ab-
>

Dingler’s polyt. Journal Bd. CXXXVIII. S. 5. 22
zugießenden Körpers getrieben und von dort in der vertikalen Achse desfelben beim Luftloche hinaus gebracht, während sowohl diese Unreinigkeiten an den inneren Bändern der Form hängen bleiben und den Abguß unanschneidbar oder gar zum Aussehen machen. (Fig. 11.)

Um das kostspielige Abstemen des Ein- und Ausgusses zu beseitigen, ließ ich eine einfache concave Fräscheibe an den Zapfen der Kugelrolle anbringen (Fig. 12). Dieselbe hat natürlich eine etwas größere Concavität, als der Durchmesser der zu fräsenden Kugel, welcher genau durch die zwei einsehbaren concaven Stahlschneiden bestimmt wird. Die Kugel, mit zwei Bäden festgehalten, wird durch einen gewöhnlichen Support vorgehoben. Auf diese Weise geht die Arbeit äußerst leicht und genau vor sich, und es wird dabei Zeit und Material erpart.

LXXXV.

Lademaschine für Kupferzündhütchen; von J. H. Josten, Mechaniker in Ratingen bei Düsseldorf. 53

Mit Abbildungen auf Tab. V.

Bekanntlich spielt die Reibung bei den Explosionen die Hauptrolle, und es war wohl keine kleine Ausgabe, bei möglichst wenig Reibung den
Zoëfen's Lademaschine für Kupferzündhütchen.

dichtesten Schlüss herzustellen, besonders da die Gestalt der Maschine, wegen der vorhandenen Pressformen (Hand) und sämtliche beim Laden gebräuchlichen Werkzeuge beibehalten werden mussten. Dennoch ist diese Aufgabe in meiner Lademaschine so vollkommen gelöst, daβ wohl schwerlich eine Explosion stattfinden kann. Zudem ist meine Maschine billiger wie die gewöhnlichen (genannten Bavier) und kann in verhältnismäßig kurzer Zeit von einem guten Arbeiter hergestellt werden.

Diese Maschine (Fig. 1.-5) besteht aus folgenden Theilen:

a) gußeisernes Gestell oder Gerüst der Maschine;
b) ein aus Schmiedeisen gebildeter Mantel, woran dieses Gestell geschraubt ist;
c) ein messingener Schieber, worauf die Pressform (Hand) gelegt wird;
d) Führungsgänge für diesen Schieber (von Stahl);
e) e Schrauben, womit das Gestell an den Mantel geschraubt wird;
f) Stellschraube mit Gegenmutter zum Feststellen der Führungsgänge;
g) Stellschraube zur Regulierung des Schiebers mit der Ladeform;
h) h Stellschrauben (mit Gegenmutter), in deren Spießen die eigentliche Lademaschine hängt;
i) ein aus harten, feinsägem Holze gebildeter Rahmen, welcher durch Querstücke in verschiedene Fächer eingeteilt ist;
j) ein aus dünnem Messing (Rothguss) gebildeter Boden für die vordere Abtheilung dieses Rahmens;
k) der eigentliche Ladenschieber (von Rothguss);
l) die Platte mit angegossenen Röhrchen, ebenfalls von Rothguss;
m) Deckplatte (aus gewöhnlichem Weißblech) auf dem unteren Schieber, worauf die Pressformen gelegt werden;

Zugstange, womit der eigentliche Ladenschieber beim Laden der Hutchen bewegt wird.

Fig. 1 stellt die Maschine in der Seitenansicht dar, wobei man sich das Gestell a der Länge nach durchschnitten gedacht hat;
Fig. 2 ist ein Längenschnitt der eigentlichen Lademaschine;
Fig. 3 ist die vordere Ansicht der Maschine, vom Mantel aus gesehen;
Fig. 4 der Querschnitt nach der Linie A B in Fig. 1;
Fig. 5 die obere Ansicht der Maschine.
Fig. 6 ist der Querschnitt des Ladenschiebers nach verbessert Con-
Fig. 6 a der Querschnitt deselben Schiebers, bevor derselbe ge-
contion;bohrt ist;
Fig. 7 der Längenschnitt des Bodens (verbesserte Construction);
Fig. 7 b derselbe vor der Bohrung. (Dieser Boden bildet zugleich den Deckel auf dem Ladeschieber.)

Fig. 6 und Fig. 7 sind in natürlicher Größe gezeichnet, alle andern Figuren im vierten Theil der wirklichen Größe. Gleiche Buchstaben bezeichnen in allen Figuren dieselben Gegenstände.

Wenn der Schieber d aus der Maschine herausgezogen wird, um die Form welche gefüllt worden ist, mit einer andern zu wechseln, so könnten einige Körnchen von der Zündmasse aus der Lademaschine auf das Gusstäfelsäugelchen und das Geleise fallen und durch die Reibung welche beim Wiederhereinfahren des Schiebers verursacht wird, sich entzünden. Diesem ist nun durch das Schubblech n vorbeugt, indem daselbe etwas breiter als der Schlitten und so lang ist, daß es auch dann
noch der Führung und dem Geleise Schutz bietet, wenn der Schieber ganz herausgezogen ist. Damit der Schieber nicht seitwärts ausgleitet, ist er an seiner unteren Seite gleich einem Drehbanfelgeleise mit einer Nuth versehen, in die ein entsprechendes Stück passt, worauf er gleitet. Zum Festhalten der Pressformen auf diesem Schieber dienen ein Paar einfache Stahlsätze, welche in die Löcher, die jede Ladeform enthält, lose passen, damit die Form bequem und sicher hineingelegt werden kann.

Recht an dem Gestell a ist unter den angezogenen Lappen, welche nach oben stehen, seitwärts ebenfalls ein Querstück angegossen, worin sich ein vierkantiges Loch befindet. Es dient der Zugstange o als Leitung, wenn der Ladeschieber 1 bewegt werden soll. Die andere Leitung für diese Zugstange ist in dem Mantel, worin ein gleiches vierkantiges Loch angebracht ist.

Der wichtigste Theil ist der Oberheil der Maschine oder die eigentliche Lademaschine; ihre Herstellung erfordert die größte Genauigkeit, wenn der Zweck vollkommen erreicht werden soll. Je leichter — unbefriedigt der Festigkeit — dieser Theil der Maschine dargestellt werden kann, um so weniger hat man eine Explosion zu befürchten, und sollte sich dennoch eine ereignen, so ist eine sehr leicht gebaute Lademaschine nicht so gefährlich als eine solche die ein bedeutendes Gewicht hat. Dieses gründet sich auf meine praktische Erfahrung und ist leicht erklärlich.

Der aus feinsaftigem Holze gearbeitete Rahmen i, welcher durch mehrere Quersäulen in verschiedene Fächer eingeteilt ist, hängt in den Stößen der Stellfahnen h, h und kann sich in diesen auf- und abbewegen gleich einem Balancier. Das Ende desselben nach dem Mantel zu, bildet den Fülltrog, dessen Boden aus der dünnen Messingplatte k gebildet und möglichst dicht mit Schrauben an der unteren Seite des Rahmens i befestigt ist. Dieser Boden ist in Fig. 2 so gezeichnet, wie er in der gewöhnlichen Lademaschine geformt ist; in Fig. 7 jedoch so, wie er in meiner verbesserten Lademaschine behufs der Verminderung der Reibung angebracht ist; Fig. 7 zeigt ebenfalls den Boden, jedoch ohne die eingezogenen Löcher in der vorigen Figur. Betrachtet man diese beiden Gegenstände, den Boden dieses Fülltroges und den unmittelbar darunter liegenden Ladeschieber (Fig. 6), so ist es sehr einleuchtend, daß diese Anordnung eine wesentliche Verminderung der Reibung zur Folge haben muß. Der Boden ist, wie aus Fig. 7 deutlich zu erschen, zwischen den Löchern so viel als thunlich querüber ausgenommen, wodurch mehr als ¾ der reibenden Flächen wegfallen. Der Ladeschieber (Fig. 6) ist hingegen der Länge nach, sowohl unten als oben, ausgenommen, wodurch derselbe also noch bedeutend weniger Reibung verursacht. Er wird durch dieses Ver-
sahern ganz geeignet, wenn er durchaus von einerlei Dicke gearbeitet und aus dem Boden k einerseits, aus der Rohrenplatte m andererseits gut ausgeschliffen ist, sich ohne bedeutende Reibung zwischen diesen beiden ihn umschließenden Platten zu bewegen.

Diese sämtlichen Theile (der Boden k, der Ladeschieber l und die Rohrenplatte m) sind von Rostguß, und müssen daher durchaus gut ge- gossen werden. Der Schieber l geht zwischen dem Boden k und der Rohrenplatte m, und wird durch zwei seitwärts ausgenietete Messing- streifen gegen das Seitwärtsgleiten gesichert. Dieser Schieber ist nach hinten zu verlängert, und enthält an dem Ende dieser Verlängerung bei p, q zwei Knaggen angebracht, womit der Gang des Schiebers reguliert wird.

Ist der Schieber l in die der Zeichnung entsprechende Lage gebracht, so ist er mit seinen eingebrochenen Löchern (deren 102 sind) gerade unter denen im Boden des Fülltrages, und kann das in diesen enthaltene Pulver (Zündmisch) in seine glatt ausgebrochenen Löcher aufnehmen. Wird er hingegeben mittels der Zugstange o (Fig. 5) in die Lage gebracht wo statt des Knaggen p der Knaggen p an das dem Schwanz des Schiebers als Träger dienende Quersstück r stösst, so ziehen seine Löcher mit denen in der Rohrenplatte m in Verbindung, und es kann dann das in den Löchern des Schiebers enthaltene Pulver durch die Röhrenchen sicher in die mit leitenden entsprechenden untergestellten Hütchen gelangen. Die Röhrenchen an dieser Platte sind von wesentlichem Vorteil, da sie das Pulver so sicher in die Hütchen leiten, das auch nicht ein Kornchern gestreut wird.

An dem anderen Ende des Holzrahmens i ist dieser zu einem Kästchen gearbeitet, in das ein Gewicht von 300 geteilt wird, um die Maschine das Nebergewicht nach hinten zu geben, was als jenes Gewicht schwerer sein muss als die in dem Fülltrage enthaltene Masse. Es hat dies zum Zweck das, wenn die Hütchen mit Zündmisch gesüßt sind, die Maschine das Bestreben hat sich von selbst von der Pressform zu beginnen. Anstatt jenes Gewichtes wende ich jetzt eine Kautschukscheibe an, welche troffische Diene thut und das Herausnehmen der Maschine sehr erleichtert. Um die Maschine, wenn die Pressform mit dem Schieber d unter den Fülltrage geschoben ist, niederzubringen, wird an dem Ende des Holzrahmens i, wo sich das Kästchen für das Neigungswicht befindet, eine Schnecke eingebunden, die über eine Rolle geführt durch die Wand in das Arbeitszimmer geleitet ist, wo die Hütchen, nachdem sie gefüllt sind, gepresst werden, und dort auf geeignete Weise mit einem Fülltrage in Verbindung steht, so dass der das Lade besorgende Arbeiter mit der einen Hand den Schieber l mit der Ladesform hinein schiebt, mit der anderen Hand die
Zugstange o führt um die Küchzen zu fülzen, und mit dem Fuβ die Ma-
schine, während er stürz, niederbrüet.
Diese Maschine arbeitet so sicher und genau, daß sie nichts zu wün-
schen übrig läßt und hat eben sowohl die Furcht der Arbeiter vermindert, als sich den Beifall der Fabrik-Herren erworben. Auch sind bereits mehrere dieser Maschinen angestellt worden, die sowohl einfache als mehr-
sache Ladungen liefern, und mit dem besten Erfolge benutzt werden.

LXXXVI.

Aus dem Practical Mechanic's Journal, Juli 1855. S. 86.

Mit Abbildungen auf Tab. v.

Diese einfache Vorrichtung erzeugt die gewöhnliche Schnecke und Kette der Standuhren, Taschenuhren und Chronometer, und bezweckt einen gleichförmigen Druck auf das Werk während der ganzen Zeit zwischen den Perioden des Aufliehens. Befanntlich wird bei einer gewöhnlichen Taschen-
uhrschnecke, die in Folge ihres Ablaufens allmählich startrierende Kraftver-
minderung durch die Schnecke wieder ausgeglichen, indem die Kraft ver-
mißt gleich auf eine stetig abnehmenden Hebelarm wirkt. Bei Web-
er's Anordnung haggen wird das Werk durch eine Feder getrieben, welche stets die gleiche Spannung behält; es mag dieses paradox erscheinen, und doch verhält es sich so.

Der zur Erreichung dieses Zweckes dienende einfache Mechanismus ist durch die Figuren 21, 22 und 23 dargestellt. Fig. 21 ist der Grund-
riss, Fig. 22 die Seitenansicht der Vorrichtung. Das Uhrwerk wird durch das Stirnrad A getrieben, welches an das Federhaus B befestigt ist. Die-
Feder selbst ist auf gewöhnliche Weise mit dem einen Ende an das Feder-
haus, mit dem andern Ende an die Spindel befestigt, um welche das Feder-
haus mit dem Rade A rotiert. Die Spindel, an welche das innere Ende der Feder B befestigt ist, enthält ferner ein Stirnrad C, welches mit-
einem Stirnrad D in Eingriff steht. Dieses letztere ist an das Feder-
haus E befestigt, das eine stärkere Feder umschließt. Die Spindel dieser
Die Feder enthält ein Sperrrad mit Sperrsegment F, und die bekannte Vorrichtung G, durch welche dem Aufziehen ein Ziel gegeben wird. Das Stirnrad D greift in ein Rad H, auf dessen Fläche acht drehbare Stifte verteilt sind. Jeder hat ein Rad mit doppeltem spiralförmiger Krümmung, dessen Spindel an ihrem andern Ende ein Geräte enthält, welches mit dem Rad A in Gegriff steht. Die Räder haben ein solches Verhältniß, daß das Rad I auf jede Drehung des Rades H vier Umbrechungen macht. Um das Werk in Gang zu setzen, zieht man zuerst die Feder E auf, und setzt diese Manipulation fort, bis auch die Feder B zur erforderlichen Spannung aufgezogen ist. Die Feder E wirkt auf die Spindel der Feder B vermittels der Räder D, C, und die beiden Rädern befinden sich im Gleichgewichte, so lang sie frei auf einander wirken können. Hieraus bringt man die Räder H und I an ihren Platz und zieht die Feder D so weit auf als es geht. Das Spiraldrad hindert alsbald die Feder E, weiter auf die Feder B zu wirken, indem die Wirkung der Stifte des Rades H beinahe gegen den Mittelpunkt des Rades I hin gerichtet ist. Die Feder B kann aber mittels des Rades A frei auf den Mechanismus der Uhr wirken, wobei das Rad A das Spiraldrad I derbreite dreht, daß daselbe die Drehung des Rades H gestaltet, indem die Feder E das letztere beständig zu drehen strebt. Diese Bewegung des Rades H gestaltet der Feder E auf die Spindel der Feder B zu wirken; und die Curve des Spiraldrades I ist so berechnet, daß die der Spindel der Feder B ertheilte Grösse der Drehung genau der Drehung des Rades A gleich ist, so daß die Feder B so lange in gleichmäßiger Spannung bleibt, als die Feder E auf sie wirkt, obgleich das Rad A das Uhrwerk beständig im Gang erhält.

Diese Anordnung bietet unter anderen den Vorteil dar, daß die Uhr während des Aufziehens in richtigem Gang bleibt; denn das Aufziehen der Feder E kann die Spannung der Feder B während dieser Manipulation nicht beeinflussen.

Die Stifte des Rades H sind beweglich, und sobald ein Stift das innere Ende des Spiraldrades I erreicht, so tritt er zurück und läßt den andern hervorrampenden Theil des letzteren über sich hinweggehen. Die Bewegungen der Stifte werden durch eine in Fig. 23 dargestellte Federvorrichtung regulirt. Diese besteht aus einer elastischen Scheibe J, welche an das Hergestell befestigt ist, und eine Centralöffnung bilden, durch welche die Spindel des Rades H tritt. Diese Scheibe ist so beifügten, daß sie jeden Stift vorwärts drängt, sobald derselbe in eine Lage kommt, in welcher er auf das Rad I wirken kann, und ihnen zurückzutreten gestattet, wenn eine der Hervorräumungen des Schneckenrades über ihn hinweg-

LXXXVII.

Aus dem Repertory of Patent-Inventions, August 1855, S. 118.

Mit Abbildungen auf Tab. V.

Diese Erfindung bezieht sich auf eine neue und verbesserte Methode, die Böden und Deckel von Kannen und andern Gefäßen, sowie verschieden gestaltete Fugen anderer Artikeln, auf eine raschere Weise und mit einem geringeren Aufwand an Löth zu lösen, als dies früher bei anderen Verfahren möglich war. Dieselbe gießt, indem man die beiden Theile des Schamöser der Fuge an einander legt und die ganze Öffnung derselben in einem klaren äußern Flächen eines Heizapparates oder Ofens aussetzt. Dieser Ofen ist so construirt, daß seine Höhe nur auf die erwähnte Fuge, nicht aber auf das ganze Gefäß wirkt. Als L öffnet man sich entweder des Innern, womit die betreffende Platte beim Verschmiedungsproceß überzogen wurde, oder eines besonderen Loftreisens, womit man die ganze Länge der Fuge belegt.

Fig. 27 ist ein Durchschnitt durch die Achse einer cylindricalen zinnernen Kanne zum Conserveriren vegetabilischer oder animalischer Stoffe, deren Deckel ohne Anwendung eines weiteren Löffels, meiner Erfindung
gemäß, bereits zugelötet worden ist, und deren Boden mittels eines aus-
gelegten Losfringes erhitzt und zugelötet werden soll.

Fig. 28 stellt das nämliche Gefäß im Horizontaldurchschnitte dar.

Fig. 29 ist ein Verticaldurchschnitt des zu obiger Operation dienli-
chen Ofens mit ausgesetzter Kanne, deren Deckel zugelötet werden soll.
Diese Figur ist nach einem halb so großen Maßstabe, wie die Figuren 27
und 28 gezeichnet. A ist der zylindrische Körper der Kanne; H der Deckel,
welcher mittels seines ringsherum aufwärts gebogenen Randes fest auf den
Cylinder gesoben wird. Die so weit fertige Kanne wird nun, den Deckel
mit einem Ringe versehen, auf den Ofen F gestellt. Dieser Ofen ist von außen
y und in seiner Mitte mit einer zylindrischen oder etwas koni-
schen Röhre T versehen. Der obere Durchmesser dieser centralen Röhre
ist ungefähr 1/4 Joll kleiner als derjenige der Kanne. Der Raum zwischen
den Ofen und der centralen Röhre bildet den Feuerraum, und ist unten
mit einem ringförmigen Rost versehen, auf welchem das Feuer brennt.
Der Deckel des Ofens, welcher den Feuerraum aber nicht die Röhre T
verschließt, ist rings um die letztere mit einer Ritzung 1/3 versehen,
welcher breit genug ist, um den Deckel der Kanne und tief genug um
den ganzen umgebogenen Rand desbelben aufzunehmen. Der obere Theil
der Röhre des Ofens ist beständig so heiß, daß das Zinn an der inneren Fläche des
ungebogenen Randes und an der äußeren Fläche des von diesem Rande
bedeckten Theiles der Kanne schmilzt, so daß beide Theile ringsum zu
einer vollkommen dichten Füge verbunden erscheinen. Der nicht auf
dem Ofen ruhende Theil des Deckels der Kanne wird durch die in der
Röhre T enthaltene Luft nur mäßig erwärmt, ohne irgendwie nachtheilig
auffig zu werden. Auch der Boden B, Fig. 29, der Kanne besitzt einen
ungebogenen Rand. Derselbe kann jedoch ohne weiteres Loch nicht voll-
kommen festgelötet werden. Es wird daher ein Streifen des Lotes in
Form eines Ringes gebogen, zu dessen Aufnahme der Boden der Kanne
inwendig mit einem ringsförmigen Canal versehen ist. Die Kanne wird
sobann mit dem Boden auf den Ofen gestellt; das Loch schmilzt und läuft
sofort in die Fuge.
LXXXVIII.

Aus Armengaud's Genie industriel, August 1855. S. 96.

Mit Abbildungen auf Tab. v.

Wir haben in den Fig. 24 und 25 zwei Ansichten von einem Ofen dargestellt, dessen sich der Erfinder bedient, um das Eisen oder unmittelbar das Erz in Stahl zu verwandeln.

Fig. 24 ist ein senkrechter Durchschnitt des Apparates; Fig. 25 ein horizontaler Durchschnitt desselben.

A bezeichnet den Ofen, dessen innere Wannen mit gußeisernen Plattent bekleidet sind, welche das Feuer, worin man das Metall bearbeitet, umgeben; andere Platten e bekleiden den Ofen äußern.

Die Hauptöffnung a ist mit einer eisernen Thür umgeben, deren Gewicht durch ein Gegengewicht ausgeglichen ist, welches an einer Kette hängt, die über eine Rolle e läuft. Eine andere Thür oder ein anderes Register c, welches am Eingange der Ofen b befindlich ist, dient zum Regulieren des Zuges.

Die Ofenöhle ist mit einer eisernen Platte bedeckt. Der Herd a besteht aus Gußeisern. Die Öffnungen g dienen zum Herausnehmen der Asche, und die Haken f, mit welchen die Bördelplatte des Ofen s versehen ist, dienen zum Auflegen der Bördelstange während der Bearbeitung des Metalls.

Vor dem Ofen sind zwei Behälter von Eissen, C und D angebracht, die im Innern mit feuerfesten Steinen bekleidet sind. Diese Reservoir haben am Boden einen Roß k, und einen Aschenfasser k', in welchen ein zweielriges Gebläsewindrohre F, l, l einmündet. Eine andere Röhre E, welche durch die Arme m gespeist wird, geht von dem oberen Theile der Reservoir C, D ab und mündet in den Ofen A mittels einer Wasserform h, der durch i Wasser zugeführt wird. Alle Arme der Windröhren sind mit Ventilen n versehen. Eine mittlere Leitung verbindet die mit E, die selbe ist mit Ventilen o versehen.

Die Thüren j dienen zum Füllen der Behälter C und D.

Das Verfahren bei der Stahlbereitung ist folgendes: Man bringt das Rohoisen in das Innere des Ofens A und bedeckt es mit Holzfohlen.
Darauf folgt man auch die Reservoire C, D mit Holzspänen und wenn letztere vollständig glühend sind, so bringt man die Deckel auf und verschmiert sie, damit gar keine Gase entweichen können.

Ein Windestrom, welcher beliebig reguliert werden kann, wird durch die Rohr e F eingeführt.

Indem dieser Windestrom durch das Reservoir geht, erzeugt er ein viel Kohlenstoff enthaltendes Gas, welches mittels der Form auf das Eisen in den Ofen strömt.

Man muss aber auch noch einen Windestrom haben, welcher durch die mittlere Rohre E, F in den Ofen geht und mittels des Ventils o reguliert wird, damit eine hinreichende Menge atmosphärischer Luft eingeführt werden kann, um die zum Schmelzen des Metalles erforderliche Verbrennung zu unterhalten.

Wenn das Roheisen geschmolzen ist, so wird es mittels eines Verfahrens bearbeitet, welches unten näher beschrieben ist und dem gewöhnlichen Frischproces sehr gleich.

Ein sehr wichtiger Punkt bei diesem Proces ist der, dass man mit Hilfe der Ventile die Verhältnisse von Gas und atmosphärischer Luft, welche in den Ofen eintreten, so reguliert dass der Arbeiter zu gleicher Zeit das Roheisen frischen und ihm die zur Umwandlung in Stahl nötige Kohlenstoffmenge geben kann.

Es ist unmöglich, bestimmte Regeln hinsichtlich des Verhältnisses des Gases und der atmosphärischen Luft zu geben, da dasselbe von der Beschaffenheit und Menge des in Stahl zu verwandelnden Roheisens, so wie von der Geschwindigkeit des Arbeiters, welcher den Proces leitet, abhängt; letzterer muss so lange fortgeführt werden, bis das Metall hinlänglich getrieben ist und eine Luppe bildet, die man alsbann herausnimmt und sorgfältig ausschließt.

Die Behandlung des Metalles im Ofen erheischt eine gewisse Geschwindigkeit, und besonders hat es Schwierigkeiten den Grad des Gahrens und die Kohlenstoffmenge genau zu bestimmen, welche zur Bereitung eines guten Stahles erforderlich sind; nur durch Erfahrung und Praxis kann man diese Geschwindigkeit erlangen.

Wenn es sich darum handelt, die Luppen in Stäbe zu verwandeln, so muss man sie in einem verschlossenen Ofen mit Holzspänen wärmen. Während man das Metall in dem Ofen A bearbeitet, muss es sorgfältig mit Holzspänen bedeckt gehalten werden, auch muss man es durch die Thür d stets so viel als möglich gegen die äussere Luft schützen.
The man das Eisen dem oben beschriebenen Prozeß unterwirft, wird man wohl thun, ja es wird in vielen Fällen sogar nothwendig sein, besonders wenn es geseiftes Eisen ist, dasselbe zuerst in einem Graphittiegel zu schmelzen, es zu Stäben zu gießen und mit Kohlenpulver, Kalkstein und andern Kohlenstoffreichen Substanzen zu fälschen. Behandelt man mehr oder weniger graues Roheisen, so ist zur Schmelzung erwärmete Luft und Holzkohle erforderlich.

Die erste von diesen Methoden kann aus die Art ausgeführt werden, dass man das Roheisen in guten Tiegeln einschichtet und es in einem Anthracit- oder Steinkohlenfeuer mit Hülfe eines Windstroms schmilzt.

Das zweite Verfahren kann aus die Art ausgeführt werden, dass man einen Kupolofen (dessen Betrieb wie gewöhnlich ausgeführt wird, wenn Roheisen geschmolzen werden soll) mit zwei Reservoiren wie die obigen verbindet, welche aber gross genug sind, um eine solche Kohlenstoßmenge aufnehmen zu können, dass dieselbe nicht eher vollständig verbrennt, als nachdem das Roheisen in dem Kupolofen gänzlich geschmolzen ist. Die Reservoire müssen mit dem Kupolofen gerade so wie die abgebildeten mit dem Stahlfrieschofen verbunden werden. Man füllt sie hernach mit Holzkohlen, die man anbindet, so dass sie vollständig brennen, wenn man Wind in den Ofen strömen lässt.

Statt alsdann den Windstrom direct in den Kupolofen gehen zu lassen, lässt man ihn in die Reservoire gehen, wie die Abbildungen zeigen, und es wird alsdann das Roheisen mit der über Holzkohlen erhitzten Luft und den in dem Kupolofen schon befindlichen Kohlen geschmolzen.

Soweit der eine, als auch der andere von den hier beschriebenen Prozessen dieilen dem Metall staahlastige Eigenschaften mit und verändern es so weit, dass der folgende Erprofit erleihtert wird, welchen man auf oben beschriebene Weise ausgeführt.
LXXXIX.

Über die galvanoplastischen Operationen des geodätischen Bureaus der Vereinigten Staaten; von Georg Mathiot, Director des galvanoplastischen Laboratoriums.

Aus Silliman's American Journal of Science and Arts, Mai 1853, S. 305.

Mit Abbildungen auf Tab. V.

Hr. Smece schlägt die Benützung der Lufttäht vor, welche polirten Metallen fest anhafter (was sich auffallend zeigt, wenn man eine polirte Weisserlinge nass zu machen versucht). Um diese Lufttäht zu erhalten, soll nach ihm die zuerst vollkommen hergerichtete Platte, bevor man sie in das elektrotypische Bad bringt, einige Tage in einem fühlten und feuchten Keller liegen.

Rand, Graphit, Dele, Wachs etc. wurden ebenfalls als Niederzug der Plattenfläche vorgeschlagen.

Es war zu hoffen, dass sich eine Substanz ermitteln lässt, welche gleichförmig und schwach auf die gravierte Platte wirkt, und indem sie die homogene Anziehung der Theilehen an der Oberfläche aufhebt, durch chemische Vereinigung mit denselben eine unlösliche und serbliche Verbindung bildet, die der Platte nur schwach abhält. Ich wählte zum Versuch das Jod, weil es in Wasser nur wenig löslich ist, ein hohes Atomgewicht hat, und unschädlich ist. Eine Kupferplatte wurde wohl gereinigt dem Joddampf ausgesetzt und elektrotypiert; die Ablagerung trennte sich leicht von ihr. Dies wurde mehrere Hundertmal mit gleichen Erfolgen wiederholt.

Wenn grosse Platten für die Anwendung von Joddämpfen gereinigt wurden, zeigte es sich, dass während der Reinigung des einen Theiles der andere aufließ, daher keine gleichmässige Wirkung des Jods erzielt werden konnte. Dieses führte darauf, die Platten zuerst zu verflügern und dann zu jobbieren; eine versilberne Platte wurde daher mit weingestiger Lösung von Jod gewaschen und dann elektrotypiert; die Eletrotyp löste sich von der Mattsche noch leichter ab als vorher, indem das Jodflüss die Abhärzec besser verhinderte als das Jobblyser. Bald zeigte sich jedoch, dass eine an einem trüben Tage präparierte Platte sich nicht so leicht lostrennte, als wenn das Zimmer bei hellem Himmel vorgenommen wurde, und Berufe ergaben, dass eine zuerst jobbete und dann den Sonnenstrahlen ausgesetzte Platte sich mit grosser Leichtigkeit ablösen ließ; wogegen eine Platte welche an einem regnerischen Tage jobbte und dann einige Stunbe in ein dunkles Zimmer gesetzt wurde, bevor man sie in das (galvanoplastische) Bad brachte, so fest haftete, dass man, um sie von der Platte
trize zu trennen, zu den alten Mitteln des Erhöhen und Rütteln's seine
Zuführung nehmen musste.

Selbst würde das Jodiren und Dampfen an einer sehr großen
Anzahl sein gravirtet Platten vollzogen, und niemals zeigte sich auch nur
die geringste Schwierigkeit bei der Trennung der Platten, wenn nur die
gehörige Dicke der Copie erzielt worden war.

Beim Präpariren unserer größten Platten von 10 Quadratfuß Ober-
fläche benützte ich eine Auffüllung von 1 Gran Jod in 20000 Gran starkem
Alkohol. Wenn ein Gran der Lösung erforderlich ist, um einen Quadratfuß zu
benetzen, so ist auf dieses nur 1/2000 Gran Jod. Da aber das Jod
mit dem Alkohol rasch verdampft, so befindet sich auf 1 Quadratfuß waag
scheinlich nicht mehr als 1/100000 Gran Jod. Nimmt man das Gewicht
ines Kubikzoll'es Jod zu 1250 Gran an und setzt voraus, daß es auf
der Silberschicht in seinem ursprünglichen Zustande bleibt, anstatt Jodsilber
zu bilden, so ergibt sich 1,250 × 144 × 100,000 = 18,000,000,000, also
bloß ein einzehntenmillionentel Zoll für die Dicke der Jodsilber. Aber
selbst angenommen, daß die Sonnenstrahlen das Jodsilber zerlegen, und
das Jod als Dampf auf der Platte zurücklassen, so wird die Dicke der
Jodsilber nur einen viertausendmillionentel Zoll betragen, also in mecha
nischer Hinsicht gar nicht in Betracht kommen.

Um den Einfluß dieser chemischen Zubereitung der Platte auf die
Schärfe der gravirten Linien zu ermitteln, wurde eine gravirung siebenmal
von Platte auf Platte übergetragen, ohne daß die schärfste vergleichende
Untersuchung der Abdrücke von der letzten und der ersten Platte einen
Unterschied herausstellte.

Zeit und Kosten der Elektrotypie. — Fr. Smee und
Andere haben gezeigt, daß die Güte des Elektrometalls (galvanisch ge
fallten Metalle) von gewissen Verhältnissen zwischen der Schnelligkeit der
Bildung der Platte und der Concentration der Lösung, worin sie dar
gestellt wurde, abhängt. Da kleine Quantitäten von Elektricität leicht in
Bewegung gesetzt werden, so kann man kleine Elektrotype in 6—8 Tagen
machen. Um große Platten in kurzer Zeit zu erhalten, braucht man
starke Ströme. Die entsprechende größere effective elektrische Wirkung zu
erhalten, zeigte sich aber etwas schwierig. In dem Aide- mémoire der
britischen Artillerie findet sich die Angabe, daß in der galvano-plastischen
Anstalt des topographischen Bureaus ein Pfund Kupfer sich in 24 Stun
den auf einer Platte von 8 Quadratfuß niederschlug, und das bloß durch
fortgeschrittene Umhüllen der elektrolytischen Lösung die Platten zähe genug
wurden, um das Hämmer auszuhalten. Aus diese Weise wären 45
Tage erforderlich, um eine 1/8 Zoll dicke Platte zu machen. Meines
Wissen ist vor Anwendung des nun zu beschreibenden Verfahrens dieses Resultat weder in Bezug auf die Zeit noch auf die Qualität des Metalls übertroffen worden.

Das erste Mittel, welches in Vorschlag gebracht wurde, um in derselben Zeit eine größere Abtälerung zu erhalten, besteht in der Vergrößerung der Batterie; dadurch kann aber der gewünschte Zweck nicht erreicht werden. Um dieses deutlich zu machen, benutze ich die Formel von Ohm, welcher zeigte, daß der Effekt des Stromes irgend einer Batterie direkt der elektromotorischen Kraft, und umgekehrt dem ihr dargebotenen Widerstand proportional ist, was sich durch die Gleichung \(\frac{E}{R + r} = Q \) ausdrücken läßt, in welcher \(E \) die elektromotorische Kraft oder die Verwandtschaft der Säure zum Zinck, \(R + r \) den Widerstand bedeutet; \(R \) ist der Widerstand in der zwischen den positiven und negativen Elementen der Batterie befindlichen Flüssigkeit, \(r \) der Widerstand im Schließungsbogen, und \(Q \) die resultierende Arbeit, d. h. die Quantität des erzielten Stromes. Der Widerstand ist erwiesenmaßig zur Länge der Leiter im geraden, aber zum Querschnitt deselben im umgekehrten Verhältnisse.

\(E \) hängt von den chemischen Beziehungen der verwendeten Metalle ab, ist also für derselben konstant; \(Q \) läßt sich folglich nur auf die Art mit Borzwei ändern, daß man \(R \) und \(r \) ändert. Da \(R \) den Widerstand in der Batterie bezeichnet, so ist eine Vergrößerung der Platten mit einer Vergrößerung des Querschnittes der Flüssigkeit gleichbedeutend, und der Widerstand \(R \) wird dann kleiner. Der Ausdruck \(\frac{E}{R + r} = Q \) zeigt nun, daß wenn der Widerstand in der Batterie im Verhältnisse zum Widerstande außerhalb klein ist, man von der Vergrößerung der Batterieplatten nur wenig Gewinn an Wirkung zu erwarten hat.

Um den Wert von \(R \) in Beziehung auf \(r \) zu finden, wurde eine Batterie construiert, welche die Sammlung und Messung der entwickelten Gasen gestattete. Brachte man die Platten (der Zersetzungsselle) in unmittelbare Berührung, und wurde die in 30 Minuten entwickelte Gasmenge als Einheit der Wirkung genommen, so war in diesem Falle, da der Strom bloß durch die Batterie zu gehen hatte, der durch \(r \) angegebene Widerstand \(= 0 \), also \(Q = \frac{E}{R} = 1 \). Nun wurde die Batterie mit einem Paar Elektroden verbunden, die in einer Lösung von schwefelsaurer Kupfer, mit Schwefelsäure angereichert, standen, welche saure Lösung alle Schriftsteller über Elektrometallurgie behufs der Erzielung guten

Dingler's Polytechnisches Journal Bd. CXXXVIII. S. 5. 23
Metalles vorschreiben, daß nun binnen 30 Minuten entwickelte Gas war bloß 1/20 der vorigen Menge; also hatte der Widerstand von r die Größe von Q auf 1/20 herabgedrückt, mithin war \[E \frac{1}{r + r} = Q = \frac{E}{20R} \text{, also } r = 19R. \]

Um nun den Effekt zu erhalten, welcher mittels Vergrößerung der Batterie zu erzielen ist, haben wir \[Q = \frac{1}{m + 19} \]. Ist \(m = 1 \), so wird \(Q = 0,05 \); für \(m = 4 \) ist \(Q = 0,0524 \) u. s. w., was zeigt, daß der Gewinn zu klein ist, um die Vergrößerung der Batterie zu lohnen. Diese Berechnungen gelten für kleine Batterie-Platten; bei grosser müssen die gegen seitigen Entfernungen der gleichen vergrößert werden, und damit wächst auch der Widerstand, statt abzunehmen. Bloße Vergrößerung der Batterie ist folglich nicht hinreichend, um die Zeit des Elektrolytprozesses abzusparen.

Hr. Sme e hat die negative Platte der Batterie mit pulversförmigem Platin überzogen und so eine sehr starke Wirkung erzielt. Ist die Platte frisch platiniert, so wirkt sie heftig und entwickelt Ströme von Wasserstoff; aber in Folge der Brennungsreinigungen des Zinks, welche sich auf ihr ablagn, geht diese erhöhte Thätigkeit bald verloren. Da nämlich dieser Nieder schlag den Wasserstoff stark ansieht, so wird dieser auf der Platte zurückgehalten, welche dann von Gas umhüllt und dadurch von der Flüssigkeit der Batterie abgesondert ist. Die gewöhnlichen Lösungsmittel der Metalle entfernen diese Dede von Unreinigkeit nicht leicht. Die Platte kann durch neues Platinieren wieder hergestellt werden; da dieses aber lästig und kostspielig ist, so bemühte ich mich ein Lösungsmittel zu finden, welches geeignet wäre, dem Platin seine frühere Wirkung wieder zu erteilen, und erreichte diesen Zweck durch Eintauchen der Platte in eine Lösung von Eisenchlorid.

Nun wurden die Platten täglich in das Eisenchlorid getaucht, und so die Spannung der Batterie constant erhalten. Durch diese Entdeckung, verbunden mit der Verwendung bessrer Auslösungen für die Batteriezelle, wurde die Zeit zur Herstellung einer galvanischen Platte abgeführt; sie war aber, wenn nur ein einziges Element benutzt wurde, noch zu lang.

Die effective Kraft einer Batterie kann durch eine zweite verfälscht werden; auf diese Weise wird \(E \) in der Formel vergrößert und dadurch unter Umständen auch eine Vergrößerung von \(Q \) herzovergen.

Wir vereinigen die Wirkung mehrerer Batterien, indem wir die ungleichen Pole der Reihe nach verbinden. Da bei einer solchen Anordnung
die Strom jede Batterie in der Kette durchziehen muß, so verfeinert sich R ebenfalls wie E, und die Formel wird dann $Q = \frac{nE}{nR + r}$. Eind die Werthe von R und r nahezu gleich (wozu die Batterien besonders konstituiert werden sollen), so wird es eine Frage von Wichtigkeit, ob man durch Verbindung der gleichnamigen Enden aller Zellen des Apparates als einziges Element, oder ob man durch Verbindung der ungleichnamigen Pole eine Batterie von zwei Paaren herstellen soll. Durch Bildung zweier Elemente wird R verdoppelt, zugleich wird aber die Oberfläche halb so groß und die Kette noch einmal so lang, wodurch sich R verfeinert und statt $Q = \frac{E}{R + r}$ hat man $Q = \frac{2E}{4R + r}$. Ist $R = r$, so wird $Q = 0,50$ bei der Herstellung nur eines Elementes, und $Q = 0,40$ bei der Herstellung zweier; man erhält also bei der doppelten Anlage eine langsamere Ablagerung als vorher. Ist $R = 10r$, so erhält man

mit einer einfachen Batterie $Q = \frac{1}{1 + 10} = 0,0909$; für zwei solche in einer Reihe aufgestellte Batterien wird $Q = \frac{2}{2 + 10} = 0,166$. Die Anwendung von zwei Batterien, aufeinanderfolgend aufgestellt, verdoppelt also die Anlagen, aber nicht den Effekt, und die Arbeit nur mit einer Batterie vereinfacht um eine spärliche Verbesserung der Reihe. Für einen doppelten $\left(\frac{E}{R + r}\right)$ hat man $2\left(\frac{E}{2R + 2r}\right) = \frac{2E}{2R + 2r}$. Da die Division von R durch 2 einer Verdoppelung der Batterierfläche gleich kommt, so wird nun $Q = 0,182$ und der Gewinn in Prozenten zeigt an, daß es bei Verdoppelung der Oberfläche wertvoll ist, die Vergrößerung dann einzureißen, wenn zwei Batterien (Stäbe) hintereinander angeschlossen werden.

billig galvanoplastische Silberplatten herzustellen, und alle Versuche Blätter von 2500 Gram Gewicht per Quadratfuß zu erhalten, schlugen fehl. Durch Anwendung der Silberlösungen und Anwendung einer Registertische (register battery) gelang es und aber in 30 Stunden eine vollkommen ebenen Platte herzustellen, welche in hohem Grade die erforderliche Härte, Elastizität und Hämmerbarkeit besaß, während die Herstellungsfähigkeiten per Unze nicht über 16 Cent betrugen. Die vollkommenen Blätter gestatten eine sehr bedeutende Annäherung an das Zink. Man kann sie daher über doppelt so groß als früher anwenden, weil bei der Anordnung von zwei Gliedern hinter einander r verhältnismäßig kleiner bezüglich R ist.

Man hatte längst beobachtet, daß Temperaturwechself auf die Dauer des Prozesses von Einfluß sind, und jeder, der sich mit Elektrometallurgie beschäftigt, weiß wie wichtig es ist, das Laboratorium warm zu halten. Um zu ermitteln, wo und wie die Wärme wirkt, wurde bei 60° F. (15°,56 C.) eine Batterie mit einem 120 Fuß langen Draht verbunden und ein Galvanometer eingeschaltet. Die Ablesung betrug 40°. Nun führte man die Batterie auf 45° F. (8°,89 C.) ab, und die Nadel zeigte noch immer nahezu 40°.

Dieser Versuch beweist, daß die Batterien durch den gewöhnlichen Temperaturwechsel nicht bedeutend affiziert werden, und dieser Umstand wurde nun benutzt, um eine vollkommenere Ventilation herzustellen. Es wurde nämlich durch eine Glaswand in einem kleinen Platz für die Batterie von dem allgemeinen Local getrennt und am Boden und der Decke mit großen Öffnungen nach außen verbunden, um eine Circulation der Luft herzustellen und dadurch die Dämpfe der Batterie wegzufließen.

Mit dieser Anwendung aller beschriebenen Verbeesserungen konnte man nun leicht in 8—10 Tagen eine galvanoplastische Platte von 8 Quadratfuß herstellen. Von dem Winde durchdrungen, den Prozeß noch mehr zu beschleunigen und wo möglich ein Pfund Kupfer täglich auf den Quadratfuß niederzuschlagen, suchte ich noch weitere Verbesserungen zu machen. Da E der Formel bereits so groß war, als die Kosten es gestatteten, und R soviel als möglich verkleinert, d. i. die Platten möglichst vergrößert waren, so suchte ich dem Q durch Verminderung von r, dem elektrolytischen Widerstände, einen höheren Werth zu geben. Dem Elektrolyten durch Zufuhr leicht zersehbarer Salze ein besseres Leitungsmittel zu ertheilen, wurde ohne Erfolg versucht. Da sich nun, wie bereits erwähnt, gegeben hat, daß die beschleunigende Wirkung der Wärme sich hauptsächlich auf die Zersetzungsquelle bezieht, so war offenbar durch
Anwendung der höheren Temperatur bei dem Elektrolyten ausschließlich, ein großer Vorteil zu erwarten.

Um die vortheilhafteste Temperatur und den durch sie zu erzielenden Gewinn an Wärme zu bestimmen, wurde eine mit Voltmeter versehene Batterie mit zwei Elektroden in Verbindung gebracht, die in eine Lösung rauhten, wie sie bereits als allgemein empfohlen erwähnt worden ist. Jede Elektrode war 5 Quadratzoll groß und hinten gestreift um die Ausstrahlung zu verhüten. Nun brachte man sie in eine gegen seitige Ent fernung von einem Zoll, und dünne Holzplatten an ihren Rändern verhüteten jeden seitlichen Verlust des zwischen ihnen durchgehenden Stromes. Die Resultate waren folgende:

Die Batterieplatten in Berührung gaben hündlich 300 Kubizoll Gas
Die Elektroden 216

Als der Strom bei 58° F. durch den Elektrolyten ging, gab er hündlich 10 Kubizoll Gas
60° 20
100° 27
175° 37

Um den Werth des Widerstandes der Lösung, im Vergleich mit der Formel, zu bestimmen, verbund man zuerst die Batterieplatten, und hernach die Elektroden; er beträgt

<table>
<thead>
<tr>
<th>Temperatur (° F.)</th>
<th>Widerstand (Ohm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>23,15</td>
</tr>
<tr>
<td>60</td>
<td>18,15</td>
</tr>
<tr>
<td>100</td>
<td>13,00</td>
</tr>
<tr>
<td>175</td>
<td>8,96</td>
</tr>
</tbody>
</table>

Aus vorstehender Tabelle ersieht, daβ der Widerstand in der Zersetzungszelle von 2,58 auf 1, im Ganzen von 2,25 auf 1 vermindert wurde. Da nun \[\frac{2E}{R+r} = \frac{E}{R+r} \], so kann man durch Erwär mung des Elektrolyten eine Platte bei Verwendung eines einzigen Elementes eben so schnell machen, als bei gewöhnlicher Temperatur mit einer Batterie von zwei Elementen und je der doppelten Oberfläche (4mal die Batterie, 2mal die Auslage).

Smece's Borschrift verlangen, daβ zur Anfertigung einer Platte gewisse gegen seitige Verhältnisse des verwendeten Apparates aufrecht erhalten werden; daraus folgt, daβ wenn die Temperatur des Elektrolyten auf einen gewissen Grad erhöht, und der Apparat ihr entsprechend eingerichtet worden ist, man, um nicht unzulänglich korrigieren zu müssen, die angängliche Wärme unterhalten muß. Will man nun die durch die Temperaturerhöhung gebotenen Vorteile benützen, so ist ein weiterer Apparat

Mittels der beschriebenen Anordnung habe ich eine große Cope (als Relief) bargestellt und das mir übergebene Original nach 55 Stunden wieder abgeliefert.

Um zu der Ohmschen Formel zurückzuschreiben, wurde das Verhältniß von R zu r von Neuem durch einen Versuch bestimmt. Das Resultat war $R \div r = 1:4$ oder $Q = \frac{1}{1+4} = 0,20$, ein großer Fortschritt, wenn man die erste Bestimmung $R \div r = 1:19$ oder $Q = \frac{1}{1+19} = 0,05$ damit vergleicht. Da nun r in Vergleich mit R so klein geworden ist, so kann man die Batterieoberfläche so lange mit Rüben vergrößern, bis das Resultat etwa 0,24 ist. Wenn man überdies die Elemente zu je zweien mit doppelten Oberflächen anwendet, um den doppelten Effekt zu bekommen, so ergibt sich $2 \left(\frac{1}{1+4}\right) = \frac{2}{2+4} = 0,40$. Da nun der relative Widerstand im Elektrolyten noch kleiner wird, so kann man die Batterieoberfläche noch mehr vergrößern, bis das Resultat nahezu 0,5 ist.

Vorgänge in der elektrolytischen Lösung. — Die Güte des abgelagerten Metalles hängt einzig und allein von dem Verhältnis ab, welches zwischen der durch eine Lösung ziehenden Elektricitätsmenge und dem Metallgehalt dieser Lösung be steht.

Man nimmt gewöhnlich an, daß die Säure des Säurebades an die eine, das Metall an die andere Elektrode gehe; es ist aber jetzt erwiesen, daß dem nicht so ist, denn während die Säure sich an die positive Elektrode begibt, gelangt das Metall nicht an die negative Elektrode. Daher kommt es, daß wenn die Lösung beim Beginn des Prozesses noch so con-

Aus den ersten Blitze sollte man glauben, daß durch Anwendung einer stärkeren Kupersalzlösung ein rascheres Nachschaffen des Metalles zur Elektrode erzielt würde. Leider wird aber dadurch das Lösungsvermögen des in der Flüssigkeit enthaltenen Wassers für das an der positiven Elektrode durch die Wirkung der übertragenen Säure gebildete Sulfat vermindert. Dünnergigisheit ist das Wesentlichste bei der Elektrolyse; wenn z. B. die Menge des freien Wassers welches die positive Elektrode umgeht, klein ist, so ist diese Elektrode bald in eine geschützte Lösung gestellt, und das neugebildete Salz bleibt ungelöst aus ihr liegen; da dieses Salz nicht leitet, so schließt es die Elektrode von der Flüssigkeit ab und hält so den Strom auf, bis der Abschluß der gesättigten Lösung es dem Salze ermöglicht sich auszulösen, worauf dem Strom der Durchgang wieder geöffnet wird. Bei solcher unterbrochenen Wirkung erhält man Platten von Kupferband, aber bisweilen Kupfer welches so weich wie Blei ist.

Erwärmt man die Lösungsmittel, wenn ein solcher Zustand eingetreten ist, so wird das Lösungsvermögen des Wassers für das Salz erhöht, es entsteht eine rasche Diffusion, das Salz wird zur negativen Elektrode gezogen und das erschöpfte Wasser zur positiven Elektrode; die eingeschlossene Batterie kommt in ununterbrochene Thätigkeit, und in kurzer Zeit hat sich eine Platte abgelagert, welche alle Härte und Elasticität des gekühlten und gewalzten Kupfers besitzt.

Apparate des galvanoplastischen Laboratoriums. — Fig. 14 ist der Grundriss des Laboratoriums des geodätischen Bureaus in Washington.

Die Glaswand b,b,b,b ist mit einer Thür versehen und trennt das Batteriezimmer von dem allgemeinen Laboratorium; sie gestattet also die Batterie leicht zu beaufsichtigen, ohne daß man deren Dämpfe ausgesetzt ist. Der Fußboden des Laboratoriums ist etwa 6 Fuß über dem Erd-
gescoss und neigt sich einwärts von den Seiten gegen die Abzugsschlitze h, h, h, h, welche die auf den Boden gegossenen unbrauchbaren Flüssigkeiten und das Spültwasser abführen. Um den schädlichen Wirkungen zu entgehen, deuten man beim Arbeiten ausgeschüttet ist, wenn der Boden von chemischen Agentien durchdrungen ist, wird derselbe, nachdem Flüssigkeiten weggeschüttet wurden, geölig überwogen und abgebürstet.

Fig. 15 zeigt eine Zelle mit ihren Platten, nebst deren Auflangungsweise.

Fig. 16 ist der Holzrahmen, mit seiner Platte P, welche zum Ein- und Ausschalten der verticale Wanne hergerichtet ist.

Fig. 17 ist die verticale Wanne mit den in ihr hängenden Platten.

Fig. 18 zeigt den abzufließenden, die Platte haltenden Holzrahmen, welcher in der horizontalen Wanne gebraucht wird.

Fig. 19 zeigt die Anordnung im Innern der horizontalen Wanne; eine bildlose Platte und ein gravirtes Original sind in der erforderlichen Lage angebracht; die, mit ihnen verbundenen Kupferbrähte gehen zu der Batterie.

Fig. 20 zeigt den Heizofen. Die Thür für den Luftzugritt befindet sich bei a und ist mit einem abjustirenden, aus Eisen und Zink zusammengesetzten Stabe so verbunden, dass man sie mittels einer Stellschraube zum Reguliren des Zuges anordnen kann, indem der Stab dann die Thür öffnet und schließt, wodurch eine gleichmässige Wärme in der Lösung unterhalten wird. Nachdem das Feuer angezündet ist, muss die Thür sich schließen, wenn die Auslösung eine Temperatur von 180° F. (82° C.) erreicht hat. Im Dosen ist ein kleines Schlangenrohr angebracht, dessen Enden c und d (Fig. 14) zu der horizontalen Wanne führen; das Ende c verbindet den obern Theil der Wanne gerade unter der Oberfläche der Flüssigkeit mit dem oben Theile des Schlangenrohres,

Vorsichtsweise. — Soll eine Platte elektrolytisch werden, so bringt man sie auf Gestelle über die offenen Abzugstöpfer h, h, h, und wacht sie sorgfältig mit Asbesten und Säuren. Hierauf wird sie verfärbt, sodass und vor ein Fenster gestellt (Belichtet). Nun wäscht man eine Platte von gewalztem Kupfer, welche einen Zoll größer ist, als die gravierte Platte, legt sie auf den ebenen eisernen Tisch und stopft sie so lange mit einem hölzernen Schlägel, bis ein Stahllinien zeigt, dass sie eben ist; sie wird dann gewogen und mit zwei kupfernen Haken in dem vertikalen Plattenrahmen befestigt. In gleicher Weise wird die gravierte Platte in einem ähnlichen Rahmen befestigt, worauf beide in eine vertikale Banne gestellt und mit der Batterie verbunden werden.

Der Prozess gestaltete sich so, als ob man von ihnen im Anfange diese Stellung geben, um zu verhindern, dass sich Staub und Staub von Unreinigkeiten auf ihrer Oberfläche absetze. So wie sich die gewalzte Platte auffüllt, machen ihre Verunreinigungen die Auflösung schnell trübe, und häufiger, die Oberfläche der sich bildenden Platte. Gewöhnlichen Elektrotypen schaden Staub und Schmutzstöpfer nicht, da aber die Kupferplatten des geodätischen Bureaus in Feinheit der Linien seinen Stahlplatten nicht nachstehen, so bewirken die auf der Platte ihrer Copien sich absetzenden Unreinigkeiten das berein Abdruck ein vollständiges Ansehen erhalten. Bei dem ersten Eintauchen der Platten sollte daher die Lösung vollkommen rein sein.

Früher wurde die vertikale Banne nach jedem Gebrauch geleert und ausgewaschen. Nachdem die Lösung ihren Niederschlag abgesetzt hatte, wurde sie abgezogen und durch sehr seine Baumwolle gesiebt. Dieses Verfahren war sehr löslich und beschäftigte einen Arbeit einen ganzen Tag. Durch ein einfaches Austauschmittel bewirkt, dass man die Wanne nur noch einmal monatlich zu reinigen braucht. Um die neue Platte vor Staub und Schmutz zu schützen, wird ein Sack von seiner Baumwolle über einen leichten Holzrahmen gezogen, der ihn ausgepantelt erhält; eine Stunde bevor man die Lösung braucht, wird der Sack mit dem darin eingeschlossenen Rahmen aus der Lösung gelegt und mit den Kupferstäben beschwert, welche so dass die Plattenrahmen halten. Das Gewicht veranlasst den Sack allmählich zu sinken, und während des Hinaufs sinkens filtrirt er die in der Wanne enthaltene Lösung; die Unreinigkeiten

Die ganze thätige Batterie braucht in der Regel nur einmal täglich erneuert zu werden, wobei man auf folgende Weise verfährt: Man nimmt eine Zinsplatte und eine Silberplatte aus der Batterie; die Silberplatte steht man in die Eisenchloridlösung, die Zinsplatte aber bringt man zu der Wasserflus vor der Thür des Batterielocals und scheidet sie mit einer feinen Bürste rein, worauf man sie an dem Drosselvorken wieder anal-
lieber des Naturselbstdruck.

363

gemirrt und dann in die Batterie zurückbringt. Die Silberplatte kommt jetzt aus der Eisenchloridslösung in die nahe liegende Flasche mit frischem Wasser. Nun bringt man eine zweite Silberplatte aus der Batterie in die Chloridslösung, dann wird eine andere Zinkplatte gereinigt, gewaschen und mit der ersten Silberplatte in die Batterie zurückgebracht. Auf diese Weise kann man die ganze Batterie erneuern, ohne ihre Wirkung wesentlich zu unterbrechen.

Wenn der Gewichtsverlust des gewalzten Kupfers in beiden Wannen anzeigt, daß das Elektrotyp die erforderliche Dicke erlangt hat, so wird die Platte von der Batterie weggenommen, von ihrem Rahmen befreit, ihre Hinterseite glattgezogen und ihre Flächen abgesiebt, bis die Trennung stattfinden kann. Nach der Trennung ist das Original frei; das erhaltene Relief wird genau so wie ein Original verfilbert und elektrotypirt, und die Kopie desselben ist bei guter Ausführung der Operationen ein vollkommenes Facsimilie des Originals, an Härte, Dauerhaftigkeit und Clarity den besten gewalzten und geämmerten Kupferplatten nicht nachstehend.

XC.

Der Naturselbstdruck.

Der Naturselbstdruck, eine Erfindung des Directors der k. k. Hof- und Staatsdruckerei, Hrn. Regierungsraths v. Au er, wurde im April 1853 zur allgemeinen Benützung freigegeben, und beruht nach der von Hrn. Director Au er präzisirten Erklärung im Wesentlichen auf folgender Grundlage:

Frage: Wie erlangt man in einigen Sekunden das losefreie und tautschende ähnlich von jedes Original eine Druckplatte, ohne eines Zeichners oder Gravers zu bedürfen?

Lösung: Wenn das Original, sei es eine Pflanze, Blume oder ein Insekt, Stoff oder Gewebe, kurz was immer für ein leblos Gegenstand, zwischen eine Kupfer- und eine Bleiplatte gelegt, durch zwei seit zusammengeschraubte Walzen läuft.

Das Original läßt durch den Druck sein Bild mit allen ihm eigenen Zartheiten, gleichsam mit seiner ganzen Oberfläche auf die Bleiplatte zurück.
Trägt man auf diese geprägte Bleiplatte die Farben wie beim Druck eines Kupfersstiches auf, so erhält man durch einen einmaligen Druck von einer Platte jedesmal die der Natur äquivalent ähnliche Kopien mit den verschiedensten Farben.

Bei einer großen Menge von Abzügen, welche die Bleiform wegen ihrer Weichheit zu liefern außer Stande ist, stereotypiert oder galvanisiert man dieselbe in beliebiger Anzahl, und druckt die stereotypirte oder die galvanoplastisch erzeugte Platte statt der Bleiplatte.

Bei einem Gegenstande, welcher nicht verleget werden darf, überfreichert man das Original mit ausgelöster Gutta-percha, und bemüht nach vorher stattgefundenem Ueberzuge von Silberlösung die abgenommene Gutta-percha-Form als Matrix zur galvanischen Bervorführung, oder man leitet den galvanischen Strom direkt auf das frische metallisierte Original.

Aus der „vierterjahreschrift der Bauhütte zu Nürnberg, 1855 Nr. 3“ haben wir mit Freuden erfahren, daß dieser junge Inbürstensweig bereits auch in Bayern Eingang gefunden hat, was wir in nachfolgender Abhandlung des Herrn Portefeuillefabrikanten Hering in Nürnberg unfern Lesern mittheilen.

Die zu vervielfältigenden Gegenstände, als Pflanzen, Stickerien, Spinen etc., müssen im trockenen Zustande sein; sollen nur dieselben in Blé eingebracht werden, so sind sie auf eine gleichmäßig starke polierte
Stahlplatte zu legen; das dazu verwendbare Blei muß glatt gewalzt, und
dieser senk, als der einzupressende Gegenstand, was bei Sträufern, welche
starke Stengel haben, wohl zu beachten ist. Zu größerer Vorricht wird
auf die Bleiplatte, welche den zu pressenden Gegenstand auf der Stahl-
platte dech, noch eine dünne Blechtafel aufgelegt und dann durch ein
Walswerk (Zylinderdruck oder lithographische Presse) durchgezogen.
Die Presse oder die Walzen müssen so gestellt sein, daß der Druck
ein gleichmäßig starker, jedoch nicht zu gespannter ist, da im letzteren Falle
das Blei ausgedehnt würde und mit demselben das Original in seiner
ursprünglichen Form verlieren würde.

Ist der Abdruck gemacht und hat sich die Bleiplatte gewölt, so darf
dieselbe nur auf der Rückseite gelegt werden, durch ihre eigene Schwere
wird sie bald gerade werden.

Kann die Bleiplatte nicht sofort in den galvanischen Apparat ge-
bracht werden, so ist es gut, sie mit reinem leichtflüssigen Provencerdol
leicht zu übergießen, was mit etwas loser Baumwolle am besten geschieht;
dadurch wird verhindert, daß das Blei ordnet, und so der Original-
abdruck in seiner ursprünglichen Reinheit erhalten.

Um nun eine Druckplatte von Kupfer erhalten zu können, muß zuerst
die Patrize (erhabene Platte) erzeugt werden; zu diesem Behufe überzieht
man die Bleiplatte auf ihrer Rückseite mit einer dünnen Schicht reinen
Wachses, damit nur die vordere Seite zur Aufnahme des galvanischen
Stromes und der Kupferabläufung fähig ist, und bringt sie in den gal-
vanischen Apparat (siehe weiter unten).

Hat die Kupferabläufung die Dicke einer halben Linie erreicht, so
ist die Platte als Patrize stark genug; man nimmt sie sofort aus dem
Apparat, befreit die Ränder durch Abschleifen von dem überschüssigen Kupfer,
und wenn sie von allen Seiten frei ist, bringt man die Kupfer- Blei-
platte über eine Spirituslampe in mäßige Wärme, wodurch die Trennung
der beiden Platten leicht erfolgen wird.

Die nun entstandene Patrize ist in reinem Wasser mit wenig Spiri-
tius vermischt zu legen, damit sie bis zur Einlage in den Apparat zur
Bildung der Patrize nicht ordneten kann.

Zur Gewinnung der eigentlichen Druckplatte (Matrise) ist dasselbe
Verfahren nöthig wie bei der Bleiplatte. Man überzieht die gewonnene
erhabene Platte aus der Rückseite mit Wachs, aus der Vorderseite ganz
leicht mit Del und zwar im erwärmen Zustande, damit die abzulagernde
Druckplatte nicht, was man sagt, anwachsen kann.

Die Druckplatte muß wenigstens eine Linie stark sein, und wenn
starke Stengel oder Rippen vorhanden sind, nach Verhältnis um so viel
stärker, damit die Platte zum Druckgebrauch auf der Rückseite abgeschliffen werden kann.

Daß die Platte vollständig rein, wenn nötig, polst sehn muß, ver-
steht sich bei dem Druckverfahren von selbst, und es wird nicht nötig sein,
sich hier weiter darüber auszusprechen.

Bei dem Drucken selbst ist von der gewöhnlichen Regel des Kupfer-
druckers, eine starke fahre Farbe zu nehmen, abzugehen; im Gegenboll
muß die Farbe häufig sehn und erforderlich bei dem Wischen alle Vorsicht,
um die z. B. bei Blättern in ihrer ganzen Grösse vorhandene Bertiehung
icht auszuwischen, und ist deshalb sehr schwache Rotasche oder Lauge
anzuwenden.

Bei Stifteren und Späten dagegen muß die Farbe stärker sehn und
mit einer elastischen Walze (aus Leim und Syrup) aufgetragen werden.
Hier gibt das weisse Papier die Zeichnung des Gegenlandes.

Ich glaubte hier nur im Allgemeinen meine Erfahrungen andeuten zu
müssen, und überläßte jedem denkenden Drucker das rechte Verhältniß
selbst zu finden.

Ein Hauptvorteil, und wohl der größte, der aus der Erfindung des
Naturseilbdruckes gegeben werden kann, ist wohl die getreueste Abbildung
ganzer Herbarien sowohl, als z. B. derjenigen Pflanzen und Blätter, wie
der Giftpflanzen, welche zur Belehrung in Schulen ze. auf eine beispiel-
los billige Weise naturgetreu hergestellt werden können, und zwar ver-
mittels des lithographischen Weberdrucks auf Stein.

Hr. Birkmann, Inhaber einer lithographischen Anstalt hier, hat
diese gefertigten Abdrucke geliefert.

Ich habe zu diesem Zwecke unmittelbar von der Bleiplatte einen
Pflangenabdruck genommen und benelben auf Stein übertragen lassen, und
die liegen, auf diese Weise erzeugt, vollkommen gelungene Abdrucke vor.

Von einer Bleiplatte mit Spiumenmuster, so weich und empfindlich sie
die leisten Haar im Druck ist, ließ ich 15 Abzüge machen, und selbst
bei den letzten sind die feinsten Spiegelfäden noch ganz scharf erschienen.

Auf diese Weise wird die Anfertigung zweier galvanischer Kupfer-
platten erfordert, und der Weberdruck auf Stein kann bedeutend billiger her-
gestellt werden, als der Druck der Kupferplatten.

Schließlich nüge ich hier noch die Anfertigung eines sehr einfachen
und zweckentsprechenden galvanischen Apparats bei, wenn irgend jemand
ihn trägt, sich derartige Platten selbst zu erzeugen.

Man lasse sich einen Kaften von gutem starren Holz, ungefähr 15
Zoll lang, 15 Zoll tief und 12 Zoll breit, anfertigen und denselben an
seinen inneren Bändern mit dünnem gewalztem Blei, welches an allen
Fugen verlöchet feyn muss, auszüfftern.

Auf diesen Kasten lasse man gleichsam als Deckel einen Rahmen
machen von circa 1 1/2 Zoll Dicke und 2 Zoll Breite, und zwar so, daß
die innere, offene Seite mit der des Kastens übereinstimmt.

In diesen Rahmen werden an jeder Längenseite inwendig nach oben
freistehend zwei Defen mit hohlem Kopse aus Messing eingeschraubt, um
die Leitfänge, welche von 1/4 Zoll starkem Messingdräht festgezigt wird,
durchschieben zu können.

Die Leitfänge laufen an den beiden Längen und der schmalen Seite
bes Rahmen herum und ruht daher in den Defen. An der schmalen
Seite ist ein aufrecht stehendes Stück Kupferblech angelöstet, welches ober-
halb mit einem runden Loch versehen ist, um eine zweite Leitfange durch-
schieben zu können.

Nun läßt man sich einen ovalen Doppelfrei von Siebholz machen
und spannt eine Kindsblase so darüber, daß der Beutel in den Apparat
eingeheben werden kann, verfeht diesen Reif mit vier Defen aus
Kupferdraht an der oberen Seite, um runde Holzstäbchen durchschieben zu
können, damit auf diese Weise sie auf beiden Seiten auf dem Rahmen
ausliegen.

Man fülle nun den Kasten mit destilliertem Wasser aufgelöstem
reinem Kupferwasser, hänge, nachdem die erstere Leitfange eingehoben ist,
die Blaue ein, fülle sie mit destilliertem Wasser und hänge die circa 1 1/4 —
3/4 Zoll starke Zinkplatte, welche etwas kleiner als die zu erzeugende
Kupferplatte sein kann, ein, an welche ein nach Bedürfnis langer Messing-
streifen angelöstet und oben umgebogen ist, und zwar an die zweite Leitungs-
fänge, welche durch das Kupferblech eingehoben, der Länge nach über
dem Rahmen liegt.

Der Platte, auf welche eine galvanische Kupferablagerung gewonnen
werden soll, wird ebenfalls auf der Rückseite ein Messingstreifen angelöstet,
oben umgebogen und an die erstere Leitfänge in den Kasten so eingehängt,
Daß die Geichtsseite der Blaue zugewandt ist; auf diese Weise können zu
gleicher Zeit zwei Platten eingehangen werden.

Nachdem die Blaue gefüllt ist und zwar so, daß sie mit der Kupfer-
verzinnlösung gleichen Niveau hält, gieße man 4 bis 6 Tropfen englische
Schwefelsäure zu und in kurzer Zeit wird der Apparat thätig feyn.

Wenigstens zweimal des Tages muß das Zink herausgehoben und
von seinem unreinen Dryp bereit werden, was durch Abbüren geschieht,
wobei jedesmal ein paar Tropfen Schwefelsäure zugegossen werden; allfällig
aber muß das Wasser aus der Blaue entfernt und durch frisches ersetzt werden.
Bor allem ist die größte Reinlichkeit erforderlich, die Leistungen müssen immer glänzend rein erhalten und die Kupferlösung nicht mit andern Theilen vermischt, in Gebrauch gelassen werden.

Dass das darin enthaltene Kupfer durch die Ablagerung ausgezogen wird, so hänge man schmale Säden mit Kupferstick activist gefüllt in den Apparat mit ein, damit das entzogene Kupfer wieder erzeugt werde.

J. C. Hering.

Aus den Comptes rendus, Nov. 1855, Nr. 19.

Der Verfasser, dessen Abhandlung Dr. Becquerel der französischen Akademie der Wissenschaften übergab, stellte seit einigen Jahren eine Reihe von Untersuchungen bezüglich der Buchdrucker kunst an, in der Abficht die Zeichnungen und Lettern durch erhabene Gravirung (Hebung) darzustellen. Er beschreibt einige Methode solgendermaßen.

Der in England unter dem Namen Brunswick black (Braunfärbemittel Schwarz) bekannte Kinnis, mit Lavendelöl vermischt, ist allen anderen

Der Kupferzitriol verändert selbst die härtesten Dessins durchaus nicht, und greift den Firmis nicht an.

Man kann diese Gravirmethode bei allen Versahrungsorten anwenden, mittels deren man eine Zeichnung vervielfältigt; z. B. auf Papier zeichnen und hernach die Zeichnung auf eine Zinkplatte übertragen; oder Abdrucke von lithographischen Steinen, Kupfer- oder Stahlsplatten auf Zinkplatten überbringen. Dieses Verfahren ist auch für Buchdrucker lettern anwendbar; nachdem man eine Seite von einem Buch auf eine Zinkplatte übergedruckt hat, kann man dieselbe sofort zu einer Stereotypplatten machen.

Basiens Verfahren Copien einer Zeichnung darzustellen.

XCI.
Beschreibung eines Verfahrens mittels dessen jeder Künstler leicht selbst Copien einer Zeichnung darstellen kann; von Hrn. E. Basien.

Aus den Comptes rendus, October 1855, Nr. 18.

Um die Zeichnung auf der Glasplatte zu schützen, so das von verselben zahlreiche (photographische) Copien gemacht werden können, überziehe ich sie mit einem harten und sehr durchsichtigen Künst, wozu sich der für die Collodiumbilder auf Glasplatten gebräuchliche vollkommen eignet.

Der Hauptvorteil, welchen das beschriebene Verfahren gewährt, besteht darin, dass es jedem Künstler gestattet selbst seine Zeichnungen mit vollkommener Genauigkeit zu copiren, ohne dass er aus seinem Atelier geht und ohne einen kostspieligen Apparat anwenden zu müssen.

XCIII.
Über die Darstellung von Lichtbildern aus trockenem, mit Eiweiß überzogenem Collodium, nach Dr. E. M. Taupenot.

Die Veröffentlichung eines photographischen Verfahrens mit dem günstigen Bericht von Prof. Chevreul in den Comptes rendus der französischen Akademie der Wissenschaften (S. 109 in diesem Bande des...
politechn. Journals), veranlafste Herrn Dr. Taupenot in der Zeitschrift "La Lumière" einige Details nachzutragen, welche den Photographen nützlich seyn werden, die dieses Verfahren versuchen und vervollkommnen wollen. Wir geben dieselben nach Horn's photographischem Journal No. 10, im Folgenden.

Was aber die Photographen hauptsächlich veranlassen sollte meine Methode zu verführen, ist die Schnelligkeit und Leichtigkeit, mit welcher die Platten präparirt werden können, und die Bequemlichkeit, Platten zu haben, welche vor und nach der Belichtung in der camera obscura ruhen können. So kann für das Bild einer Landschaft ein Windhoäser, eine zur Sonne hin ausgerichtete geheimnisvolle Szene; man wartet einen günstigen Augenblick ab, und wenn während der Belichtung der Wind etwas weniger geregelt wird, wenn eine Bewegung oder sonst ein Hinderndes stattfindet, schließt man das Objektiv, um weiter zu belichten, wenn der störende Einfluß ausgehört hat. Auf diese Art konnte ich ungeachtet des Windes in vielen Fällen operiren und erhielt gut gekommene Bäume, indem ich den Zeitpunkt bemühte, wo die Blätter in Ruhe waren.

Besonders der Leichtigkeit der Präparation der Platten verleih ich, dass man, nachdem das gewaschene Collodium mit Eisen überzogen worden ist, die Platten behufs des Trocknens nicht horizontal legen soll, son-
barn gut gesättigt, fast vertical. Auf diese Weise wird die Einweisschicht so dünn, daß eine halbe, höchstens eine ganze Stunde aufsteht 24 Stunden, zum Trocknen hineinschneidet, und daß man leicht am Abend 15 bis 20 Platten für den nächsten Tag präparieren kann, ohne ein Lästchen mit Falzen oder irgendeinen Apparat nötig zu haben, was besonders für Reisen eine schädliche Vereinfachung ist. Wenn man beobachtet, kann man auch die Platten aus der Weingeisslampe trocknen, ob auf einem Tisch, was ich oft getan habe, ohne eine Verminderung der Empfindlichkeit der Feinheit des negativen Bildes zu bemerken. Dieses künstliche Trocknen ist zweifellos möglich, um Blasen der Zeitungsdruckungen des Einweises zu vermeiden, die sich bilden können, wenn das Weiße des Bildes mit Gelb gemischt war.

Besonders der Notwendigkeit, die Platten des mit Einweis überzogenen Collodium, wenn solche nicht in das letzte Bad getaucht worden sind, in der Dunkelheit auszubewahren, ist eine sonderbare Erfahrung anzu- führen, die ich in Folge eines Irrthums machte, indem ich für ein Porträt eine Platte anwendete, welche ihr legtes Silberbad nicht erhalten hatte. Ich habe eine solche Platte während einer halben Stunde der Sonne ausgesetzt, dann derselben ihr letztes Bad gegeben und ein Bild damit erhalten, welches von einem unter den gewöhnlichen Bedingungen erzeugten nicht verschieden war. Da es mir an Zeit fehlte, hinlängliche Versuche anzustellen, um festzustellen, daß Platten, welche ihr legtes Bad noch nicht erhalten haben, im Kühlen aufbewahrt werden müssen, so überließ ich die Thatsache den Photographen, welche diese Frage durch Versuche ausführen sollten, da sie sich hinsichtlich der Manipulationen mit den Platten auf Reisen von Interesse ist.

Hinsichtlich der Anwendung von Gallussäure oder Pyrogallussäure ist zu bemerken, daß die erste, wie bereits in Chevreul’s Bericht erwähnt wurde, viel geringere Schattierungen im Bilde gibt, daher entfällt, wenn man bei düsterem Wetter operiert, um die Lichter mehr herauszutreten zu lassen und die Einförmigkeit der Beleuchtung zu verbessern. Wenn man hingegen im vollen Sonnenschein arbeitet, bei günstigen Lichtverhältnissen, so wird die Pyrogallussäure, mit Zusätzen einer starken Dosis Essigsäure, besser entsprechen. Wenn man etwas länger belichtet, derart, um verbrannte und rötliche Schwärzen zu erhalten, die dann mehr durchsichtig sind, so wird man selbst im Stande sein, bei den ungünstigsten Verhältnissen in Bezug auf Beleuchtung zu operiren und stets die zwischen den Lichtern und Schatten gewünschte Harmonie erhalten.

Endlich wiedehole ich bezüglich der Empfindlichkeit das bereits Gesagte, nämlich daß sie dieselbe ist, wie mit Collodium allein, welches ich
selbst mit Jodammonium bereitetete, und das mit einem französischen Objectiv von Lercours sein Portrait in weniger als einer Minute bei gepettetem Lichte gab. Ich sah seitdem mit viel schneller wirkenden Collo-
diumpräparaten als das meinige arbeiten, und kann nicht behaupten, dass das mit Eiweiss überzogene Colloidiunm eine ebenso große Empfindlichkeit haben wird. Nach den verschiedenen Gruppen, die ich zwischen 6 Sec-
cunden bis zu einer Minute erhielt, nach den beiden Bildern von Lands-
schaften, von inneren Ansichten, die mir weder das Colloidiunm noch das Eiweiss für sich allein geben konnten, hoffe ich aber, dass diese neue Me-
thode die Gunst rechsfertigen wird, mit welcher sie bereits von vielen
Photographen aufgenommen wurde."

XCIV.

Über Chlorometrie und über die freiwllige Umwandlung der unterchlorigsäuren Salze in chlorigsäure; von M. J. Fordos und A. Gelis.

Aus dem Journal de Pharmacie, Novbr. 1855, S. 370.

Wir haben im Jahr 1847 vorgeschnagen, bei den chlorometrischen Proben anstatt der Aufführung von arseniger Säure eine Aufführung von
unterschweflgsäurem Natron als Probemittel anzuwenden, hauptsächlich
urne eine so gesäßliche Substanz wie es der Arsenik ist, aus den Probila-
laboratorien der Fabriken zu entfernen. Seitdem wurde das unter-
schweflgsäurem Natron auch in Deutschland zu demselben Zweck empfohlen, aber mit wenig glücklichen Anbängungen in der Operationweise, wenig hauptsächlich (? die Beobachtung Veranlassung gab, dass eine Aufführung von arseniger Säure sich mit der Zeit in Arseniksaure umwandelt. Eine

54 Die Verfasser fanden nämlich, dass die unterchlorigsäuren Salze alle Dopp-
lösungen (mit Ausnahme der Unterschwefelsäure) schon in der Räume, und ohne dass ein Nebenschuss davon erforderlich wäre, jeglich in Schwefelsäure verwandeln, und bemessen dieses Verhalten zur Bestimmung des Sauersstoff- und Schwefelgehalts

zufällig gemachte Beobachtung veranlaßt uns auf diesen Gegenstand zurückzufallen.

Eine Gay-Lussac'sche Probefüssigkeit von äqüivalenter von unterschwefligsäurem Natron (welche 2,77 Gramme unterschwefligsäures Natron per Liter enthielt) gaben nämlich übereinstimmende Resultate, wenn man sie zum Probiren frisch bereiteter Auslösungen von unterchlorosiäurem Salzen anwendete; dies war aber nicht mehr der Fall, wenn man sie zum Probiren einer alten Auslösung lezigerer Salze benützte. — Wir operierten bald mit unterchlorosiäurem Kali, bald mit unterchlorosiäurem Natron, und unsere zwei erwähnten Probeflüssigkeiten, welche bisweilen ganze Monate ohne Erneuerung benützt wurden, waren in Gläsflaschen enthalten, welche auf einem ziemlich stark beleuchteten Gestell unseres Laboratoriums standen, bis wo sóhn aber die Sonnenstrahlen fast niemals brachen. Wenn wir eine oder mehrere Chlorbestimmungen zu machen hatten, ermittelten wir durch eine doppelte Probe die Veränderungen welche der Titre der Flüssigkeit seit dem letzten Versuch durch die Zeit erlitten hatte; das unterchlorosiäure Salz hatte jedesmal von seiner Stärke verloren, aber die Gehaltsveränderungen welche die Gay-Lussac'sche Probefüssigkeit und die Auslösung von unterschwefligsäurem Natron anzugen, stimmen nicht überein. Auffallend war uns besonders, daß eine alte Lösung von unterchlorosiäurem Alkalii, welche aus die Gay-Lussac'sche Probefüssigkeit gar nicht mehr reagirte, noch merklich auf das unterchlorosiäure Natron wirkte und auch eine leztere Reaction entsprechende Quantität von Descroizille's Indigolösung zeigte.

Diese Thatsache war für die Chlorometrie sehr wichtig, daher wir sie weiter verfolgten; durch die chemische Untersuchung der Flüssigkeiten fanden wir bald, daß die abweichenden Resultate der theilweise Umwandlung der unterchlorisiäuren Salze in chlorisiäure, welche unter dem Einfluß des zerstreuten Lichts erfolgt, zugeschrieben werden müssen. Die Bleichflüssigkeit welche für die Arsenlösungen indifferent war, aber doch das unterchweflisiäure Natron und den Indigo noch zersetzte, nahm auf Zusatz einer verdünnten Säure, und namentlich von Salzsäure, eine deutliche grüne Farbe an und befaß dann den charakteristischen Geruch der von Weilson entbeister chlorigen Säure; letztere verwandelt bekanntlich die arsenige Säure nicht in Aserienäure. Diese Flüssigkeit, mit einer besonders bereiteten Auslösung von chloriger Säure verglichen, zeigte alle charakteristischen Eigenschaften derselben.

Die Veränderung der Weichsalze durch das Licht kann bei der Bestimmung ihres Gehalts an sich veranlassen, welche in manchen Fällen
so bedeutend sind, daß man die Anwendung der arsenigen Säure bei den chlorometrischen Proben nicht unwesentlich aufgeben muß; denn was der Kaufmann und der Färber bei diesen Proben suchen, ist nicht der Gesamtgehalt der bleichenden Verbindung an unterchloriger Säure, sondern die Menge von Farbstoff, welche ein bestimmtes Gewicht dieser Verbindung zu zerstören vermag.

Wir empfehlen daher den Fabrikanten neuerdings, die arsenikalische Probesäsität durch eine Normallösung von unterschweflsgaurem Natron zu er scheinen.

Um diese Normalflüssigkeit zu bereiten, braucht man nur 2,77 Gramme unterschweflsgaures Natron in soviel Wasser auzulösen, daß man einen Liter Flüssigkeit herstellen kann. Diese Flüssigkeit, welche der Gay-Lussac'schen Arseniklösung äquivalent ist, würde genau ihr gleiches Volum Chlor zerstören.

Das unterschweflsgaure Natron ist ein gut kristallisiertes, in Wasser leicht löschliches Salz von constanter Zusammensetzung, welches sich an der Luft nicht verändert; es ist der Gesundheit nicht schädlich, und in jeder Hinsicht der giftigen arsenigen Säure vorzuziehen.

Bei der Chlorometrie mit unterschweflsgaurem Natron besorgt man übrigens alle Vorschriften von Gay-Lussac (polytechn. Journal Bd. LXX S. 128), dessen Verfahren wegen des neuen Reagens nur folgende Änderungen erheischt:

Nachdem man in das Mischungsglas 10 Kubikzentimeter der Normallösung von unterschweflsgaurem Natron gegossen hat, muß man 100 Theile Wasser zufügen, dieses Gemisch schwach säuern und es mit einigen Tropfen Indigolösung färben. Wenn man dann die zu prüfende Weichsalsaure bereitstellt, so wird sie sich wie die Arseniklösung verhalten, d. h. die bläue Farbe wird sehr lange verbleiben und nur dort allmählich gesätt werden, wo die Chlorflüssigkeit hinzutritt; dies gefällt dem Zeitpunkt, wo die Operation ihr Ende erreicht hat, genau zu erkennen.

Die Auslösungen von unterchlorgauren Salzen sind neutral oder alkalisch; damit ihre Reaction auf das unterschweflsgaure Natron vollständig erfolgen kann, muß aber die Flüssigkeit schwach särren sein. Deshalb empfehlen wir sie anzusäubern. Die Säure, welche wir der Lösung von unterschweflsgaurem Natron zufügen, veranlaßt nicht unmittelbar einen Niederschlag von Schwefel, wenn die Flüssigkeit auf angegebene Weise mit Wasser verdünnt worden ist; und wenn man rasch operirt, läßt sich nach dieser Methode der Titre des Weichsalkes genau bestimmen.

Man kann aber auch eine erste Probe auf angegebene Weise ausführen und zur vollständigen Sicherheit noch eine zweite Probe machen,
wobei man der Normalösung von unter-Ulvestigsaurem Natron zwei Drittel der zu probirenden Flüssigkeit zufügt, bevor man sie säuert. Man hat dann seine Fällung von Schwefel zu befürchten und das Resultat der Operation wird also durch keine Fehlerquelle verdächtig.

Das unter-Ulvestigsaure Natron abdorbt das Chlor mit auffallender Leichtigkeit, dafür wir es neuerdings als das beste Gegenmittel bei Bergstürzen durch Javel'sche Lauge und andere unter-Ulvestigsaure Salze, welche gegenwärtig so gebräuchlich sind, empfehlen.

Es ist auch das beste Mittel gegen die giftigen Wirkungen des Brom- und Jods, welche in photographischen Anstalten leicht vorkommen können, wo man überdies das unter-Ulvestigsaure Natron zu Hand hat.

XCV.

Ueber Bleizuckersfabrikation; von Professor W. Stein.

Das aber sein Vorschlag, die Mutterlaugen durch Schwefeldioxyd zu entsünden, nicht praktisch sei, scheint leicht zu entscheiden, wenn man erwägt, daß Schwefeldioxydstoff in den Räumen einer Bleizuckersfabrik die Welle des fertigen Bleizuckers gefährdet und darum ausgeschlossen bleiben muß.

Der Apparat, welchen ich am oben erwähnten Ort zur Sättigung der Essigsäure mit Bleiglätte vorbehalt, ist seitdem praktisch geprüft worden, und es hat sich dabei gezeigt, daß das Holz der Gefäße, in welchen die Bleiglätte sich befand, sehr bald von den Essigsäuréen durchbrungen und nur schwierig neutrale Laugen erhalten werden konnten. Dagegen zeigte sich die zweite von mir angebendte Methode, nämlich Einleiten der Essigsäure in mit wenig Wasser angerührte Bleiglätte, als sehr brauchbar.

XCVI.

Über platinirte Kohle; von J. Stenhouse.

Aus den Annalen der Chemie und Pharmacie, Octbr. 1855, S. 36.

Die leichteren Arten von Holzkohle bestehen dadurch, dass sie das neumade Volumen Sauerstoffgas in ihren Poren condensirt enthalten, ein beträchtliches Vermögen, die grössere Zahl der leichter veränderlichen Gase und Dämpfe zu ordniren. Doch ist das Adsorptionsvermögen der Kohle vergleichungsweise viel grösser, als ihr Vermögen chemische Verbindung einzuleiten. In dieser Beziehung bildet die Kohle einen merkwürdigen Gegensatz zum Platinchwamm, welcher, wenn auch mit geringerem Adsorptionsvermögen für einige Gase begabt (Platinchwamm absorbiert zu B. nur 30 Volume Ammoniakgas, Holzkohle hingegen 90), doch sich in Beziehung auf Drydation und zur Besforderung chemischer Verbindung im Allgemeinen viel wirksamer zeigt. Da es für einige Zwecke wünschenswerth sein kann, die orbibrenden Wirkungen der Kohle zu erhöhen, ohne das Adsorptionsvermögen derselben zu schwächen, so versuchte ich, dieses durch Ver-

Es ist klar, daß alle leicht veränderlichen organischen Dämpfe, wie Essig-
vien oder Miasmen, selbst bei kurzer Berührung mit der platinierten Kohle,
gezücht werden müssen, indem ihr Kohlenstoff zu Kohlenaure und ihr
Wasserstoff zu Wasser wird.

Platinierte Kohle scheint auch mit großem Rüge bei bösartigen Ge-
schützen anwendbar zu sein, und ich glaube, daß sie bei ihrem mächtigen
Drohdationsvermögen ein mildes, aber wirksames Axzmittel abgibt. Doch
bürste für diesen Zweck platiniertes Asbest, für sich oder in Verbindung
mit platiniertener Kohle, noch besser anzuwenden sein. Bei solchen Krank-
heiten, wo der innere Gebrauch von Kohle sich heisam erweckt, möchte
auch die platinierte Kohle mit Vorteil angewendet werden. Auch in
Bunten's Kohlenbatterie dürfte meiner Ansicht nach die Anwendung
platiniertener Kohle vortheilhaft sein.

Es ist klar, daß der Gehalt der Kohle an Platin fast beliebig ge-
steigert werden kann, je nach der Stärke der bei der Darstellung des Prä-
parats angewendeten Platinlösung, und je nach dem Zweck, zu welchem
man dasselbe bestimmt. Fast in jeder Form und in jeder Größe läßt sich
die platinierte Kohle erhalten — Umstände, welche ihre Anwendbarkeit
beträchtlich erweitern.

XCVII.

über neue Eigenschaften der frisch geglühten Holzkohle; von
Hrn. Moride.

Aus den Comptes rendus, Octbr. 1855, Nr. 16.

Das Desoxydationsvermögen der trockenen Holzkohle, bei erhöhter
Temperatur, ist bekannt; es dürfte aber sich kaum () eine Angabe darüber
finden, daß sie Metalle auch aus neutralen, sauren oder basischen Flüssig-
keiten reduziert, oder daß frisch geglühte Holzkohle mit einer verdünnten
und weingeisthaltigen Säure die Aetherbildung hervorgerufen habe. Nach-
nehmend folgen die ersten Resultate dieser Entdeckung des Verfassers:
Kohle, die Kohle der Lignite, tierische Kohle, Knochenkohle bringen die
gegebenen Wirungen der Holzkohle keineswegs hervor.

1) Nimmt man eine glühende Holzkohle und taucht sie sogleich oder
nachher man sie vermittels kalten Wassers ausgelöscht hat, in eine saure
Lösung von Kupferacetat, so setzt sich das Metall nach und nach auf

2) Metallsalze mit organischen Säuren lassen sich weniger leicht zerlegen, als solche mit Mineralsäuren.

3) Lösungen von Silber in Salpetersäure, sie mögen neutral oder sauer sein, Chlorisilber in Ammoniak gelöst, werden durch frisch geglühte Holzfosile leicht gesciegt. Das Silber übersieht allzald die Kohle und bietet einen reizenden Anblick; es scheint sogar manchmal kristallisiert zu sein.

4) Man kann auf dieselbe Weise auch Kupfer aus ammoniakalischen Lösungen fallen; enthalten dieselben aber auch Silber, so wird dieses zuerst reduziert.

5) Wird glühende Holzfosile in eine mit Schwefelsäure angefärbbte Fowler'sche Flüssigkeit getaucht, so entsteht ein sehr angenehmer Aethier, welchen ich zu untersuchen beabsichtige. Durch Anwendung verschiedener Säuren erhält man auf diese Weise leicht Salpeter-, Essig-, Schwefelsäure u. s. w.

6) Zinn, Eisen, Platin, Blei, Quecksilber können durch die Kohle gefällt werden, jedoch lösen sie sich in sauren Flüssigkeiten sogleich wieder aus, was bei dem Silber nicht der Fall ist, und bei dem Kupfer erst in 24 Stunden nach der Operation geschieden.

XCVIII.
Untersuchung des bituminösen Schiefer zu Werther bei Bielefeld; von Dr. Theoph. Engelbach, Assistent am chemischen Laboratorium zu Gießen.

Die mir überlassenen Schiefer zeigten hier und da eingesprengete Schwefelflisse und gehörten verschiedenen Sorten an, wurden aber auf
Wunsch nicht gesondert, sondern im Ganzen bearbeitet. Ihr Gewicht betrug beinahe 6½ Pfund. Diese ganze Menge ist zum Zweck der Untersuchung möglichst gleichförmig in hasselnussartige Fragmente zerflossen und nach vorgängiger Menge zur Anstellung der Versuche geschritten worden.

Die Aufgabe, die ich mir dabei stellte, war die Ermittlung:

1) der Menge von Gas,
2) der daraus darstellbarer Produkte, die bei möglichst vorsichtig geleitetester Destillation erhalten werden; mit beiden im Zusammenhang die Menge des nicht flüssigen Rückstandes, und
3) die Natur der Asche.

I. 100 Gramme des gemengten Schießers wurden in einem eisernen Cylinder bei möglichst gelind gehaltenem Feuer, das nur zuletzt zum Rotglühen gesteigert wurde, befördert. Der Theer wurde in einer großen wohlabgeschlossenen Flasche aufgesammelt und das entweichende Gas durch verdünnte Schwefelsäure und Kalkmilch geleitet. Erst als der Flasche die Destillation flüssiger Produkte und die Entwicklung des Gases aufhörte, wurde das Feuer allmählich zur Rotglühigkeit verstärkt und bei dieser Temperatur unterhalten, bis die einzelnen Gasbläser nur noch minutenlangen Zwischenräumen entraten.

Die Produkte dieser Operation waren:

In der Wachflasche eine geringe Menge Ammoniaksalz und Spuren von Ammoniak. In der Kalkmilch eine beträchtliche Menge Schwefelcalcium.

In den Recipienten 10 Gramme wässerigen Theers und 13½ Liter Gas. Der Rückstand in der Retorte betrug 78 Gramme. Dieser Rückstand war in der Retorte aufbewahrt, in der man die Flüssigkeit der Destillation entzogen war, so daß sich der Rückstand einer braunen Schicht in den Wachflaschen und im Gasometer erschien. Wenn man für das Gas die Dichte zu 0,5 annimmt, so wog ein Liter des selben 0,65 Gramme und 13½ Liter, folglich 8,61 Gr.

Wässriger Theer 10,00 "
Rückstand 78,00 "
Schwefelwassersstoff, Kohlenstoff, Ammoniak und Verlust 3,39.

100,00.

II. Ganz in derselben Weise wurden nun zwei Portionen von je 1500 Grammen = 3 Pfund der Destillation unterworfen und zur möglichst vollständigen Gewinnung des Theers derjenige in drei aufeinanderfolgenden Recipienten gesammelt; das entweichende Gas wurde in den verschiedensten Stadien der Destillation auf seine Leuchtkraft geprüft, nach seiner
Menge aber aus Mangel an hinreichend großen Gasometern nicht weiter bestimmt.

Es lieferten 1500 Gr. Schiefer 205 Gramme Theer
1500 " 197 "
ca. 402 Grm. wässerigen und durch übergerissene Kohle verunreinigten Theers.

Derzule ben schrieb sich nach mehrtagiger Ruhe in eine wässerige und eine obenauf schwimmende ölige Schicht, und wurde letztw durch Destillation in unreine Dele und pechähnlichen Rückstand geschieden.

Die erhaltenen Dele wurden mit Schwefelsäure und chromsaurem Kali in der Wärme behandelt und wiederholt destilliert. Es sind auf diese Weise aus 402 Grm. Theer, entsprechend 3000 Grm. Schiefer, erhalten worden:

44 Gr. leichtes Del, vom spez. Gewicht 0,879 und von + 110° bis 240° Celsius flüssig.
31 Gr. schweres Del, vom spez. Gewicht 0,955 und über + 240° Celsius flüssig.
11 Gr. Paraffinhaltiges in sehr hoher Temperatur destillierendes, in der Kälte butterartig erstarrendes Produkt.

86 Gramm.

100 Theile des Schiefers liefern demnach:

78 Theile freien Rückstand mit Kohle und
14 " einer wässerigen Brühe, woraus sich

gewinnen

\[\begin{align*}
1,47 & \text{ Theile leichten Del's von 0,879 sp. Gew.} \\
1,03 & \text{ schweren } \quad 0,955 \text{ sp. Gew.} \\
0,37 & \text{ butterartigen Fettes} \\
0,87 & \text{ asphaltnahen Pechs}
\end{align*} \]

Das bei den beiden letzternähnten Destillationen, deren jede etwa 6 Stunden in Anspruch nahm, erhaltene Gas zeigte während der ersten Hälfte dieser Zeit eine schön weißleuchtende Flamme, deren Glanz dann aber bald abnahm und in dem leisten Drittel der Destillation in ein reines Blau überging. Das in dem ersten Versuche aus 100 Grm. erhaltene und im Ganzen aufgesammelte Gas brennt mit blauer, an der Spitze weissglühter Flamme, sein Gehalt an ölbildendem Gase und flüchtigen Kohlenwasserstoffen ist gering, wie seine unternommene Analyse gezeigt hat, deren Resultate unten mitgetheilt werden.

Da 100 Grm. Schiefer 13,25 Liter Gas liefern, so geben 50,000 Grm. = 100 Pt., 6,625 Kubikmeter, welche entsprechen 233 4/10 engl. Kubifuss.

III. Zur Bestimmung der Asche wurden etwa 100 Grm. desselben Schiefergemenges, das zu den andern Bestimmungen verwandt worden, sein gepulvert und bei + 100° Celsius getrocknet. 1,2255 Grm. dieses Pulvers hinterliessen nach vorsichtigem und vollständigem Einäthern

0,8375 Grm. entsprechend 28,797 Proc. Glühsverlust

71,203 " " Asche.

Diese röstliche, weiss gefärbte Asche besteht wesentlich aus

Kieselsäure, Zinkerde, Gips und Eisenoxyd

und enthält geringe Mengen Phosphorsäure, Natrium, Man gan und Alkalien.

Der Gehalt an Eisenoxyd beträgt 13,845 Proc.

Analyse des aus demselben Schiefer durch Destillation erhaltenen und im Ganzen gesammelten Gases.

Nachdem das selbe durch längere Berührung mit verdünnter Schwefelsäure und Kochsalz von einem etwaigen Rückhalte von Ammoniak, Kohlen- säure und Schwefelwasserstoff befreit worden, wurde es der Analyse nach der Bun s fischen Methode unterworfen.

Dieselbe hat, mit der größten Sorgfalt ausgeführt, die in der folgenden Tabelle zusammengestellten Werthe geliefert.
Im Absorption-Cubiometer

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15,2</td>
<td>128,59</td>
<td>331,6</td>
<td>746,00</td>
<td>90,5 78,283</td>
</tr>
<tr>
<td>II. Nach der Behandlung mit Phosphor und Kali trocken</td>
<td>15,4</td>
<td>122,90</td>
<td>331,0</td>
<td>744,60</td>
<td>92,6 77,704</td>
</tr>
<tr>
<td>III. Nach der Behandlung mit rauchender Schwefelsäure und Kali trocken</td>
<td>15,3</td>
<td>117,70</td>
<td>328,98</td>
<td>739,77</td>
<td>98,5 73,389</td>
</tr>
<tr>
<td>IV. Nach abermaliger Behandlung mit Phosphor und Kali trocken</td>
<td>15,4</td>
<td>114,00</td>
<td>330,25</td>
<td>743,03</td>
<td>101,75 71,0825</td>
</tr>
</tbody>
</table>

Im großen Cubiometer

V. Feuchtes Gas	16,35	103,65	329,50	741,11	562,45	16,115
VI. Nach Zutritt von Luft feucht	16,40	245,76	329,60	741,26	418,60	71,583
VII. Nach Zutritt von Sauerstoff feucht	16,80	330,45	330,0	742,40	332,40	123,197
VIII. Nach der Verpuffung feucht	17,00	301,40	329,80	741,70	353,70	106,185
IX. Nach der Aborption der Kohlen säure trocken	16,60	287,15	327,95	737,54	370,09	100,174
X. Nach Zulassung von Wasserstoff trocken	17,10	430,50	327,60	736,70	227,50	206,066
XI. Nach der Verpuffung feucht	17,00	201,60	328,80	739,44	271,22	51,353

Hieraus leiten sich folgende Werthe ab. Die im kleinen Cubiometer untersuchten 78,283 Volume, die durch Kali keine Raumnervenminderung erlitten, wie ein besonderer Versuch gezeigt hat, enthielten:

2,826 Sauerstoff,
4,375 öffnungsloses Gas und dampfförmige Kohlenwasserstoffe.
71,082 Volume blieben unabsorbirt.
78,283.

16,115 Volume dieses unabsorbirt gebliebenen Rückstandes haben im Verpuffungs-Cubiometer gegeben:
4,744 Stickstoff, 11,371 brennbare Gase (Wasserstoff, Kohlenoxyd und Grubengas), 6,011 gebildete Kohlensäure, und 11,652 verbrannten Sauerstoff.

Aus diesen Rechnungselementen leitet sich die folgende Zusammenstellung der angewandten 16,115 Volume ab:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stickstoff</td>
<td>4,744</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>5,360</td>
</tr>
<tr>
<td>Grubengas</td>
<td>3,977</td>
</tr>
<tr>
<td>Kohlenerd</td>
<td>2,034</td>
</tr>
</tbody>
</table>

Die beobachtete Contraction bei der Verpuffung, die in die Berechnung nicht eingeht, beträgt 17,012 (Volumen VIII — Vol. VII); aus der eben angegebenen Zusammenstellung berechnet sich die Contraction zu 16,975.

Die ursprünglich angewandten 78,283 Volume bestehen somit aus:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauerstoff</td>
<td>2,826</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>4,375</td>
</tr>
<tr>
<td>sichtbaren Gas und dampförmigen Kohlenwasserstoffen</td>
<td>20,924</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>23,642</td>
</tr>
<tr>
<td>Grubengas</td>
<td>17,542</td>
</tr>
<tr>
<td>Kohlenerd</td>
<td>8,973</td>
</tr>
</tbody>
</table>

und 100 Volume des Gases enthalten:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauerstoff</td>
<td>3,60</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>26,72</td>
</tr>
<tr>
<td>sichtbaren Gas und dampförmigen Kohlenwasserstoffen</td>
<td>5,59</td>
</tr>
<tr>
<td>Kohlenerd</td>
<td>30,22</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>22,40</td>
</tr>
<tr>
<td>Grubengas</td>
<td>11,47</td>
</tr>
</tbody>
</table>

100,00 Volume.

Diese Zusammenstellung stimmt nahe überein mit der eines von Hrn. Professor Kolbe unterfuchten Leuchtgases, welches enthält:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauerstoff</td>
<td>3,23</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>26,71</td>
</tr>
<tr>
<td>Kohlensäure</td>
<td>2,50</td>
</tr>
<tr>
<td>sichtbaren Gas und dampförmigen Kohlenwasserstoffen</td>
<td>5,73</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>23,86</td>
</tr>
<tr>
<td>Kohlenerd</td>
<td>17,13</td>
</tr>
<tr>
<td>Grubengas</td>
<td>20,84</td>
</tr>
</tbody>
</table>

100,00 Volume.

Das Gas ist mittin als Leuchtgas anwendbar, und wird dies in noch höherem Grade sein, wenn bei einer fortgesetzten Destillation im Großen die atmosphärische Luft der Gefäße weniger stört, als dies bei dem Gase meiner Destillation der Fall war, und woraus der bedeutende Stickstoff ist.

Dingler's polyt. Journal Bb. CXXXVIII. S. 5. 22 25
CIX.

Aus den Comptes rendus, October 1855, Nr. 14.

Ich habe alle Zufälle dieser Seidenwärmer genau beschrieben und gezeichnet, von der süß, an bis zum lekten Lebensalter der Raupen. Im Wesentlichen geht aus meinen Beobachtungen hervor, daß die junge Raupen, wenn sie aus dem Ei kommen, zu ihrer ersten Mahlzeit die Eiche fressen, die Eichblätter in diesen Eierschalen verwendete; sie ist zu dieser Zeit schön orange-gelb, mit hageren schwarzen Streifen, die die Kragen und einige ihrer Füße schwarz (tuberoles) sind am Ende ebenfalls schwarz. Nach der ersten und zweiten Hautung wird sie grün, die schwarz Streifen der Kragen verschwinden und die hervortretenden Warzen sind schön rot mit schwarzem Ende.

Nach der dritten Hautung bekommen diese Warzen, sowohl diejenigen auf den Füßen, als diejenigen der ersten Reihe am ersten, ein goldgelbes Ansehen, und bei den andern ist das Ende schönblau oder intensiv violett. Zu dieser Zeit erscheint, aber nur bei einigen Individuen, an der Seite, unter den Seitenwarzen des fünften, sechsten, manchmal auch des siebenten Segments, ein silberglänzendes Plättchen, welches sich am besten und an dieser Stelle liegen gebildeten Duschenbepropfen vergleichen läßt. Nach der vierten Hautung sind die Veränderungen nicht mehr erheblich und ich glaube, daß nun die Raupen, wie alle anderen Bombyx-Raupen, welche drei und größtenteils vier Hautungen durchmachen, ihren Cocoon spinnen und sich verbepfen werden; zu meinem Erstaunen aber verfiel sie (am 29. September) in einen fünften Schlaf. Sie macht also eine Hautung mehr durch als ihre Gattungs- genossen — eine bisher noch nicht beobachtete Thatfache.

Dieser neue Seidenwurm wird gewiß große Borteile gewähren, wenn es mir gelingt, ihn in der europäischen Landwirtschaft einzuführen;
denn er weht einen außerordentlich großen Cocos, welcher zehnmal so viel Seide enthält, als derjenige des Maulbeer-Seidenwurms. Um ein Kilogr. Seide zu erhalten, sind bekanntlich ungefähr 6000 Coconos des gewöhnlichen Seidenwurms erforderlich, wogegen man vom Tussah-Seidenwurm dazu nur 600 Coconos braucht. Der einfache Faden vom Cocon des Tussahwurms ist 6—7mal so stark und 4—5fach so dick als derjenige des gewöhnlichen Seidenwurms, er besitzt einen schönen Glanz und läßt sich jetzt sehr gut färben, wie ich bereits mitgeteilt habe. Als einfacher Faden abgeschält, hat diese Seide die Feinheit (den Titre) der gewöhnlichen Seide von ½ Cocos, und in diesem Zustande dürfte sie ganz neue Anwendungen in der Industrie finden.

Die Einführung dieses Seidenwurms, so wie dieweil meines Bombyx moryi aus dem nördlichen China wäre besonders deshalb von Wichtigkeit, weil sie mit Eichenblättern aus unsern Schlägen und in Gegend bezogen werden könnten, wo der Maulbeerbaum nicht mehr mit Borteil cultivirt werden kann. Wenn es mir gelänge, mit diesem möglichen Infekt unsere Landwirtschaft zu bereichern, so könnten unsere armen Bauern im nördlichen Europa es durch ihre Frauen und Kinder aufziehen lassen, also fast ohne Kosten, wodurch sie, wie in einem großen Theil China's und Indiens, sich bald den Rohstoff der Leiber verschaften würden, für welche wir jetzt ungeheure Massen von Baumwolle dem Auslande ablaufen.

Miscellen.

Modifizierter Erfolg für Strohdächer; von Hrn. John Boswell.

Der Umstand, daß es sehr schwierig ist eine vegetabilische Substanz zu entfalten, welche einen, wenn auch höchst dünnen Überzug von Kautschuk erhalten hat, veranlasse Hrn. Boswell, mit Kautschuk einen Versuch im Großen zur Erzielung verhältnismäßig unwendbaren Strohdächer anzustellen; er welche

Wissenschaftliche Mitteilungen.

389

das Stroh in Kalfswasser ein und überlag das fertige Dach mit einem Gypsputz; das Verhältnis erwies sich aber als zu umständlich.

Aus einem Vortrage welchen Dr. Boiswell am 1. Junius v. J. in der Royal Dublin Society hielt. — Civil Engineer and Architect's Journal, Juli 1855, S. 249.)

Französische Vorrichtung zum Öffnen und Schließen von Fensterladen; beschrieben von Hrn. Herrenberger, Schlossermeister in Ulm.

Von Hayo in Paris befeuchtet sich aus der allgemeinen Industrie-Ausstellung ein Fensterhof mit zwei Salzsteinlädchen, an welchen eine Vorrichtung angebracht war, die beiden Lädchen zu öffnen, an der Hand angelegten und wieder zu schließen, ohne ein Fenster aufzumachen. Dieses Problem war auf eine sehr kunstvolle Art und Weise gelöst und auch prächtig ausgeführt. Es sind nämlich an der Vorderseite des Fensters, unten am Laden, zwei ineinander greifende seitliche Antriebsebenen in einem gußeisernen Stahle angebracht und mit Steinschalen an die Wand befestigt; an dem vorzüglichen Mäntel geht die Fläche durch die Klauen in das Zimmer und erhält hier einen messlings Brechknopf, in Form einer gespannten Dose; daß es in Verbindung stehende horizontale Mäntel mit einem an demselben verbundenen Hebelarm versieht, welchen bei seiner Bewegung den Laden vom offenen zu geschlossenem Zustand, umgekehrt, dirigirt. Die Lädchen werden durch Zugfälse geschlossen und mittels Winde an die Wand angelegt; dieses wird aus folgende Art bewerkstelligt: die Zugfälse sind unter sich durch Drachshängeln und Vasenlosehen verbunden und eine Scheibe in unmittelbare Nähe der durch die Wand gehenden Äste gebracht, so daß ein an dieser befestigter Zapfen beim Drehen der Äste die Scheibe gleich bewegt und die Fälsen auslöst, womit der Laden bewegt werden kann und so in Schwingung kommt, daß er von selbst auf der gegenüberliegenden Seite einschließt. Die Lädchenbänke müssen geschräge Gewinde haben, so daß ihr Drehpunkt konzentrisch zu dem Horizontalen Mäntel steht. (Württembergisches Gewerbeblatt, 1855, Nr. 48.)
Verfahren, aus dem durch Zersetzung des Wassers mittels Kohle vorge-
destellten Wassersoffgases das Kohlenoxydgas abzuscheiden, von F. G. De-
shayni in Paris.

Das Gas, welches durch Einwirkung von Wasser dampf auf glühende Kohle
gebildet wird, besteht bekanntlich aus Wasserstoff, Kohleneox- und Kohlenstoff,
legtere kann man leicht daraus entfernen, aber zur Abscheidung des Kohlenoxy-
gases war bisher kein im Großen anwendbares Mittel bekannt. Es kann jedoch für
gewisse Verwendung des so entstehenden Wassersoffgases wünschenswerth sein, das-
eselbe frei vom Kohlenstoffgas zu erhalten, welches manchmal 30 Voltmprocente und
darauf beträgt. Zu diesen Zweck gibt Deshayni folgendes Verfahren an: man
lässt das Gas auf glühendes Natronhydrat wirken, wobei das Kohlenstoffgas durch
den Sauerstoff des Hydrostoffs zu Kohlenstoff oxidiert wird, der sich mit dem
Natron verbindet, während der Wasersstoff des Hydrostoffs frei wird, so daß also
nicht nur das Kohlenstoffgas weggeneomen, sondern auch durch ein gleiches Volum
Wassersstoffgas erspart wird.

Das Natronhydrat wendet man an, indem man in Form von Natronkalk an,
d. h. man vermischte salzige Natronlöfung mit Kalkhydrat und trocknet die Masse
aus. Den Natronkalk erhält man in eisernen Cylindern zum Glühen, und leitet
dann das Gas, welches zuvor von Kohlenstoff befreit wurde, hindurch. Das
Natron, welches bei dieser Benutzung in kohlensaures Salz übergeht, kann natürlich
durch Auslassen der Masse mit Wasser, Behandeln mit Kalk u. s. w. immer wieder
Journal of arts, October 1855, S. 213.)

Gleichzeitige Erkennung von Zed und Brom in Gemischen.

Hierzu bedient sich des Chlorosylins und des Aethers in folgender Weise: die
wässerige Lösung der Zed- und Bromverbindungen bringe ich mit Chlorosyl
in ein Probivorrathen, sose einen Uebertritt von Chlorsylung (oder Chloro-
syr) zu, um Zed und Brom frei zu machen, und schütte so lange um, bis alles Zed
vom Chlorosylin gelöst ist. Sobald die beiden künstgleitschichten, worvon die
unterste schön violett, die obere vom Brom gelblich gefärbt ist, sich vollständig ge-
sonbert haben, giesse ich eine dünne Schicht Aether darüber und beobachte die Auf-
nahme des Broms durch legteren durch Bewegen mit einem Glasfaden. Auf diese
Weise läßt sich alles Brom in den Aether überführen, die wässerige Flüssigkeitschicht
wird vollkommen entfärbt und man hat nun Zed und Brom nicht bloß in einer
für die Erkennung überaus hübschen Weise von einander getrennt, sondern kann,
wie ich früher beobachtet, sogar unter gewissen Beobachtungen die Mengen befesthen
bestimmen. Das Überführen des Broms in den Aether hat sich vorherhändlich mit
nur dem Zweck, seine Farbe deutlicher sichtbar zu machen; wäre so viel Brom vorhanden,
ßß die wässerige Flüssigkeit deutlich seine Eigenschaft erkennen lässt, so ist die
Jennung von Aether überflüssig. Prof. W. Stein in Dresden. (Polytechni-
ches Centralblatt, 1855, S. 1298.)

Over die Löschlichkeit des Zinnober's in Schwefelsäure und ein neues
Prüfungsmittel auf seine Reinheit.

Das Schwefelsäuresilber in Schwefelsäure unter gewissen Umhänget lösch-
set, ist schon lange bekannt. Verzältnis führt in seinem Hand-
deckten an: „Der Zinnober ist eine Schwefelsäure und bildet mit fäulnigen Sul-
phiden fäulnige Schwefelsäure u. s. w." Liebig in seinem Hand-
deckt sagt von
amorphen Schwefelsäuresilber: „Concentrierte Aesfali- und Aesatratlösung nimmt

Sächsische Landesbibliothek -
Staats- und Universitätsbibliothek Dresden

gefördert von der Deutschen Forschungsgemeinschaft DFG

Humboldt-Universität zu Berlin

Zusammenfassung einiger Colonial-Zucker-Behaft.

Der Zuckergehalt wurde durch die Kupferprobe auf bekannte Weise bestimmt, der Alkoholgehalt durch Abdampfen und vorsichtige Einwaagen einer gewogenen Menge ermittelt und der Was sergehalt aus dem Verlust berechnet. Das spez. Gewicht wurde mit Hilfe eines genauen Mercuriometers bei 18° C. genommen.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Gewicht</th>
<th>Wasser</th>
<th>Masse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34,589</td>
<td>27,073</td>
<td>61,662</td>
</tr>
<tr>
<td>2</td>
<td>41,472</td>
<td>31,672</td>
<td>73,144</td>
</tr>
<tr>
<td>3</td>
<td>40,700</td>
<td>41,139</td>
<td>81,839</td>
</tr>
<tr>
<td>4</td>
<td>42,770</td>
<td>3,046</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>42,712</td>
<td>3,428</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7,709</td>
<td>3,067</td>
<td>6,776</td>
</tr>
</tbody>
</table>

Nr. 6 war sehr diessig und wohl als eine gefaßte Losung zu betrachten. In diesem Falle war die Leichtigkeit des Schleimzuckers aus der Zusammenfassung dieser Probe wenigstens anhandseren berechnen lassen. Wenn nämlich der Schleimzucker ½ seines Gewichts Wasser zur Losung bedarf, so brauchen 7,768 Schleimzucker 2,550 Wasser; mit anderen für 59,183 Schleimzucker 30,16; — 2,556 = 27,614. Legierer war dagegen in etwas weniger als der Hälfte Wasser gelöst. Da einem dasselben Verhältniss berechnet sich auch aus Nr. 1, welches ebenfalls mit Schleimzucker vollkommen gefaßt sein musste, da derselbe in ziemlicher Menge sich daran abgeschieden hatte. Hier kommen nämlich auf 98,028 Schleimzucker 15,544 Wasser, die aber ohne Zuwachs ebenfalls mit erherem gefaßt sein mussten, weil sonst sich der im Neberschuwe vorhandene Schleimzucker darin ausgelöst haben würde. Da nun das spec. Gewicht gefaßter Schleimzuckerlösungen größer als das von
Verfahren zum Ausziehen der wesentlichen Dele, und zum Reinigen des Quecksilbers.

Seit einiger Zeit ist in Frankreich zur Gewinnung der schwersten Dele ein neues Verfahren in Gebrauch, welches darin besteht, dass man einen Strom von Wasser dampf über die das flüchtige Dele enthaltende Substanz leitet. Der Dampf wirkt gleichzeitig als Erhitzungsmittel und als mechanisches Agenten, indem er die flüchtige Substanz in ein zweites Gefäß mit sich reicht, wo sie verdichtet wird. Dieses Verfahren lässt sich mit Vorteil bei Behandlung von Terpentinöl, Holz- und Steinschleifseife, überhaupt zum Reinigen jeder flüchtigen Substanz von fremdartigen Verunreinigungen anwenden. Man kann Dampf von 100° C. anwenden, wenn die Substanzen welche die flüchtige Materie enthalten, diese leicht entweder lassen, wie z. B. die Blätter und Blumen vieler Pflanzen; oder wenn die Substanz flüssig ist, wie z. B. Steinschleifseife; oder wenn die zu behandelnde Substanz bei ihrer Temperatur starr ist, wie z. B. Erdöl (Ölharz). Sehr stark erhitzter Dampf muss hingegen angewendet werden, wenn die zu behandeln Substanz eine höhere Temperatur als 100° C. zum Schmelzen erfordert, sowie auch in dem Falle wo die flüchtigen Substanzen bei einer höheren Temperatur leichten und in größerer Menge abgeschieden werden.

Um den stark erhitzten Dampf zu erhalten, leitet man gewöhnlichen Dampf, sowie er aus dem Keßel kommt, durch (gusseisernen) Rohren welche in einem besonderen Ofen erhitzt werden.

58 S. die Tabellen in Gerhardt's Traité de chimie org. t. II. p. 516.
Macpherson's Verfahren Lithographien mittels der Photographie zu erhalten.

In der British Association, welche sich im September d. J. zu Glasgow versammelt, führte Professor Ramsay ein Verfahren, worauf Robert Macpherson in Rom sehr schöne Lithobilder auf lithographischen Steinen erhielt. Dasselbe besteht in folgenden Operationen:

2) Ein auf Glas oder Badespapier dargestelltes negatives Lichtbild wird nun auf den empfindlichen Asphaltüberzug gelegt und dem direktem Sonnenlicht ausgesetzt, während einer kürzeren oder längeren Zeit, je nach der Lichtstärke, wodurch man eine schwache Copie des Lichtbildes auf dem Asphalt erhält.

3) Der Stein wird nun in ein Bad von Schwefelsäure gelegt, das den Asphalt, auf welchen das Licht nicht gewirkt hat, fast augenblicklich aufösst und auf dem Stein ein gutes Bild hinterlässt, bestehend aus dem Asphalt, auf welchen das Licht gewirkt hat.

4) Nachdem der Stein vorläufig gewaschen worden ist, kann er sodassch dem Lithographen übergeben werden, welcher ihn mit Gummi und Säure zu behandeln hat, wo dann nach dem gewöhnlichen Verfahren Drucke davon gemacht werden.

Prof. Ramsay bemerkte, dass das beschriebene Verfahren mit Abänderungen sich vorzüglich anwenden lässt, um Kupfer oder Stahlsplatten zu färben:
1) Die Metallsblätter wird auf vorher angegebene Weise mit einem dünnen Überzug von Asphalt versehen.
2) Man legt dann ein auf Glas oder Papier dargestelltes positives Lichtbild auf den Asphalt und erobnet die Platte dem Licht, um eine Copie zu erhalten.
4) Die Platte wird nun in einem galvanoplastischen Bad vergoldet. Das Gold abgibt dem blockgelegten Metall, aber nicht dem Asphalt.
6) Man trägt nun Sulfuräure auf, wie beim gewöhnlichen Eichen. Die Säure greift die Kanten des Bildes an, welche durch das nachst Metall gebildet werden, ägt aber die vergoldete Fläche nicht. (Civil Engineer's Journal, November 1855, S. 390).

Methode das Horn zu präparieren, um es als Surrogat für Fischbein zu benutzen; von Karl Burnit, Kammerer in Stuttgart.

Die immer mehr sich steigern Verbreitung des Fischbeins brachten mich auf den Gedanken, es nicht daselbe durch eine dem Fischbein homogene Substanz zu ersetzen — durch Horn. Die innere Bauart des Horns ist genau dieselbe wie die des Fischbeins, und es kommen Hornsorten vor, wo sich die Faser ihrer ganzen Länge nach von dem Horn ablösen lassen, wie die Faser des Fischbeins; ich verwende zu

Über den Ursprung der ächten Perlen; von H. Zeife.

Seit den ältesten Zeiten haben sich die ächten Perlen, welche in gewissen Mischungen des Merzes und der Künste gebildet werden, die Aufmerksamkeit der Menschen durch das angenehme und glänzende Äußere, das sie dem Arge darbieten, wenn sie mit regelmäßiger Form den eigenartlichen Regenbogenwirkungen, zugezogen; seit den ältesten Zeiten war deshalb die Perle als ein Sinnbild des Schönen, Reinen und Edlen angezogen, und ebensoweil gehen deshalb auch die Gräften der Men- schen über den Ursprung der Perlen zurück. Die verschiedenartigsten Vorstellungen haben sich in dieser Richtung gegenseitig abgelöst, von der phantomenhaften, wenn auch schönen Auffassung an, daß die Perlen Thauroschen des Himmes wären, welche in Mitwirksamkeit in den Schoss des Merzes niedergesessen waren, oder während der Nacht von den Nußeln aufsogen wurden, indem sie ihre Schalen offnen, um j., w., bis zu der frischen, gewis weniger schönen, aber dafür der Wahrheit näher kommenden Vorstellung, daß die Perlen nur kräftige Bildungen seien, nach Bildnissen des Thieres erzeugt, oder während der Kühnheit deshalb herorgebracht, und deshalb sich von nie Nußelnheinen und anderen ähnlichen harzen Mischungen in den Körper der höheren Thiere zu verleihen.
Ungeachtet die letzte Anschauung zu verschiedenen Zeiten stark angegriffen wurde, ja sogar für kurze oder längere Zeit aus der Wissenschaft vertrieben ward, so ist sie doch wieder aufgerissen und hat sich aufs Neue geltend gemacht; es ist also bisher diejenige Anschauung, zu welcher die Wissenschaft, seitdem sie mehr an Erfahrungen fügt, sich am längsten und häufigsten bekannt hat. Nach dieser Anschauung haben nicht allein namhafte Naturforscher (s. Einträge, Graz) im vorigen Jahrhundert, sondern auch in diesem es versucht, die Muscheln künstlich zu ziehen, um Perlen von kleinen hintereinandergerückten Körpern, oder als eine Art Verabreichung, um seine beigefügten Wunden zu erzeugen. — Man hatte es nämlich ganz richtig aufgesagt, daß die Perlen wesentlich wie die perlmuttrtragenden inneren Schichten in den Schalen der Muscheln, welche Perlen erzeugten, gebaut waren, daß sie ebenso wie diese Schichten aus einer außerordentlich dünner Gründung bestanden, die eine um die andere lag, und daß sie in Ansehn der Perle ein kleines Mittelpunkt von anderer Beschaffenheit sein, entweder fest, oder auch ein regelmäßiger heller Raum. Da man nun außerdem sehr häufig aus der inneren Seite der Schale äußerst weich oder weniger den Perlen ähnelnde Auswüchse gefunden hatte, welche deutlich zu erkennen gaben, daß sie von der Muschel bei ihren Verbreitungsvorgängen hervorgebracht waren, um entweder fremde Körper zu bedecken oder zu entfernen, die zufällig in sie hineingefallen waren, oder um sich gegen fremde, welche durch die Schale eindringen, und die Vergrößerung, die durch diese Vorgänge zustande kommen, die die Bildung der Perlmuttragen, die im Ganzen, um die zugesetzten zufälligen Beschädigungen auf ein gänzlich zu setzen, solange es sich, um der Veredelung zu dienen, den Perlen ähnelnden Auswüchsen hätten, um zu versuchen, die Muschel planeigene zu zwingen, Perlen von kleinen fremden Körpern zu bilden. Diese künstliche Perlenbildung hat indes nicht recht glauben wollen; wie sein und regelmäßig auch die Wunden waren, welche man der Muschel beibracht, wie rund und regelmäßig man auch die kleinen Körper zu machen sich bemühte, welche man hineinbrachte, und wie gleichmäßig man diese mit der Perlenmasse selbst zu machen sich beförderde, indem man kleine dünnere dazu bemühte, welche aus der Perlmuttertracht der Schale gebreitet waren, so haben doch diese künstlich erzeugten Perlen sich niemals in der Regelmasigkeit der Form, der Glätte der Oberfläche und besonders nicht in dem eigentümlichen Karbenseit mit den natürlichen Perlen messen können. Um weiterhin die Chinesen in dieser Kunst gefördert zu sein, und sie sollen recht gute Perlen von halbkugelförmig, herzweisen können, aber diese sollen von den Kernen durch ihren Glanz von den natürlichen leicht zu unterscheiden sein. Eine überzeugende Menge derfelben hat einen kleinen regelmäßig hohem Raum, und es scheint als ob die großen Körper in der Regel den Organismus zu stark reizten, so daß sie die Perlenmasse nicht mit der nötigen Ruhm um sie abzehen konnte; diese hohen Raum haben mehrere für die innere Einführung eines Tiers angeordnet, und zu den obengenannten, angehörenden, zahlreichen Anschauungen über den Ursprung der Perlen gehört auch die, daß jedes Perlmutter mit einem Cleft erfordert hat, und an die unrichte Stelle gekommen war, gebildet sey.

Es ist wahrscheinlich, daß die Operationen und die Anwendung des Flippis's neue Erfahrungen zu nüch zu machen suchen werden, und nachdem die früher ange-

Refrolog.

In den Jahren 1809 und 1810 vermittelte er wieder fast beständig in Mülhausen, sich hauptsächlich mit dem Türkischrothsäften der Baumwollengewese beschäftigend, welchen neuen Industriezweig er nach Augsburg verpflanzte 50, wo er selbst von den Fabriken der Höhrn, Schöpplex und Hartmann und der Höhrn. Wohnt und Freilich fast zu gleicher Zeit ergriffen und als vielseitiges Druckmaterial (sogenannte illuminierte Merinos) bald einem hohen Grade von Vollkommennahme zugeschrieben wurde.

Im J. 1815 gab er nach vorübergehender kurze Zeit seinem chemischen Geschäft eine größere Ausdehnung. Seine Präparate, besonders seines Zinnchlorids (sogenanntes Tafelkupfersalz), oxydulhaltiges schwarzes Kinnery (sogenannt allgemeine Composition, zum Weißhagen der türkischrothen Grundes in der Chorvallzwe, zur Darstellung von Rapunzeln als Druckmaterial, u. u. die Gummifarbstoffe fanden in den deutschen, österreichischen, böhmischen und schweizerischen Leinwandfabriken guten Absatz. — Später brachte er eine vortreffliche Augsburger Kattundwachsfabrik an sich, vergrößerte dieselbe durch Bauten und verfahrt und vermachte nach und nach mit den neuesten mechanischen Einrichtungen 61, steigerte sie auch mit großer Anstrengung und Ausgaben zu einem bedeutenden Betriebe, den er aber wegen unzureichender eigener Mittel nicht zu behaupten vermochte. — Im J. 1845 zog er sich von den Geschäften ganz zurück, nach einem raffinierten Leben der Muse gänzlich.

Seine oben erwähnte Zeitschrift für den Leinwand- und Färberbetrieb erschien unter dem Titel:
Journal für die Ratt- und Seiden- und Leinwanderei, auch Woll- und Seiden-, Baumwoll- und Seidenfärberei...

Als Fortsetzung dieser Zeitschrift erschien:
Seine Versuche mit Dampfapparaten veranlassten die Schrift:

Nach längeren Vorbereitungen erschien zu bertzlichen Zeit:

Die beiden Herausgeber ergängten Vancrofts Werke in ihren Anmerkungen und Zusätzen mit allen auf dem Kontinent bis 1817 in der Fabrik und dem Zeuge druck gemachten Fortschritten.

Als Fortsetzung des Reuen Journals für die Baumwollendruckerei zv. nach erweitertem Plan, erschien das

Später erschien als besonderes Werk über die Färbererei und den Zeuge druck noch:

62 Die philosophische Fakultät in Gießen erhielt ihn am 5. Dezember 1806 wegen seiner Schriften die Doctorwürde (in philosophia, chemia praesertim ac physica).

Dieser Anhange, durch welchen Dr. J. G. Dingler zu den Fortschritten der Färberei und des Zeugkraftes wesentlich beitrug, sind folgende:

2. Im J. 1809 stellte Dingler in der Kattunfabrik von Delft aus in Holland zu Mahrhausen zuerst das Kupfergrün aus dem Druckfarbnetz aus Baumwollengeze farbig. Er versuchte die Kupferseide in eine farbige, oxydolhaltige schwefelsaurem Zinnoxyd und verdichtete die Mischung mit Gummi zur Druckfarbe. Die mit disteln bedruckten Zeuge wurden in der Kupfer-Schabern (Kals-, Eisenvitriol- und Alkalität) eben so wie für Blau behandelt, nur mit dem Unterschiede, daß statt der Carlos Kaldine eine solche mit schwefelsaurem Alkali (Bethische oder Soda) in Anwendung kam. Die Zeuge wurden dann mit schwarzem Schwefelsäure gefärbt und gewaschen, wodurch man eine blaue Farbe erhielt, welche im Bauchbade sich in

55 Bankcroft's Farbebuch, Bd. II S. 439.
54 Neues Journal für die Druck- und Käsefabrik, Bd. I S. 175 und 289; Bd. III S. 225. Bankcroft's Farbebuch, Bd. II S. 471.
Grün verwandelte, indem das gelbe Pigment sich mit dem aus dem Zeuge bestätigten Jinnovum verbindet und die grüne Farbe bildet. 65

Zur Darstellung des möglichst neutralen, ordnungsgemäßen schwefelsauren Jinnovums vermischte er eine konzentrierte Jinnovumlösung mit Schwefelsäure, dampfte die Mischung in einer Glaseuterke im Sandbad ab, und erhitzte den Rückstand.

3) Im J. 1818 veröffentlichte er seine Versuche über die Anwendung der Che as zum Drucken und Färben der Baumwollengezie. 66 Dieses Farbmateriol, welches später im Zeugdruck eine große Rolle spielte, wurde zuerst in der ausgezeichneten Kalkwasserfabrik der Sörn. Schöpfler und Hartmann zu Auguste als braune Druckfarbe neben Krappfarben verwendet.

Seine zwei legten Abhandlungen, die Färbebreun vorgreifend, waren: Versuchen die Reaktion der giftigen Rohstoffen von ihrem salben Farbstoff (mitminß süßerlicher Milch) zu reinigen, um sie anfertigen Sarrabadesub in den Färberien und Druckereien verwenden zu können 67; Versuchen, dessen Methode mit dem Tinte schwarzfärbe reich zu färben. 68

Bevor der lebende Band des Magazins für die Druck- und Färbe Kunsth erschien, entwickelten Dr. J. G. Dingler den Plan einer das ganze Gebiet der Polytechnik umfassenden Zeitschrift, woran er bis dahin in Deutschland gearbeitet hatte. Er begann mit dem J. 1820 die Herausgabe des Polytechnischen Journals, ein zu seiner Zeit schwieriges Unternehmen, welches der vorzügliche Erz. v. Cotta und damaliger Chef der Verlagsleitung, mit regen Effort fürbarte. Den ersten Jahrgängen dieses Journals weiteten nur persönliche Freunde des Herausgebers Originalbeiträge zu; hauptsächlich lieferten solche: Dr. v. Kurrer, Regierungsrat Dr. Wirsching (nationalökonomische Abhandlungen), Kreis-Baumeister mit und Stadtbrunnenmeister A. Häbel in Augsburg; Professor Mareschau und Oberregierungsrat Joseph v. Bauer in München; Prof. Pletz in Lübeck und Prof. Dr. Vernoulli in Basel. Ein Hauptwerke des Polytechnischen Journals war natürlich, das deutsche Publicum mit dem wichtigsten Inhalt der technischen Literatur des Auslandes bekannt zu machen, was dem Herausgeber durch seine Verbindung mit dem Professor der Universität Landsbut J. Joseph August Schultes ermöglicht wurde, welcher ihm zahlreiche Beobachtungen aus dem englischen, französischen, technischen Zeitschriften und Werken lieferen. Nach dem Tode dieses Gelehrten (1831), bestellte sich dessen Sohn Dr. Julius Hermann Schultes, praktischer Arzt in München, an der Redaktion, welcher im J. 1840 im beständigten Manuskript in München herrschenden Schuleinführung Logik erlang. 69

Der Unterrichtete, welcher sich seit 1831 (Wd. XXXIX) der Herausgabe des Polytechnischen Journals gewidmet und seit 1840 (Wd. LXXVIII) beifürbe in seine alleine Hand genommen hat, wird diese Zeitschrift in derartiger Weise fortsetzen.

Dr. Emil Dingler.

66 Neues Journal für die Druck- und Färbe Kunsth, Bd. II S. 7.
69 Man lesen den Refeolog des Dr. Schultes sen. im polytechn. Journal, Bd. XI S. 222; denjenigen seines Sohnes in Bd. LXXXVIII S. 77.

C.

Verbesserungen an den Spinnmaschinen, von Hrn. Leopold Müller, Maschinenbauer zu Thann im Depart. des Oberheims.

Die Abbildungen auf Tab. VI.

Die von Hrn. Müller an den Spinnmaschinen angebrachten Verbesserungen besten in der Anwendung von Jahrhunderten statt Schütteln zur Bewegung der Spulen. Die vortrefflichen Resultate, welche in anderen Fällen durch diesen Gerauch erlangt worden sind, zeigten es außer Zweifel, daß sie bei den Spinnmaschinen auch sehr wichtig sein würden; die Lösung dieser Aufgabe war jedoch bezüglich der praktischen Ausführung nicht so leicht, als es die Theorie erwartet ließ. Es handelt sich nämlich darum, den Spulen eine regelmäßige Geschwindigkeit von 5 bis 6 Tausend Umläufen in der Minute zu geben und dabei soviel wie möglich der Erhöhung der Brüche zu vermeiden, welche die notwendige Folge davon sind. Diese Bedingungen, so wie diesejenige eines augenscheinlichen Anhaltens der Spulen, behufs der Wiederanbindung der abgerissenen Fäden, waren die hauptsächlichsten Hindernisse, woran die von Hrn. Müller angestellten Versuche scheiterten. Dieser Mechaniker hat sie vollständig überwunden; die von ihm vorgerichteten Spindeln bewegen sich mit solcher Leichtigkeit und Regelmäßigkeit, daß sie kein bemerkbares Geräusch machen und das Fadenbrüche weit seltener sind, als bei den gewöhnlichen Spindelsäulen. Sobald sich ein solcher zeigt, kann der Spinnner die Spule mittels eines Druckes der Hand oder des Anteils gleich aufsatteln. Der Mechanismus durch den die Bewegung in einem Augenblick unterbrochen werden kann, ist eben so einfach als sicher; an jeder

Dingler’s polyt. Journal Bd. CXXXVIII. S. 6 26
Spindel ist ein Winkelgetriebe angebracht, in welches ein Winkelrad eingreift. Das Getriebe kann nach Belieben aus der Spindel leer laufen oder derselbe mit in seine Drehung ziehen. Um letzteres Resultat zu erlangen, wird das System sich selbst überlassen; eine Springscheibe, welche die Spindel unter dem Getriebe umfaßt und auf deren untere Fläche wirkt, stellt alsbann die Abhärzung zwischen dem Getriebe und einer festen, zylindrisch verjüngten Verstärkung der Spindel her. Wirkt dagegen auf letztem Anfass der erwähnte Druck ein, so wird die Wirkung der Feder aufgehoben und die Spindel bleibt stehen.

Man könnte a priori Elastizitätsveränderungen bei den Federn und folglich Unregelmäßigkeiten bei den Bewegungen befürchten. Längere Erfahrung hat aber gezeigt, daß derartige Veränderungen, wenn sie wirklich stattfinden, in der Praxis nicht wahrzunehmen sind.

Beschreibung der Abbildungen.

Hr. Müller wendet mehrere Einrichtungen an, um die Schnüre durch Räder zu ergeben; einige derselben sind in den Figuren 1, 2, 3, 4 und 5 dargestellt.

Fig. 1, Ansicht einer Spindelbank von der Seite.
B Spindel.
p. Winkelgetriebe mit schiefer Verzahnung, welches auf der Spindel leer laufen kann und von dem Winkelerade R in Bewegung gesetzt wird; letzteres folgt den Bewegungen des Räderwerks E, E, M, M, r Springfeder, welche mit ihrem unteren Theil an dem Reif b befestigt ist. Dieser Ring oder Reif läßt sich auf der Spindel verschieben und mittels einer Druckschraube in derjenigen Höhe feststellen, welche zur Spannung der Feder erforderlich ist.

Die Spindel B ist mit einer conischen Verstärkung oder einem Vor sprung C versehen, gegen den die Springfeder das Getriebe p stützt, so daß die Spindel mit demselben umläuft.

Will man die Spindel aufhalten, so braucht man sie nur zwischen den Fingern zu halten, wodurch ein Widerstand hervorgebracht wird, der die Spannung der Feder zu überwinden vermag, worauf sich das Getriebe leer um die Spindel dreht; überläßt man aber die Spindel sich selbst, so dreht sie sich wieder mit dem Getriebe.

Fig. 2 zeigt fast dieselbe Einrichtung wie Fig. 1; sie ist ein Anriß in einer senkrechten Ebene, die senrecht auf der Ebene des Winkelrades A steht.

Das Winkelgetriebe p erhält seine Bewegung von dem Winkelrade A, welches mittels einer Druckschraube i aus der Welle H befestigt ist.

Die Spindel B hat eine Scheibe P, P, welche zum Schutz des Getriebes und des Winkelrades dient; gegen diese Scheibe drückt das Getriebe, auf welches die Springfeder r einwirkt.

Man kann die Spindel leicht mit dem Knie oder mit der Hand aufhalten, und das Getriebe säßt dann fort sich zu drehen, indem es gegen die Scheibe drückt.

Wenn man die Scheibe mit dem Knie aufhält, so hat man den Vorteil, die Hände zum Wiederanschnappen des Kadens benutzen zu können.

Fig. 3 zeigt eine andere Einrichtung; die die Spindel umgebende Feder ist, wie man sieht, über dem Getriebe angebracht; ihr unterer Theil ist, wie vorher, an einem außerschenden Ringe befestigt, während sie oben an einem beweglichen Vor sprung C angebracht ist; letzterer ist mit zwei Bügeln b, b versehen, die sich in Seitenfasern verschieben können.

Will man die Spindel aufhalten, so drückt man mittels des Anfages C auf die Feder, die Bügel gehen dann in den Fäsen nieder und das System ist ausgerückt. Nimmt man die Hand weg, so dehnt sich die Feder, die Bügel gehen wieder auswärts, werden sofort mit dem Getriebe eingerückt und die Spindel fängt wieder an sich zu drehen.
Die Fig. 4 und 5 unterscheiden sich von den vorhergehenden nur durch die Art der Ausrichtung; sie wird mit Hälfte eines Rüssels M bewirkt, der die Hebe umgibt und auf den man nur zu drücken braucht, wenn die Spindel aufgehalten werden soll.

CI.

Über Treibriemen für nicht parallele Wellen; vom Maschinenmeister Welfkaer in Göttingen

Aus der Zeitung des hannoverschen Architekten- und Ingenieur-Vereins, 1855, S. 377.

Mit Abbildungen auf Tab. VI.

Die Anwendung von Treibriemen zur Ubertragung von Bewegungen hat mehr und mehr Eingang gefunden, und man hat die Vorzüge nicht vernachlässigen, welche dieselben, im Gegensatz zu der Anwendung vergangener Räder für manche industrielle Etablissements haben; es tritt aber häufig der Fall ein, daß die Bewegung auf nicht parallele Achsen zu übertragen ist, wo dann der Mechaniker oder Mühlenbauer constische Räder häufig für das einzige Auskünfsmittel hält. Es mögen nur die Fälle erwähnt werden, wo von einer horizontalen Wasserturbine oder Dampfmaschinenwelle aus, vertikale Mühle- oder von einer verticalen Turbinenwelle aus, horizontale Wellen für Sägegatter zu betreiben sind. Die Prinzipien, nach welchen in solchen Fällen Riemen angewiesen sind, sollen im nachfolgenden näher bezeichnet werden.

Ein gewöhnlicher, offener Riemen, welcher aus Rollen zweier paralleler Achsen läuft, hat durchaus keine Tendenz abzulaufen, wenn die beiden Rollen oder Kupplungsense cylindrisch abgedreht sind. Ist aber die eine derselben nur etwas conisch, so läuft der Riemen nach der Seite des größeren Durchmessers. Es ist deshalb Geschäfts, die Kupplungsense etwas gerundet abzudrehen, wodurch die Gefahr des Ablauens auch dann verschwindet, wenn die Wellen nicht mathematisch genau parallel aufgestellt sein sollen; bei den Riemen läuft dann nach der Stelle des größten Durchmessers, hält sich also sicher auf der Mitte.

Ferner kann es bei der Betrachtung eines solchen Riemen nicht entgehen, daß derselbe durch ein leichtes Schieben und geringe seitwärtige Ablenkung von dem Riemenende, welches auf die Rolle läuft, sofort von
dieser — vielleicht auf eine benachbarte lose Rolle — gebracht werden kann; während eine bedeutend größere Kraftanstrengung und zeitwärtsige Ablenkung an der von der Rolle wegs oder ablauenden Seite nicht im Stande ist, den Riemen von der Rolle zu entfernen. Ausdrücke müssen deshalb stets an der vorwärts laufenden Seite des Niemens angebracht werden.

Es sey nun Fig. 19 Grund- und Anzeichen von der treibenden vertikalen Welle A und der getriebenen horizontalen Welle B mit ihren gleichnamigen Niemelscheiben; es ist die Lage der beiden Niemelscheiben zu bestimmen, damit der Treibriemen sich auf denselben hält.

Zieht man zu dem Ende von der Achse A ein Perpendistol nach der Achse B und benutzt sich auf dieselbe Weise eine Linie m n, welche ein gemeinschaftliches Perpendistol für beide Achsen ist, so muß eine zu konstruierende, gemeinschaftliche Tangente für die Umfänge der Rollen, nämlich a b, parallel zu dieser Linie m n seyn, denn die Rotationsebenen der beiden Niemelscheiben stehen ebenfalls rechtwinklig auf den Achsen und schneiden sich in der gemeinschaftlichen Tangente a b.

Die Stellen für die Befestigung der Niemelscheiben sind sich sehr leicht und zwar muß das Mittel der Niemelscheibe der Welle B um den Halbesser der Niemelscheibe A seitwärts von dem Punkte n und das Mittel der Niemelscheibe auf A um den Halbesser der Niemelscheibe auf B seitwärts von dem Punkte m verschoben werden.

Die Anordnung des Ganzen wird abseits, wie sie Fig. 20 im Grundriß zeigt, wo indes die Bewegung als in entgegengesetzter Richtung stattfindend angenommen ist, und folgerweise auch die Verschiebung der Rolle B sowohl als der Rolle A nach der entgegengesetzten Seite von m n zu denken ist. Sollte die Welle B in ihrer Bewegung rewersirt werden, so würde erforderlich seyn, daß auf beiden Seiten des Perpendistol's m n Niemelscheiben angebracht und durch Niemen verbunden würden. Eine der beiden Niemelscheiben auf B wird dann eingerückt, während die andere lose auf der Welle läuft.
Es ist im Vorschreitende angenommen worden, daß die Wellen A und B rechtwinkelig gegen einander gerichtet sind; es folgt aber von selbst, daß sie unter irgend einem Winkel zwischen 0° und 90° gegen einander geneigt sein können, und daß ihre Verbindung durch Riemen gleich möglich ist, sofern sich nur ein gemeinschaftliches Perpendibel zwischen den beiden Wellen errichten läßt; man kann sich dann die beiden Wellen, in zwei verschiedenen Ebenen liegend, um die imaginäre Perpendibel aus der parallelen Lage verbreiten denken, und die Riemscheiben einfach so viel auf ihren respektiven Wellen gegen dieses Perpendibel zu verschieben, daß die gemeinschaftliche Tangente auf die Umfänge der Riemscheiben dem Perpendibel parallel wird. — Da eine Verbreitung um mehr als 90° nicht möglich ist, so ist der oben beschriebene Fall in der That der ungünstigste.

In solchen Fällen, wo sich zwei Achsen nicht durch ein gemeinschaftliches Perpendibel verbinden lassen, ist ihre Verbindung durch Treibriemen nur mit Hülfe von Führungsrollen möglich.

CII.

Aus den Verhandlungen des Vereins zur Beförderung des Gewerbelebens in Preußen, 1855, S. 27.

Der Delmesser von Desborde in Paris ist ein Apparat, dazu bestimmmt, die Dickstüügkeit der Dele in vergleichender Weise zu messen. Zum Gebrauche wird das Instrument aus einer soliden Unterlage befestigt, durch eine Schmier mit einer Maschine in Verbindung gebracht, die ihm eine Geschwindigkeit von 600 bis 700 Umdrehungen in der Minute mittheilt.

Vor dem Versuche überzeugt man sich, dass die beiden Platten, von denen die untere die Bewegung erhält, die obere aber frei auf einer mit der unteren Platte verbundenen Spitze ruht, vollkommen gereinigt sind. Nachdem nun die obere Platte entfernt ist, giesst man etwas Del in die untere, hebt die letztere Platte wieder darauf und befestet durch behufsames Drehen und Drücken den Apparat von dem überflüssigen Del, welches zur Seite herausfliesst. Als dann hängt man den graduierten Hebel in seine Lager, setzt den Apparat in Bewegung und schiebt das darin befindliche Gewicht so lange, bis es stetig den unteren Theil des Hebels in die Mitte zwischen den beiden Stahlenden einspielt lässt. Man liest die Anzahl der Millimeter ab, um sie für jedes Del zu notiren. Es ist dies der Punkt, wo die Reibung der Platten und der Widerstand des Deles gleich dem ausgelegten Gewichte sind.

Je gröszer nun die Dickstüügkeit eines Deles ist, desto weiter muss man das Schiebegewicht von 0 nach 100 Millimeter schieben, desto weniger tauglich ist solglich das Del zum Schmieren. Die Versuche, welche ich mit diesem Instrumente bei einer Temperatur sämtlicher Deles von 70° angestellt habe, gaben mir folgende Resultate:

1) Fischthran 33 Millimeter
2) Mohrl. 36 "
3) Baumol. 48 "
4) rohes Nübbel 51 "
5) englisches patentirtes Prima-Maschinen-Schmieröl von Hohlbeck u. Ditter in Berlin 48 "
6) Talgöl aus derselben Fabrict 51 "
Mischungen von:
7) 2 Tlhn. Fischthran und 1 Tlhn. rohem Ruböld 38 Millimeter
8) 1 " " " " 1 41 " " " " 1 " " " " 2 45 " " " " 1 " " " " 41 " " " " 42 " " " " 45 " " " " 45

Die Versuche mit Mischungen von zwei verschiedenen Detsorten, wozu ich das beste und das schlechteste gewählt habe, stimmen ziemlich genau mit der Rechnung überein, wie aus folgender Zusammenstellung ersichtlich werden kann:

<table>
<thead>
<tr>
<th>Versuch</th>
<th>Rechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Tlhn. Fischthran und 1 Tlhn. rohen Ruböld 38 Millimeter</td>
<td>39 Millim.</td>
</tr>
<tr>
<td>1 " " " " 1 " " " " 41 " " " " 42 " " " " 45 " " " " 45 " " " " 45</td>
<td></td>
</tr>
</tbody>
</table>

Man sieht hieraus, daß das Instrument vortheilhaft benutzt werden kann, um auf leichte Art zu finden, ob Dele verfälscht sind und in welchem Grade.

Nachträglich ist mir dasfelbe Instrument von Mr. Naught in Glasgow zugekommen, und bin ich durch längere Versuche zu der Überzeugung gekommen, daß dieses Instrument wohl den Grad der Schlüpfrigkeit der Dele anzeigt, nicht aber, ob die Dele bei langem Gebrauche hartig und zäh werden, wie es bei der Anwendung von Fischthran in Lagem, welche starke Reibung aushalten müssen, der Fall ist. 70

CIII.

Über das gleichzeitige Telegraphiren in entgegengesetzten Richtungen auf demselben Leitungsdrahte; von C. A. Nystrom, Telegraphen-Director zu Dresbro.

Mit einer Abbildung auf Tab. VI.

Unter der Voraussetzung, daß zwei elektrische Ströme, welche in entgegengesetzten Richtungen durch denselben Draht gehen, einander nicht neutralisiren (aufheben), daß aber die Wirkungen der Ströme sich neutralisiren, habe ich nachgesommen, wie ich die Wirkungen meines eigenen

(nach der anderen Station ausgehend) Stromes neutralisiren könnte, um die Wirkungen des fremden (von der anderen Station kommenden) Stromes auf das Relais unbehindert stattfinden zu lassen. Da der fremde Strom zu meinem Relais stets Zutritt haben müß, so ist es nötig, daß mein eigenen Strom durch das Relais ausgehen zu lassen. Zum Neutralisiren der Wirkungen meines eigenen Stromes benütze ich einen dritten Strom, der in entgegengesetzter Richtung durch das Relais geht und innerhalb der Station sich schließt. Außer diesem Umstande muß ich auch befürchten, daß der fremde Strom zur Erde stets Zutritt habe, mein Schlußfsl mag in Ruhe, oder um den Amboß zu berühren in Bewegung sein, oder er mag den Amboß schon getroffen haben. Um dieses alles zu bewerkstelligen, habe ich die Einrichtungen gemacht, welche Fig. 15 näher zeigt.

Wenn mein Schlußfsl niederbrückt ist, so wird das kürzere Ende des Hebels c gegen den Amboß d gebrückt, also die Berührung bei a ausgeführt; und mein eigener Strom geht von der Batterie b durch den Schlußfsl, den Hebel c und das Relais R nach der Linie aus (in der Richtung des gezeigten Pfeils). Gleichzeitig aber ist auch die Batterie b' durch den Widerstand W, das Relais R, den durch das Stück isolierten Stift e, und die Feder f geschlossen (in der Richtung des ungezeigten Pfeils). Die magnetischen Wirkungen der beiden entgegengesetzten Ströme auf das Relais heben sich auf, wenn die Stärke der beiden Ströme gleich ist. Der von der andern Station kommende Strom, welcher nun durch das Relais, den Hebel c, den Schlußfsl und die Batterie b nach der Erde E geht, fällt also unbehindert auf das Relais wirken. Wenn aber mein Schlußfsl in Ruhe ist, so geht der fremde Strom durch den Hebel c und die Berührung bei a nach der Erde; dieser Weg dauert an, bis der Schlußfsl den Hebel getroffen hat, wo dann jener Weg wieder hergestellt wird. Der fremde Strom hat also stets Zutritt zur Erde.

S und S' sind zwei Schrauben, von denen die erste als Amboß des Stiftes e, die zweite aber zum Erheben oder Niederfahren der Feder f dient, damit die beiden Kontakte gleichzeitig ansiehen und die Batterien geschlossen werden. Der Widerstand W ist in die Leitung eingeschaltet, um, wenn mein Schlußfsl niederbrückt ist, zu vermeiden, daß der fremde Strom seinen Weg durch b', s und e nach dem Hebel c nehmend, das Relais umgeht.

Wenn man die Ströme gegen einander genauer kompensiren will, so kann man einen Wattston'schen Rheostat neben dem Widerstande W einschalten. Eine Veränderung der elektrischen Beschaffenheit der Luft kann aber die Compensation leicht aufheben, was der größte
Unbekannt der mir bekannten Gegenprechemethoden ist. Um etwas Vollkommenes in dieser Hinsicht zu erzielen, scheint es mir nötig, entweder einen Regulator (welcher die Compensation gemäß den Veränderungen der Luft von selbst ändert) oder eine Einrichtung, welche von der Compensation unabhängig ist, auszufinden.

Die von Hrn. Professor Edlund erfundene, ähnliche Methode (welche in den Verhandlungen der königl. schwedischen Akademie der Wissens-

chaften für 1855 beschrieben wurde) ist von der obigen sehr verschieden. Außerdem haben in Schweden auch die Hrn. Telegraphenminister

Royer und Telegraphenassistent Räsmian in Uppsala eine Einrichtung zum Gegenprechen ausgefunden, welche sie (wie Hr. Prof. Edlund

die seinitge) patentiren ließen, deren Details mir aber unbekannt sind.

Derebro in Schweden, am 4. December 1855.

CIV.

Rauchverziehender Dampfstein-Ofen; von Hrn. A. George,

Ingenieur zu Paris.

Aus Armengaud’s Génie industriel, Septbr. 1855, S. 113.

Mit Abbildungen auf Tab. VI.

Der von Hrn. George construierte rauchverziehende Ofen ist einfach, rationell und wirkt ohne jedes andere Agens als einen natürlichen Luftzug, welcher die Verbrennung bewirkt. Die Umänderung der alten Ofen in neue läßt sich sehr leicht ausführen; es reichen dazu einige Ziegelsteinen und etwas Lehm aus, und zu der Ausführung ist nur ein im Feuerbau gebüter Maurer erforderlich.

Wenn man bei den gewöhnlichen Ofen und Herden frisches Brennmaterial auf bereits glühendes wirft und der Zug von unten nach oben wirkt, so erhält sich das frische Brennmaterial schnell und es entwickelt

Man müßte daher, um das periodische Schüren unter rationellen Bedingungen vorzunehmen, das frische Brennmaterial unter das glühende bringen, zwischen dessen Schicht und denrost, statt es auf das glühende zu werfen, oder das frische Brennmaterial müßte zwischen zwei Theile glühenden Brennmaterials gelegt werden. Die Gewerbspraxis aber, welche vor allem leicht wirksame Mittel beansprucht, würde es nicht gestatten auf diese Weise zu verfahren, überdies würde dadurch das Schüren zu einer verwinkelten und schwieriger Operation. Da nun die Brennsöse schwere Körper sind, und die einfache Praxis verlangt, daß man sie nach Bebrütung auf die glühende Masse wirft, so ist es leicht, dem Nachtheil der jetzigen Verbrennungsweise dadurch abzuhelfen, daß man die Richtung des Zuges umkehrt, entweder vollständig, wie bei dem bekannten System, jedoch mit einiger Abänderung, wie sie Fig. 12 zeigt, oder vermittels rückkehrender Flamme, wie in Fig. 13 und 14.

Im ersten Fall durchströmte die frische Luft zuoberst die neu eingeführte Brennmaterialsschicht; durch die strahlende Hiße der glühenden Rostsöses, auf welche das frische Brennmaterial geworfen wurde, verfehlt es dann ohne Rauch zu erzeugen und mit mäßiger Gasentwicklung; da dieses Gas mit einer hinreichenden Menge reiner Luft vermischt ist, so wird es auf seinem Wege durch die Masse des glühenden Brennmaterials vollständig verfehlt.

Bei dem zweiten Verfahren, welches eine Verbindung der gewöhnlichen Einrichtung mit dem System mit umgekehrter Flamme ist, wird die Brennmaterialmasse auf zwei Theilen eines und desselben Rostes ausgebreitet, deren jeder eine entgegengesetzte Wirkung hat, daher die bei der ersten Verbrennung entwinkelte reine Luft zur Verbrennung der aus dem frischen Brennmaterial entwinkelten Gase und zur Bildung neuer Wärme durch eine zweite Verbrennung dien.

Man fümt in jedem Ofen, sobald die Temperatur hoch genug ist, eine mehr oder weniger vollkommene Rauchabsorption hervorzuleiten, indem man am vorderen Theil Deffnungen oder Luftsänge, oder noch besser, indem
man durch die Brennmaterialmasse Canäle anbringt, welche das Eintreten einer gewissen Quantität reiner Luft erleichtern, mittels welcher der Nebel-

schuß von Kohlenwasserstoff verbrannt wird, daß sich entweder direkt aus dem Brennmaterial entwickelte oder durch die Kohlenstoffsaufnahme des Rauches bildete.

Jedoch lösen diese Daten die Aufgabe nicht, denn werden solche Einrichtungen bei einem gewöhnlichen Ofen, ohne andere Modifikationen, angebracht, so sind sie mangelhaft; da nämlich die Rauchentwicklung nur zeitweise stattfindet, so ist ein Nebelchuß von Luft in dem Ofen vorhanden, nachdem dieser Rauch verbraucht wurde, und diese überschüssige Luftmenge ist der Feuerung nachteilig, indem sie den Ofen abkühlt.

Es werden aber diese Einrichtungen wertvollhaft und die Aufgabe wird vollständig gelöst, wenn man einen zweiten Rost mit rückfehrender Flamme und umgekehrter Verbrennung anbringt, welcher eine Verlängerung des ersten bildet und auf den man, vor jedem Schürzen, daß auf dem ersten Rost verbrachte Brennmaterial schiebt; dieser zweite Rost bildet mit dem darauffolgenden Brennmaterial gewissermaßen ein glühendes Filter, welches alles verbrannte Brennmaterial, womit die Gase überladen sind, auf seinem Wege aufhält, es durch Bifügung einer hohen Temperatur verbrannt und mittels der eingeführten Luft verbrennt. Nachdem aller Rauch verbrannt ist, fühlt die eingeführte überschüssige Luft den Ofen nicht ab, weil sie auf dem zweiten Rost Brennmaterial zur Wärmebildung vor-

findet.

In den Dampfmaschinenöfen ist dieser Nebelstand am fühlichsten, weil man bei denselben in einem beschränkten Raume eine hohe Temperatur ergießt, und weil die entwickelten Gase, sie mögen wie immer ent-

schieden werden, in dem Raume welchen sie einnehmen, nur eine beschränkte Temperatur herzubringen können.

Bei Anwendung eines Rostes mit rückfehrender Flamme und umge-

kehrter Verbrennung ist hingegen die Temperaturverminderung, welche durch die Notwendigkeit der Rauchverbrennung in den Dampfmaschinen-

Nachdem die Aufgabe auf diese Weise theoretisch gelöst ist, wird ihre praktische Lösung sehr einfach.

Röhrenkessel (Fig. 12). — Der Dosen dieses Kessels besteht, nach dem angegebenen Princip, aus einem Schürloch A, am oberen Theil, durch welches das Brennmaterial eingebracht wird und die atmosphärische Luft eindringt, die für den Zug und zur Vermischung mit den Gassen erforderlich ist; ferner aus einem ersten Raum B, Luftstammer genannt, in welche das Brennmaterial geworfen wird; aus einem Kost C von feuerfestem Thon oder mit starfen gußeisernen Eiäben hergestellt, welcher am untern Theil des Raumes D angebracht ist. Der Dosen besteht ferner aus einem zweiten Raume D, dem Herde oder der Feuerkammer, welcher von dem ersten Raume durch einen Kost und durch einen senkrechten Scheider E getrennt ist; der untere Theil des Raumes D dient als Aschenfall, seine Sohle besteht aus feuerfesten Ziegelsteinen, und an der vorderen Seite ist eine Thür angebracht, mittels welcher die Asche herausgeschafft werden kann und die fortwährend verschlossen bleibt, ausgenommen in gewissen Fällen, wo die Verbrennung ein momentanes Versiechen derselben erfordert. Das Schürloch A, dessen Eröffnung man nach Belieben mittels einer Schieberhür mit Gegengewicht reguliren kann, ist etwa über dem Boden X angebracht, der die Aschenfall-Vertiefung bedeckt und dem Heizer als Sohle dient. Die Brennmaterialmasse ist gänzlich in dem ersten Raume enthalten und liegt auf dem Kost, das frisch eingeführte oben und das glühende unten.

Der Zug durch diese Brennmaterialmasse wird von oben nach unten bewirkt und die Gase verbrennen auf ihrem Wege durch dieselbe.

Die Rauchleitungscanäle beginnen in der Luftstammer bei V und gehen in den Herd bei W aus; diese mit Ventilen versehenen Canäle dürfen nur einen Augenblick nach jedem Schüren geöffnet bleiben, damit die aus dem frischen Brennmaterial in Ueberdruß entwickelten Gase direkt in den Herd gelangen, wo sie ebenfalls verbrennen, weil sie mit einer hinreichenden Menge reiner Luft vermischt sind.

Der Kesself ist ein Röhrenkessel, eine bei dieser Feuerungsart vortheilhaftere Construction, weil der Rauch vollständig verbrannt ist, bevor er in die Röhren strömt.

Der Kessel besteht aus einem länglich-viereckigen Theil, woran sich der Dosen bebindet, aus einem ersten cylindrischen Theil G, in welchem die Röhren angebracht sind, und aus einem zweiten cylindrischen Theil II ohne Röhren, welcher über dem ersten angebracht und mittels füßerger Röhren mit ihm verbunden ist; der erste cylindrische Theil ist gänzlich mit Wasser angefüllt, welches die Röhren ganz umgibt; der zweite enthält nur etwa
zur Hälfte seiner Höhe Wasser und seine obere Hälfte bildet den Behälter für die entwickelten Dämpfe.

Das hintere Ende des Kessels und der Röhren mündet in einen Raum U aus, Ausstrittskammer des heißen Luftstroms genannt, über welcher sich die Gase erhebt.

Gewöhnlicher Kessel mit doppeltem Rost und mit zurückschlagenden Flammen (Fig. 13 und 14). — Der Aschenfall des Ofens ist in zwei Abteilungen H und K getheilt und zwar mittelst eines senkrechten Scheidetäls U, welcher bis zum Niveau von zwei Kisten (aus feuerfestem Thon oder aus starfen gußeisernen Stäben) hinausreicht. Beide Kisten liegen in einer Ebene und bilden gewissermaßen nur einen Rost. Der Raum U ist die Feuerkammer, worin ein Thiel von den Siebern D liegt, welche die Hilfe des Herdes durch unmittelbare Berührung erhalten. Der Thiel M ist der Eingang zu den Canälen, welche die heißen Gase durchströmen ehe sie in die Gase entweichen. Der senkrechte Scheider, auf bejfen unterem Rande das Ende des Rostes ruht, trennt die Feuerkammer von den Circulationscanälen; dieser Scheider ist in der Ebene des Rostes mit einem oder mehreren Canälen versehen, um die Wärme abzusiechen zu lassen.

Fig. 14 stellt die Wärme- und Rostkanäle P, P zu beiden Seiten des Ofens dar. Das Zurückströmen oder der Rückschlag der Flammen wird durch den Raum K (Fig. 13) bewirkt. Der Scheider U ist mit einer Thür versehen, um die Asche aus dem Raum K herauszuschaffen zu können.

Die Gase verbrennen, eine Theile in die Feuerkammer ziehen, und auch rechts, indem sie durch das glühende Brennmaterial, welches auf dem zweiten Theil des Rostes enthalten ist, strömen, und ihre Verbrennung wird in dem zweiten Theil des Aschenfasses, sowie in den Circulationscanälen vollendet.

Die Thür zur zweiten Abteiling des Aschenfasses muß fortwährend geschlossen sein; eben so die Thür des Schürloches, sobald feuerfertig geworden ist, nur wenn es für die Verbrennung notwendig ist, läßt man sie kurze Zeit offen stehen.
Die Wärmröhrchen E tragen sehr zur Brennmaterialersparung bei; diese vier Röhren sind hinter der Feuerbrücke des Herdes angebracht und durch dieselben wird die Speisung des Kessels bewirkt. F ist die Röhre der Speispumpe; G sind kurze Röhren, welche je zwei Wärmröhrchen miteinander verbinden. J ist eine Röhre, mittels welcher das Speisewasser in die Siedersöhren D gelangt, nachdem dasselbe in den Röhren E circulirt hat und vorgewärmt worden ist.

Der Erfinder hat die erwähnte Anordnung von Wärmröhrchen nach dem Grundsäge getroffen, daß eine gute Feuerung die Heizoberflächen zu vermehren und die Dichte der zu erwärmenden Massen zu vermindern erheischt.

Es kann übrigens diese Feuerungseinführung bei allen Arten von Kesseln, Lufterschließungs- und sonstigen Dosen angewendet werden.

CV.
Verbesserungen in der Fabrication von Glasröhrchen, welche sich James Chance zu Birmingham, am 3. Februar 1855 patentiren ließ.

AUS DEM REPERTORY OF PATENT-INVENTIONS. SEPTR. 1855, S. 229.

Die Erfindung betrifft die Bildung von Glasröhrchen durch Biegung von Glassplatten über Kerne, so daß die Näder an einander stoßen oder über einander greifen und mittelst Drüfes an einander geschweißt werden können.

Die Figuren 6 und 7 stellen den Ständer, welcher die Form trägt, in zwei Endansichten, Fig. 8 im Grundriss dar. In sämtlichen drei Figuren sieht man die Form geöffnet.

Fig. 9 ist die Seitenansicht und Fig. 10 der Grundriss des Ständers mit der geschlossenen Form.

Fig. 11 enthält zwei Ansichten des Kerns. Die Form besteht aus drei durch Scharniere a a a mit einander verbundenen Theilen a, a, a. Der Theil a ist an den Ständer b befestigt. An den einen Ende der Form sind scharfe Flanschen a befestigt, welche beim Schließen der Form das Glas an dem Ende b glatt abschneiden. Die beiden beweglichen Theile a, a der Form sind mit Handhaben e, e versehen, mit deren Hülse die
Form geschlossen wird, m ist der aus Blech versetzte Kern. Derfelbe ist mit einem Handgriff m¹ und einem Hebel m² versehen. Der Handgriff hat den Zweck, das Umdrehen der Röhre innerhalb der Form so wie das Umdrehen des Kerns in der heißen Glasröhre zu erleichtern. Der Zweck des Hebels m² besteht darin, die Röhre gegen den Kern zu pressen, um sie mit dem letzten in der Form herumdrehen zu können.

Soll nun mittels des beschriebenen Apparates eine Glasröhre angefertigt werden, so wird zunächst eine Glasplatte, die etwa länger als die beabsichtigte Röhre ist, bis zur erforderlichen Dicke und Breite ausgewalzt, und gleich darauf in der Richtung von B nach A (Fig. 8) über die offene Form gelegt. Hierauf wird der Kern über den feinen Theil A, B der Form gelegt, so daß das Ende b deselben nach B zu liegen kommt. Man schießt sodann die Form, wodurch das noch glühend heiße und plastisch-weiche Glas über den Kern gebogen wird, so daß die beiden Ränder zusammenstehen oder auch noch ein wenig über einander greifen. Unter diesen Umständen preßt man nun die Ränder gegen einander und vereinigt sie, und um diese Vereinigung noch vollständiger zu machen, gibt man der Röhre nebst ihrem Kern vermittels des Hebels m² eine Drehung. Hierauf öffnet man die Form, und um das Anhängen der Röhre an den Kern zu verhüten, dreht man den Kern selbst mittels des Handgriffes m¹ in der Röhre. Wenn das Glas hinreichend abgekühlt ist, um seine Gestalt durch das eigene Gewicht nicht verlieren zu können, nimmt man den Kern heraus und bringt die Röhre in den Kühlschrank.

CVI.

Aus Armentaude's Génie industriel, Septbr. 1855, S. 118.

Bereits auf der Pariser Industrieausstellung im Jahre 1844 hatte der Bater des Erfinders Schlosserarbeiten, mit Ornamenten von sorgfältig ausgeführtem Email versehen, ausgestellt.

Im Jahre 1848 hatte der Erfinder die Idee, glasige Präparate nicht sowohl zum Schmuck, als vielmehr zum Schutz der Metalle gegen die Drybation anzuwenden; er nannte sein mit einem Glasüberzug versehenes Eisen „gegen Drybation geschützt“ (ser contre-oxydés). 71

Bei der Fortsetzung seiner Arbeiten gelangte Hr. Parrié zu wichtigen Resultaten, die wir hier besprechen wollen. Wenn man auf ein mit einem glasigen Flüssigkeitspreparat versehenes Eisen eine feine dunne Schicht von Silberfolie legt und das Ganze der Einwirkung eines heftigen Feuers aus setzt, so kommt der glasige Überzug in Flüssige und die Silberfolie denkt sich so aus, daß sie von dem geschmolzenen Glas durchdrungen wird. Würde man den Prozeß mit einem starken Feuer fortführen, so würde sich das Silberblächen endlich burchsätzlich verglasen.

Unterbricht man aber die Einwirkung des Feuers in dem Augenblick, wo der Glasfluß das Silberblatt zu durchdringen beginnt, so erhält man eine ganz eigenthümliche Plattierung, welche das Ansehen und die Eigenschaften des Metalles mit der Dauer und Festigkeit des Glases vereinigt. Gleiche Resultate gaben die mit Gold-, Kupfer- und Platinfolien ausgestellten Versuche; der Erfinder erlangte diese Resultate auch, wenn er statt der Folien Gold-, Silber- und Kupferpulver anvendete.

Verfahren. — Man legt auf die vorher mit Gummiwasser überzogene, innere oder äußere Oberfläche des Emailstücks oder mit einem Glasfluß überzogenen Metallfolie von Silber oder einem anderen Metall, oder eine entsprechende Menge von metallischem Pulver.

Man besetzt das Metallblatt auf dem Gegenstand, dessen Formen es annehmen muß, mittelst eines Tüpfels, womit man so lange Zeit auf alle Theile drückt, bis eine vollständige Abhärenz erfolgt ist.

71 Man l. übet sein damaliges Product und dessen Darstellung die Mittheilungen im polytechn. Journal Bd. CXIII S. 391 und Bd. CXVI S. 360.

27
Die auf diese Weise vorbereiteten Gegenstände werden unter einer bis zur rotglühenden gebrachte Muffel ge stellt, und sobald sie die Kirschrotglühende erlangt haben, werden sie herausgenommen und langsam abgekühlt. Bei jenem Hißgrade verbindet sich die Metallschmelze mit dem damit zu übereinanderliegenden Gegenstände.

Anwendung. — Die glasiert-metallische Plattierung kann bei allen Metallen angewendet werden, welche man emailieren oder mit Glasüberzug versehen kann.

Eiserne Gefäße und Geräthe aller Art können auf diese Weise plattirt werden. Solche Artifex werden dem Stoss und der Einwirkung des Feuers und sind bei niedrigem Preis sehr elegant.

CVII.

Mit Abbildungen auf Tab. VI.

gleichen Theilen Torf und kleinen Anthracit Kohlen, die mittels mechanischen Drucks vereinigt werden, indem sie auch dadurch ihre Ziegelform erhalten.

Fig. 16 und 17 sind zwei senkrechte Durchschnitte des Ofens; letzterer zeigt die Anordnung der Luftkammern wenn der Ofen zum Rösten von Eisenerzen angewendet werden soll. a, a ist das Geschoss des Ofens; b der Schacht desselben; c die Kappe, welche aus dieselben Materialien besteht wie der Schacht; c' eine mit einem Schieber versehene Dehnung, um die zu rostenden oder zu schmelzenden Materialien, Erze und Kohlen, in den Ofenschacht zu bringen; in grössere Ofen müssen mehrere Thüren angebracht werden. d ist eine eiserne Röhre, durch welche der Rauch und die Gase abgelenkt werden. Eine diese Röhre ist in der Nähe der Kappe oder des Gewölbes in die Ofenmauer eingelassen, während das andere Ende mit dem Raume in Verbindung steht, worin sich das zu trocknende Brennmaterial befindet. Diese Röhre d ist mit einem abjustirnden Ventil oder Schieber d' versehen, welcher zur Regulirung der durch die Röhre ziehenden Gase dient. e ist eine von den gewöhnlichen Windröhren mit Düse, von denen zwei oder mehrere vorhanden seyn können. Mit Ausnahme der Kappe c und der Röhre d hat der Ofen gänzlich die Form eines gewöhnlichen Eisenhöfens.

Der in Fig. 17 dargestellte Ofen ist sehr zweckmässig zum Rösten der Erze; er ist dem in Fig. 16 abgebildeten ähnlich. Zum Röstproces ist er dadurch anwendbar gemacht, das man Kammern g eingerichtet hat, welche aus Ziegelsteinen bestehen und die Stelle der Düsen und Windröhren einnehmen; durch dieselben wird dem Ofen ein atmosphärischer Luftstrom zugeführt. g ist ein Registrier zum Verfolgen der Kammern, wenn sie nicht zum Rösten benutzt wird. Durch diese Mittel wird ein Zug in dem Ofen bewirkt, während man durch die doppelseitige Dehnung angewendet hat; nöthigenfalls können die Luftkammern in Verbindung mit dem gewöhnlichen Windröhren des Gebläses, mit kalter oder heißer Luft, angewendet werden. Was nun das Verfahren betrifft, um mit Hilfe eines auf die beschriebene Weise eingerichteten Ofens Eisenerze zu schmelzen, so ist es ganz das gewöhnliche, nur ist es besser Erze und Zuschlagskalk zwischen Duetschwalzen zu zerkleinern und sie in dieser Form aufzugeben.
Über die Bereitung des Calomels aus Sublimat mittels schwefliger Säure; von F. Sartorius.

Aus den Annalen der Chemie und Pharmacie, Decbr. 1855, S. 335.

CIX.

Versuchen den Werth des Blutlaugen-Salzes annähernd zu bestimmen; von Hrn. J. W. Slater.

Aus der Chemical Gazette, Decembr. 1855, S. 315.

Wenn man eine Auflösung von übermangansaurem Kali (Chamäleon) in eine Lösung von gelbem Blutlaugen-Salz (Ferrocyanalum) gießt, so wird jenes bekanntlich augenblicklich reducirt. Die carminrothe Farbe des übermangansauren Kalis verwandelt sich zuerst in Grün, dann in Kastanienbraun und endlich zeigt sich Eisenrothhydrat ab.

Auss diese Reaction läß sich eine einfache und schnell ausführbare Methode gründen, um den Werth oder Gehalt einer Probe von gelbem Blutlaugen-Salz zu bestimmen. Die gewöhnliche Verunreinigung desselben, welche in schwefelsaurem Kali besteht, kann man zwar mit einem Barytfals entdecken und quantitativ bestimmen, aber eine solche Probe eignet sich nur für den Chemiker, nicht für den Fabrikant, überdies erfordert sie zu ihrer Ausführung eine beträchtliche Zeit.

Da die schwefelsauren Alkalien (und auch die Chloride, wenn solche gegenwärtig sind) nicht reducirend aus das rothe übermangansaure Kali wirken, so ist es für das Quantum dieses Salzes dem Betrag von vorhanden gewesenem reinem Ferrocyanialum proportional sein.

Ein bekanntes Gewicht von reinem Blutlaugen-Salz wird in Wasser aufgelöst, beträchtlich verdiinnt und als Normallösung aufbewahrt. Anderseits bereitet man eine Auflösung von krypsalisirtem übermangansaurem Kali; wenn dieselbe in gut verschlossenen Flaschen aufbewahrt wird, so verändert sie sich wenig; man muss aber doch vor jeder Operation ihren Titre mittels der Normallösung genau bestimmen. Man bringt die Lösung des Blutlaugen-Salzes in einer weiten Porzellanflasche über eine kleine Lampe und gießt das übermangansaure Kali aus einer graduierten Bürette hinein. Wenn die Tröpfchen, welche in das Blutlaugen-Salz fallen, nicht mehr smaragdgrünen, sondern meerrün gen werden, so muss man das Ganze häufig umrühren, und sêmenne Zufälle sehr vorzichtig machen. Sobald keine grüne Färbung der zugeführten Probesäufigkeit mehr eintritt, ist die Operation beendet; die Anzahl der zugeführten Grade von übermangansaurem Kali, verglichen mit dem Betrag welchen eine reine Probe erforderte, ergibt sogleich den Procentgehalt an schwefelsaurem Alkali. Die übrigbleibende Flüssigkeit ist Ferricyanidum, gemischt mit kohlensaurem Kali und Kalihydrat, und hat eine entschieden basische Reaction.
Über die Verfeisung der neutralen Fette, insbesondere des Talgs, durch die Seife; von Prof. J. Belonje.

Aus den Comptes rendus, Decbr. 1855, Nr. 23.

Dieses Verfahren ist offensbar mit großer Ersparnis verbunden, weil die Menge der zur Zerfeisung der Kalleseife erforderlichen Schwefelsäure um die Hälfte vermindert wird.

Es schien mir interessant, eine solche Verfeisung näher zu untersuchen, welche bei Gegenwart einer sehr geringen Menge von Balsam ausgeführt wird, indem diese nur das vierundzwanzigsten Theil des gesäuerten Fettes beträgt.

Das Wasser, welches über dem im Topf enthaltenen Niederschlag stand, dampfte ich ab; es hinterließ einen sirupartigen Rückstand, welcher alle Eigenschaften des Glycerins besaß.

Der Niederschlag, mit Wasser geachtet, welches mit Salzsäure angesäuert war, lieferte ein vollkommen gesäuertes Fett; denn daselbe löste sich direkt und vollständig in Alkohol und in den Alkalien auf. Kurz, die Reaktion hatte ganz dem Charakter der gewöhnlichen Zersetzung der neutralen Fette durch die freien Alkalien. Abgesehen von der geringeren Häute der neuen Kalseife, unterschied sie sich nicht von einer Verbreitung durch Kallsäure.

Aus diesen zwei Versuchen geht hervor, daß die Seifen gerade so wie die Alkalien selbst die Zersetzung der Fette in Glycerin und in Fettsäuren bewirken können.

Ich habe mich übrigens versichert, daß das Wasser bei der Temperatur von 165° C. nicht auf die Seife wirkt. Um dieselben zu zerlegen, muß das Gemisch von fetter Substanz und Wasser die Temperatur von 220° C. erreichen und sehr lange auf dieselben erhalten werden, wie schon hr. Berthelot gefunden hatte.

In England, wo das Haus Price ungeheure Quantitäten von Stearinseifen fabriziert, geschieht die Verbreitung durch die Wirkung des überhitzten Wasserdampfes bei einer noch höheren Temperatur; man erhält dadurch einerseits Fettsäuren, andererseits freies und ziemlich reines Glycerin, welches bereits in der Industrie und Arzneifabrik mit Vortheil verwendet wird.

Man begreift, daß bei den fraglichen neuen Reactionen das Wasser mit Beihilfe einer Temperatur von 150 bis 160° C. eine neutrale Seife in eine saure Seife und in eine sehr bäsische Seife zerlegen kann, und daß letztere dann auf eine neue Quantität Fett gerade so wie ein freies Alkali wirkt.

Der Versuch de Milly's, von welchem ich ausging, erklärt sich auf analoge Weise.
Man kann annehmen, daß die Verfeifung des Talg's mittels bloß 4 Procent seines Gewichts Kalk in mehrere Perioden zerfällt, in welchen sich zuerst eine basische oder neutrale Seife bildet, die sich endlich in eine saure Seife umwandelt.

Vor einigen Monaten habe ich eine noch merkwürdigere Zerlegung der neutralen Fette in Säuren und Glycerin nachgewiesen, nämlich die freiwillige Verfeifung aller Fette ohne Außnahme, beim Zutritt der Luft wie ohne denselben, bloß durch die mechanische Zerteilung der Samen worin sie enthalten sind. 72

CXI.

Verfahren die Zuckerbildung der Getreidearten mit Schwefelsäure statt des Malzens und Einmaischens zu bewirken; von Hrn. Leplay.

Aus Armentaud's Genie industriel, Novbr. 1855, S. 207.

Bisher hat man in den Kornbrennereien und Brauereien, um die Zuckerbildung der Getreidearten zu bewerkstelligen, nur das Malz (die gekörnte Gerste) angewandt; während des Einmaischens mit der gekörnten Gerste verwandelt sich das Stärkemehl des Korns mehr oder weniger vollständig in Zucker.

Das Kochen mit verdünnter Schwefelsäure wurde bisher nur be- nutzt, um das Kartoffelstärkemehl (im isolirten Zustande) in Zucker umzuwandeln. Es gelang nun Hrn. Leplay dieses Verfahren vortheilhaft anzuwenden, um das in den Getreidearten, dem Weizen, Roggen, der Gerste etc. enthaltene Stärkemehl in Zucker zu verwandeln. Bei dieser Methode ist einerseits die Ausbeute beträchtlicher, andererseits erübrigt man den Arbeitslohn für das Kreimen oder Malzen der Gerste; überdies erhält man einen Syrup oder eine Würze, welche während der Gärung (so es für die Spiritusdestillation oder für die Weintabakerei) nicht sauer wird, wie bei der bisherigen Methode; endlich bekommt man einen fusselfreien und leichter zu rectifizirenden Spiritus.

Verfahren. — Das Korn wird geschrotet, wie für die Brauereien.

Bevor man diesen Syrup zur Gährung verwendet, muß seine Säure gesättigt, er dann mit Wasser verdünnt und abgefüllt werden. Das Sättigen der Schwefelsäure geschieht am besten mit Kreide oder Kalsalz, weil dieselben sehr wohlfeil sind und der entstandene Gips sich grösstentheils aus dem Syrup absetzt; dazu kommt noch, daß der tohlsenfaure Kalk als ein unangreiflicher Körper ohne Nachtheil für die Gährung in Weberspüß angewandt werden kann.

Nachdem der Syrup so gesättigt ist, verdünnt man ihn mit kaltem Wasser bis zur Dichtigkeit von 5 oder 6° Baums, und setzt ihn auf gewöhnliche Weise mit ein wenig Viehseife in Gährung.

Der aus angegebene Weise mit tohlsenfaurem Kalk gesättigte Syrup ist noch stark sauer; es bleibt nämlich in dem Syrup beiläufig 1/2 Proc. der ursprünglich angewandten Säure zurück, auf welche der tohlsenfaure Kalk gar nicht wirkt. Wenn man diesen Syrup für die Brauerei bestimmt, so muß er vollkommen neutral oder nur schwach sauer sein; um
die zurückbleibende Säure zu färben, verfeuert man ihn mit einer hinreichenden Menge von Kalkhydrat, welches gut mit Wasser angerührt wurde, ohne jedoch einen Lächerlich davon angewenden, weil es sich den Syrup färben und ihm einen unangenehmen Geschmack erteilte wurde.

Der so gefärbte Syrup wird durch ein leinenes oder wollenes Filter filtrirt, und selbst über Knochensohle, wenn man ihn enfärben will. Wenn er nicht in der Fabrik selbst, wo er dargestellt wurde, verwendet wird, sondern weit vermendet werden soll, so muß man ihn concentriren bis er fochend 38 oder 42° Baums zeigt, und dann in Fässer gießen woenv er beim Erkalten fest wird.

Ist der Syrup zur Spiritusfabrication bestimmt, so kann man ihn versenden, ohne daß er mit Kreide gefärbt und abgedampft wurde; in diesem Falle hält er sich unverändert. Solcher Syrup läßt sich mit Bortheil in Vermischung mit benzigen Zuckerlösungen anwenden, welche zur vollständigen Gährung einen Zusatz von Schwefelsäure erfordern, wie die Melasse und der Saft von Runkelrüben.

CXII.

Verfahren, um zahlreiche vegetabilische Substanzen zur Fruchtsäuer-Fabrication verwenden zu können, von G. F. Meßens, Professor der Chemie zu Brüssel.

Die verdünnte Schwefelsäure kann, wie die concentrirte Schwefelsäure, die Cellulose (Holzfasern, den pflanzlichen Zellstoff) modifiziren und auslösen, unter der Bedingung daß eine 100° Celf. übertreibende Temperatur angewendet wird.

Der inkrustirende Stoff, das Selragen oder die in den pflanzlichen Zellen enthaltenen Stoffe, können sich zum Theil in eine gärungsfähige Substanz verwandeln, wenn man diese Produkte eben so behandelt wie das Stärkemahl beißt seiner Umwandlung in Fruchtsäuer, d. h. sie einige Zeit in einer sauren Flüssigkeit auf einer Temperatur von 100° C. erhält.

Die technische Anwendung dieser Thatfachen bildet den Gegenstand der nun zu besprechenden Erfindung.
Zur Fruchtzuckerfabrikation verwendet zu können.

Zu einem Autolysaph (papinianischen Topf), welcher innen (damit er von den Säuren nicht angegriffen wird) mit Blei bekleidet, übrigens mit Manometer, Thermometer, Sicherheitsventil und Niveauröhre versehen ist, gibt man die zu behandelnde Substanz mit verdünnten sauren Lösungen; nachdem der Apparat gut verichlossen wurde, bringt man das Ganze auf eine Temperatur, welche je nach den angewandten Substanzen von 100° C. bis zu 170° C. wechselt, wobei sich die organischen Stoffe in breznliche Produkte oder braune Säuren zerlegen, also bis 180° oder 200° C. Man lässt die Wirkung einige Zeit andauern. Der Autolysaph kann direct über freiem Feuer erhitzt oder über der Sohle eines Flammofens angebracht werden; legt man auf der geeigneten Temperatur mittels Registern, welche die Flamme unter den Autolysaph zu leiten oder sie von demselben abzuleiten gestatten. Auch überzügter Dampf lässt sich als Heizmaterial für den Apparat anwenden.

Die Dauer der Operation und die angewendende Temperatur hängen von dem Aggregatzustand des angewandten Haferstoffs oder Körpers ab. Die aus dem Autolysaph genommenen Substanzen werden neutralisiert, filtrirt und dann mittels Ferment in geistige Gährung verengt, oder auch abgedampft um Fruchtsyru zu erhalten.

Diese Substanzen, welche die Cellulose in sehr coherenter Zustände darbieten, kann man zuvor mit Salpetersäure behandeln, wie es mit der Stärke zur Dextrinsäuberung geschieht. Nach dieser Vorbehandlung wirken die verdünnten Säuren kräftiger auf solche Cellulose.

Die Substanzen, welche der Erfinder hauptsächlich verarbeitet, würden im Allgemeinen durch die Cellulose welche sie enthalten, aber einige von ihnen enthalten auch Stoffe welche sich in eine gährungsfähige Materie dadurch umwandeln lassen, dass man sie einige Stunden in Wasser welches einige Procente Säure enthält, auf einer Temperatur von 100° C. erhält; so geben z. B. Baumblätter durch diese Behandlung eine Substanz welche
in Verbindung mit Biergese gährt, wenn die saure Flüssigkeit, worin sie ausgesetzt ist, vorher neutralisiert und nötigenfalls durch Abdampfen concentriert wurde. Durch methodisches Auswaschen kann man diesen Substanzen die gebildete gärungsfähige Materie entziehen; es bleibt dabei die Cellulose zurück, welche man hernach auf angegebene Weise im Autoelektpbe behandelt. Diese Operation ist bei allen vegetabilischen Substanzen anwendbar und bildet ein neues industrielles Verfahren.

Die Substanzen, welche der Erfinder zur Fruchtsäure-Bereitung nach der einen oder anderen der beschriebenen Methoden oder durch Anwendung beider nach einander benutzt, sind folgende:

1) Pflanzensstoffe, z. B. junge Baumföhlinge, Geniste, Heidekraut, Blätter, Stroh, Stoppeln, Schwämme; dieselben können auch schon mehr oder weniger in Faulnis übergegangen sein;

2) Fabrication Rückstände, z. B. die Spren vom Reiben des Getreides, Malzschrot; Rückstände der Brauereien, der Korn- oder Rübenälber-Brennereien; Rückstände von der Nüchternfruchtfabrication, ausgepreßten Rübenbrei; Rückstände von der Stärkesubstitution mittelt Kartoffeln; Rückstände vom Brechen (Säcken) des Maises und Hanfes; Holzfaserpflanzen; erdöppte Gerberlose; erdöppte Würzeln und Hölder färberischen Gebrauch und Äpfelkernen.

3) Reste von Fabricationen, z. B. altes Tapetenpapier, Maculatur; gefärbte oder farblose Lumpen usw.

Wenn diese Lumpen durch eine Substanz getränkt sind, welche der Einwirkung des Wassers und einer hohen Temperatur widersteht, so kann man dieselben (durch erwärmte Behandlung mit säuerlichem Wasser) auslöschen oder zerhellen und hernach den Farbstoff absondern. Behandelt man die krappwurzel mit saurem Wasser bei einer Temperatur welche das Alizarin nicht zerstört, so wird auch ein Teil des Säurestoffs und der Farbstoff begleitenden Unreinheiten entzogen; so von den fremdartigen Stoffen (welche ausgelöst oder zerlegt wurden) mehr oder weniger befreite Alizarin ist in einem zum Färben geeigneteren Zustande. Wenn man auf einen angegebenen Weise türfischroth gefärbte Lumpen behandelt, um Fruchtsäure in Lösung zu erhalten, so wird das Alizarin frei gemacht, und um es vollkommen rein zu erhalten, braucht man es nur in einem Aftal auszusäumen und hernach durch eine Säure ausräumen.

Läßt man die verdünnten Säuren bei einer hohen Temperatur einwirken, so greifen sie direkt und leicht Substanzen an, welche im Allgemeinen nur von den konzentrierten Säuren oder nur wenig von schwachen Säuren angegriffen werden. Die oben beschriebene Verfahrensweise ist insbesondere auf die Wollensäuren anwendbar; behandelt man dieselben
mit einem solchen Quantum von Säure, daß ihr Stoff in Ammoniak umgesetzt werden kann, so lösen sie sich fast vollständig aus und liefern eine als Dünger verwendbare Masse, welche eine beträchtliche Menge von Ammoniaksalzen enthält.

Man begreift, daß es möglich ist auf diese Weise von den Wollenstoffen gewisse Farbstoffe zu isolieren, welche einer hohen Temperatur und der Einwirkung verdünnter Säuren widerstehen, vorausgesetzt daß sich diese Farbstoffe im Wasser nicht auflösen, wie z. B. der Indigo.

Melfens verwendet bei seinem Verfahren zur Fuchtsucker-Entwendung die so wohlfeilen Rohstoffe, welche Braconnot und Aronour benützen, und er wendet wie Jacquelain einen Autoklav an, da aber bei seiner Methode die Mitwirkung der verdünnten Säuren die hohe Temperatur unterbricht, so kann er allen Säureüberschuß ersparen, welchen die ersteren Chemiker anwandten und stets auch die Kosten des Trocknens, folglich feuchte oder nasse Rückstände verarbeiten, welche wohlfeil zu erhalten sind.

CXXXIII.

Uber die Darstellung von entsfuseltem absolutem Alkohol; von Professor W. Stein in Dresden.

Aus dem polytechn. Centralblatt, 1855, S. 69.

Die bekannten Entwässerungsmethoden erfordern lange Zeit und Arbeit, insofern oft wiederholtes Bewegen des Weingeists erforderlich ist.

<table>
<thead>
<tr>
<th>21 Unzen Alkohol von 100 Procent.</th>
<th>18 Unzen Alkohol von 99,75 Procent.</th>
<th>13 Unzen Alkohol von 99 Procent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Unzen Alkohol von 97,5 Procent.</td>
<td>15 1/2 Unzen Alkohol von 96,5 Procent.</td>
<td>6 Unzen Alkohol von 94,5 Procent.</td>
</tr>
<tr>
<td>3 Unzen Alkohol von 85 Procent.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

89,5 im Mittel von 98,22 Procent.

Der Rechnung nach hätten aus 112 Unzen 50procentigem Weingeist 91,4 Unzen Alkohol von der eben angeführten Stärke erhalten werden müssen. Es hat also ein Verlust von nur 1,9 Unze stattgefunden. Die Construction des Cylinders hat übrigens beim Gebrauche einige Mängel erkenntlich, die indessen leicht abgeändert werden können. Das Chlorcalcium zerfällt nämlich we sentlicher, als ich es vorausgesetzt hatte; die Deffinitionen in den Scheidewänden werden daher bald geschlossen und der weitere Durchgang der Dämpfe dadurch unmöglich. Um diesem gänzlich abzuwenden, brauchen die Cylinder nur um etwa 3 Zoll länger gemacht und um so viel vom unteren Ende entfernt mit einem Stiebboden versehen zu werden. Die Deckel fügen ferner nach Beendigung des Prozesses sehr fest, so daß sie nicht schwer abgenommen werden können. Dies läst sich allerdings nicht wohl ändern, wenn sie von unten aufgeschoben wer-

Man hat schon vielfach versucht Gemüse und Früchte dadurch zu conserviren, daß man sie trocknet und dann in einem kleinen Raum preßt; da sie aber sämmtlich Albumin, Casein, Chlorophyll oder Bafforin enthalten, welche bei den bisher zu ihrem Conserviren angewandten Verfahrungsarten nicht ausgeschlossen wurden, so nahmen sie häufig eine schwarze Farbe an, wurden beim nachherigen Kochen nicht leicht weich und verloren ihren Geischmad derart, daß sie fast unbrauchbar wurden.

Meine Erfindung besteht nun darin, daß Albumin, Casein, Chlorophyll und Bafforin aus den Gemüsen und Früchten zu absorbiren oder auszusiechen, indem ich sie zuerst dem Dampf eines Kochsalzhaligten Wassers abdeß ausziehe und hernach in reinem Wasser wäsche. Sie werden darauf getrocknet und zusammengepreßt, wo sie dann zur Verwendung verpackt werden können.

Meine Verfahrungsweise ist folgende: Ich löse in 100 Pfd. Wasser 1 Pfd. Kochsalz auf und erhalte den Dampf, welchen diese Flüssigkeit beim Kochen liefert, auf einer Temperatur von 200 bis 400° Fahr. (93 bis
Spahn's Dampfapparat zum Reinigen der Bettfedern. 433

204° Cels.), je nach der zu behandelnben Pflanzenstoffenz, welche ich diesem erhitzten Dampf 5 bis 18 Minuten lang ausziehe, was zur Folge hat, daß das Albumin, Casein, Chlorophyll und Bassoitin aufgelöst und aus die Obersicht gegeben werden, welche ich hieher in klarem fließenden Wasser wegwasche. Die Früchte oder Gemüse müssen dann auf geeignete Weise getrocknet werden, vor auf man sie zusammenpressen und verpaßten kann.

Für manche Gemüse und Früchte ist es vorteilich, anstatt dieses ein dem Dampf salzhaltigen Wassers aufgesogen, sie in eine Salzlösung zu legen; aus 1 Pfd. Kochsalz auf 35 Pfd. Wasser bestehend, welche durch hineingeförderten Dampf auf beinahe 400° Fahr. (204° Cels.) erhalten wird.

Zum Waschen benütze ich ein Gefäß, durch welches ich fortwährend klares Wasser von 40 bis 70° F. (5 bis 21° C.) laufen lasse.

So zurückerlegte Gemüse und Früchte behalten ihre Farbe und ihren Geschmack grünenbells und erhalten sich lange Zeit gut.

CXV.

Dampfapparat zum Reinigen der Bettfedern und Mattresen-Roßhaare; vom Hospitalverwalter P. Spahn in München.

Mit einer Abbildung auf Tab. VI.

Kürzlich hatten wir Gelegenheit, in dem hiesigen städtischen Krankenhaus einen von dem Verwalter Herrn, Spahn eingerichteten Dampfapparat zur Reinigung der Bettfedern und Matratzen-Roßhaare zu sehen und in seiner Wirksamkeit zu beobachten. Es ist uns ein Vergnügen nicht bekannt, durch welches Bettfedern und Roßhaare gründlicher gereinigt werden könnten, wie mittelst dieses Apparates, und es hat sich derselbe, der schon einige Jahre benutzt wird, auch vollkommen bewährt, so daß wir glauben, eine solche Vorrichtung sollte nicht allein in jedem Spital vorhanden sein, sondern es ließe sich damit auch für Einzelmänner, welche das Reinigen von Federn, Roßhaaren etc. zum Geschäft machen, eine ergiebige Erwerbsquelle begründen. Wir erbaten uns deshalb auch nach-
Spann's Dampfapparat zum Reinigen der Bettfedern.

... stehende Beschreibung und Zeichnung erwähnten höchst einfachen, wenig losspießen, leicht zu handhabenden Apparates:

a, Fig. 18, ist ein Ofen von starkem Schwerblech mit einem bei b eingesägten Roß, Achsenbüchsen c, Heizhäre d und Rauchrohr e; f ist der Wassersessel von Weißblech, welcher, wie die punktierten Linien zeigen, in dem Ofen sitzt; g der Probesaft, h ein mit einer luftdichten Schraube verschlossener Ansaß zum Nachgießen des verdampften Wassers; i ist eine an den schwarzbleichenen Trichter l befestigte starke Blechplatte, welche mittels eines Hilfes diesen Trichter mit seinem seinen bleichen Siebe am unteren Ende und zwar über dem cylindrischen Halse möglichst dichtschiert an den Wassersessel anpreßt. m, m sind die hierzu erforderlichen zwei Haken von Draht, welche am Trichter l mit beweglichen Nieten befestigt sind und sich in festgenietete Ringe im Wassersessel einschieben, um den Verschluß recht innig zu bewirken; n endlich ist ein hölzerner, mit Leinwand überzogener Heiss, welcher gleichsam als Deckel genau über den Rand des Trichters t passt.

Sollen nun mittels dieser Maschine Bettfedern gereinigt werden, so werden die beschmutzten Federn in einem größlichen Siebe gereutert, so daß die zersagenbrochene und zerrittene Federschü von gefallen, hierauf allenfallsige Paßen oder Ballen zerzupft und der obere Trichter der Maschine, von welcher der Wassersessel bis zum Probesaft gefüllt und so gefeuert ist, daß sich oben Dämpfe zu zeigen beginnen, mit Federn ausgestopft. Die Wasserdämpfe steigen durch das Sieb in den Trichter, welcher nun mit dem Deckel n verschlossen wird, damit die Dämpfe geschützt zusammenhalten und ihre Wirkung soweit wie möglich auf die Federn gleichmäßig werde. Nach etwa fünf Minuten wird der Deckel aufgehoben und die Federn mit einem hölzernen Stabe umgerührt, abwärts aber wieder verschlossen. Dies geschieht so oft, bis die Federn durchar und so heiß geworden, daß man die Hand nicht mehr darinnen halten kann, dann werden sie auf geeignetem Plaze ausgebreitet und bis zu ihrer vollen Trocknung recht oft mit einem neuen Beizen durchgekehrt oder gestoßen.

Nun sind sie von aller Unreinigkeit völlig befreit und jeder Kratz, hettstoff vollkommen entfernt, denn selbst Federn, welche den widerlichsten Geruch hatten, sind nun ganz geruchlos und haben auch an Elastizität ungeschmitten gewonnen.

Sollen Rosbaare aus Wartzen gereinigt werden, so werden dieselben gehörig gespint, leicht durchgezupft, hierauf in den Dampftrichter gebracht und damit ebenso verfahren, wie mit den Federn. Sind die Rosbaare herost, so müssen sie aber noch einmal durchgezupft werden
Durch diese Manipulation werden auch diese weder eben so elastisch als neue, ja bei gleicher Qualität der Waare noch elastischer, und es behalten gedämpfte Rosshaare ihre Elasticität sogar weit länger, d. h. sie legen sich nicht so leicht zusammen, wie gewöhnliche, weshalb man auch gut thun wird, neue Rosshaare vor dem Verarbeiten zu dümpfen.

__Miscellen__

Anwendung der Drahtseile zur Uebertragung der Bewegung; von F. Hirn in Colmar.

Seit länger als einem Jahre beibringen sich Hansmann, Jordan, Hirn und Comp. in Colmar in ihrer mechanischen Weberei der Drahtseile zur Ubertragung der Bewegung nach den Sälen, welche von der Kraffmaschine sehr weit entfernt sind. Diese Drahtseile sind von M. De Wailly und Comp. in London angesetzt. Das eine vertieft, welches 8 Millimeter Durchmesser hat und welches die Fabrikanten mit Nr. 1½ bezeichnen, besteht aus einem Seile von Eisenbahr Nr. 4, welches aus fischdrähtigen Eisen zusammengesetzt ist und in der Mitte eine Hanfseile hat. Jede Lise hat ebenfalls wieder eine Hanfseile. Der laufende Meter dieses Seiles wiegt 0,194 Kilogramme und löst in Colmar 1,58 fr. Das andere, welches nur 5 Millimeter Stärke hat, wiegt pro Meter 0,09 Kilogramme und löst für dieselbe Länge 94½ Genimes. Es wird von den Fabrikanten mit Nr. 1½ bezeichnet, besteht wie das erstere aus 36 Drähten, welche aber seiner sind (Nr. 1), und ist genau ebensso zusammengesetzt wie jenes.

Das zweite Seil überträgt die Bewegung auf eine Schlosser- und Zischler-werftssé, welche 60 Meter vom Motor entfernt ist. Es läuft über Scheiben von 1 Meter Durchmesser, welche 50 Umdrehungen in der Minute machen, und liegt ebenfalls frei zwischen beiden Scheiben.

Unterhaltung und Reparaturen haben diese Seile bis jetzt nicht erfordert. Wenn sie gegen die Einflüsse der Luft und des Regens geschützt werden sollen, so müssen sie nach der Angabe der Fabrikanten von Zeit zu Zeit getheert werden.

(Belntechnishes Centralblatt, 1855, S. 1269.)

__Zifferblätter aus Drahtgewebe; von K. Schulze in Brandenburg.__

Der Verfasser hat auf den Bahnhöfen Brandenburg und Genthin an Stelle der durch die früher gebräuchlichen Glaszifferblätter der Bahnhofschaufel Zifferblätter aus Drahtgewebe ausgeführt, welche halbbarer und bedeutend billiger als jene sind. In einer der letzten Sitzungen des Vereins für Eisenbahnuufunde in Berlin berichtet er über dieselben Folgenden:
Das vielfache Herabriicken der Glaszifferblätter bei Freßwetter, sowie der be- deutende Preis von 50 Thalern eines solchen Zifferblattes habe ich veranlasst, ein Material zu den Zifferblättern herauszugeben, welches allen Mitterrungsverhältnissen widersteht, und denselben Zweck, sowohl bei Tage, als auch zur beleuchtung des Nacht, vollkommen erreiche.

Das Drähtgewebe, welches zu diesen beiden Zifferblättern verwendet ist, war in der Breite der Zifferblätter von 42 Zoll nicht zu erlangen, weshalb das Gewebe in der Mitte mit Dräht zusammengenäht werden musste, jedoch so, daß das Gewebe nicht übereinander zu liegen kam, um die Durchdringung bei Nacht nicht zu erschweren. Oft war das Drähtgewebe nur mit Delfarbe grün angebräht zu haben, wovon das Aussehen der Ziffern u. s. w. sehr erschwert wurde. Bei größterm Bedarf von Zifferblättern büßten durch die Herstellung des Drähtgewebes in der Hälfte von der nöthigen Breite der Zifferblätter, und unangenehm verwendet, noch einige Orstarnisse erlangt werden. Der Preis eines Zifferblattes beträgt 10 Thaler. (Erbamm's Zeitchrift f. Bauwesen, 1858, Heft 9 u. 10.)

Kitt zur Herstellung zersprungener Brunentöpfe; von Marmoit

Leonhard zu Billmar.

Der feuchtbaste Brunentrog wird sauber ausgewaschen, die Fugen, durch welche Wasser hintereinander, werden rein ausgeputzt und ausgetrocknet, so daß seine Räfte in ihnen ist, wenigstens so wenig als nur irgend möglich. Ersanf steigt man die ausgetrockneten Fugen mit Leinöllinner etwas an, und lüftet als
Lieber ein neues Silbererz; von H. J. Brecke.

Ich erhielt vor einigen Jahren aus Mexiko eine Probe von einem neuen Silbererz, welches in kleinen, den oben unregelmäßig gespaltenen, rd. aussehenden Massen vorkommt, die in tiefen ausm euren Kalk und Quarz eingebettet sind, denen feinkristallisierte Quarzflüssigkeit beigemengt ist. Seine Farbe ist dunkelsgrau; es ist ganz glanzlos, und seine Härte scheint an verschiedenen Stellen der Probe verschieden zu sein. Der verlorene Dr. Phillipps untersuchte einen Theil dieses Silbererzes, wobei er fand, dass es sich mit Säure aufbraute und die Lösung Silber enthielt, daher er es für ein kobaltfreies Salz hielt, besonders auch, weil es dem von Selb beschriebenen kohlensauren Silber sehr ähnlich ist.

Die Analyse von zwei kleinen Portionen des erwähnten Theils des Minerals, welcher von der Gebirgsart getrennt worden war, ergab folgende Zusammensetzung in 100 Theilen:

<table>
<thead>
<tr>
<th></th>
<th>I.</th>
<th>II.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a.</td>
<td>b.</td>
</tr>
<tr>
<td>Silber</td>
<td>16,09</td>
<td>17,18</td>
</tr>
<tr>
<td>Antimon</td>
<td>7,82</td>
<td>7,30</td>
</tr>
<tr>
<td>Schwefel</td>
<td>1,41</td>
<td>1,84</td>
</tr>
<tr>
<td>Selen</td>
<td>2,81</td>
<td>3,58</td>
</tr>
<tr>
<td>Chlorsilber</td>
<td>1,26</td>
<td>2,67</td>
</tr>
<tr>
<td>Kupferoxyd</td>
<td>10,46</td>
<td>8,61</td>
</tr>
<tr>
<td>Bleierde</td>
<td>45,56</td>
<td>41,81</td>
</tr>
<tr>
<td>Titanerde</td>
<td>2,00</td>
<td>4,04</td>
</tr>
<tr>
<td>Sideroxid</td>
<td>2,21</td>
<td>3,04</td>
</tr>
<tr>
<td>Kalk</td>
<td>1,72</td>
<td>2,33</td>
</tr>
<tr>
<td>Kohlenfaser</td>
<td>2,92</td>
<td>3,04</td>
</tr>
<tr>
<td>gebundenes Wasser</td>
<td>2,31</td>
<td>0,99</td>
</tr>
</tbody>
</table>

Alles in dem Mineral enthaltene Kupfer wird durch Saflsaure aufgelöst; daraus folgt, dass es nicht als Schwefelsäure oder Selenfluß vorhanden sein kann. Die erstarrende Lösung enthält Kalk, gab aber auf Zusatz von Sulfäure, salpetersaures Silber, oder Chlorvarnum gar keinen Niederlag. (Philosophical Magazine, December 1855, S. 436)

Analysis eines bituminösen Schieferes.

Ein bituminöser Schiefer, welcher in der Gegend von Bruchsal gebrochen wurde, wurde in dem Laboratorium des Professors Dr. H. Schröder in Mannheim untersucht.

Dingler’s polyt. Journal Nr. CXXXVIII. S. 6. 29
sucht. Dieser Schiefer gibt bei der trockenen Destillation, je nachdem dieselbe getrieben wird:

- 2,5 bis 3 Prozent Tierwasser,
- 4 bis 6 Prozent Herz,
- und 100 bis 150% brauchbare Kuhmilch Das per Gentem Schiefer.

Er enthält gegen 14% brennbare Substanz, und es bleiben biesen nahe anderthalb Stelle in der Schieferole. Die Ableitung der Kuhmilch als Kuhmilch zurück.

Von 1000 Flüssigkeiten Schieferkohlen sämtliche 82 Flüssigkeiten flüssiger Dämpfe abs.

destillieren, deren Oberflächen gleichmäßig zwischen 100 und 300° C. liegt.

Der Schiefer ist vielfach von weissen Kalksteinen durchzogen und enthält Gießbrüche in nicht unbeträchtlicher Quantität eingestreut. (Briefliche Mitteilung.)

Den Zwieback für Suppen bereite ich von verschiedenen Zusammensetzungen auf kreisrunde Weise:

2) Ich gebe die vorzügliche Anwesen des feinsteingeschriebenen (Kopfsteine, die Knoe, Gebarmen) etc. mit Salz, Gemüse und dem erforderlichen Gewürz in einen Kessel, lasse dieselben durch Rumpf zergehen und vermische die so erhaltenen Gallerte mit ihrer gleichen Quantität gereinigten und bei 160° F. (71° C.) verdichten Blutes. Diesem Gemisch wird auf angegebene Weise Mehl und Mehlzucker zugesetzt, daselbe dann zu Karren geformt und gebädet. Die Gallerte und das Blut bilden zusammen ein Drittel der ganzen Mischung, das Mehl und Mehlzucker die zwei anderen Drittel.

3) Ich lasse in dem vorhergehenden Falle das Blutweg, ich mische nämlich das Mehl und Mehlzucker mit der Gallerte, indem ich von jeunen zwei Drittel, von dieser ein Drittel anwendete, patentiert in England am 19. März 1855. (Repor-

Bereitung von Weingeist aus Zuckerz; von Rabourdin in Orleans.

10 Kilogr. (20 Zollpfund) Zucker werden durch Wachsen von Erde gereinigt, zerschüttelt und dann mit einer Mischung von 20 Litern (20 Kilogr.) Wasser und 200 Grm. (½ Zollpfund) Schwefelsäure gefecht. Das Kochen wird 3 Stunden
Von der Behandlung der Weine aus dem Lager

Die in den Driftsäften aufgelöst Stoffe von Verbindung werden in dem Wasse, als sie mit atmosphärischer Luft in Berührung kommen und aus dieser Sauersucht aufnehmen (sich oxydieren) zu Hefe oder ferment. Für das Auge wird dieser Ver- gang dadurch erkennbar, daß der weinharzer vom Betrachter gefällene oder kapselweise, nachdem der letzte eine Weile der Luft ausgesetzt war, sich trieb; was daher kommt, daß der Hefestoff gerinnet und sich als Flocken in der Flüssigkeit abscheidet.

Die so zu Hefe gewordenen eislichsaltligen Behandlthale erreigen in den Driftsäften die wein- und weinbildende Gährung, wodurch der Zucker in Kohlensäure, die größtentheile in die Luft entwirft, und in Alkohol zerlegt wird, welcher im Weine, im Eder, gelöst bleibt und diesen Gärungen ihre Stärke, ihr Feuer verleiht.

In den aus der Erden Trauben des Nordens entnommenen Weinen, und in noch größeren Bestandthilten in den Ostweinen, bleibt, nach der scheinbar beständigen Gährung, noch eine beträchtliche Menge nichtstoffhaltiger Behandlthale gelöst zurück, und zwar mit denselben Eigenschaften, welche sie vor der Gährung besassen, d. h. daß sie namentlich die Kühlichkeit beibehalten, sobald sie mit der Luft in Berührung kommen, Sauersucht aus derfelben auszunehmen, dadurch zu Hefe zu werden und als solche, so lange noch Zucker vorhanden ist, eine neue, dieselben allmählich verlösende zerstrende Gährung (ein neues „Trüben," „Arbeiten," „Werfen") zu erreichen, wo-
durch den Wein seine Lieblichkeit verliert und dafür mehr oder weniger rauch und herb wird.

ist aller Zucker im Wein oder Gier verschunken, so üben die dann noch vorhandenen Stickstoffbindungspunkte in dem Masse, als sie noch und nach mit Luft in Berührung kommen und zu Hefe werden, auf den Alkohol eine ähnliche Wirkung, wie vorher auf den Zucker, indem sie jetzt als Säuerungsreger auftreten, bewirken daß der Alkohol des Weines, wenn auch nur ganz allmählich, zu Eissäure verändert wird. Kurz die in den Weinen nach vollendeter Hauptgärung noch vorhandenen stickstoffhaltigen Bestandteile sind die Ursache aller nachteiligen Veränderungen, welcher selbst die scheinbar ganz ausgelösten Weine auf dem Lager noch erleiden.

Die Hefesäfte - welche bei den bisherigen Beleuchtungs-Methoden so überlebend in unsere Weine übergehen, daß bis zu diesem Augenblick selbst manche Abstammung ihrer noch immer nicht ganz haben entdecken können und daher wieder in Bewegung geraten sind - diesen demnach als die wahre, vielmehr als die einzige Ursprünge Veränderungs- und Krankheits-ursache unserer Obst- und Traubenweine angeschehen werden.

Schon vor Jahren, wo man das Verfahren der Gierfabrikanten, den überzähligen Hefesäften vor und während der Hauptgärung zu ordnen und mit der ersten Hefesäflerung aus den Kästen zu entfernen, noch nicht bekannt war, war es daher auch klar, daß das Hauptscheiben bei der Erzielung der Weine auf dem Lager dauernd geräumt sein müssen, diesieselb solche als möglich sowohl von der abgelagerten Hefe, als von dem in ihnen noch gelösten Hefesäften zu bestreiten. Die Mittel, durch welche diese Abstich in den meisten Fällen vollständig erreicht werden sind, sind folgende:

2. Sobald der Wein ziemlich hell geworden ist, zieht man ihn auf diese Weise zum zweiten, und später noch zum dritten und selbst zum vierten Male ab, indem man ihm beim dritten Abstich zugleich eine kräftige Haufenblasen-Schönung gibt.

3. Sollte der Wein beispielswetrießend während der folgenden Sommermonate wieder in Bewegung geraten, so wird er abermals auf ein stark gebranntes Kaß umgestellt, zugleich nochmals geschönt, und nach 8 bis 10 Tagen endlich zum letzten Mal abgelaßten, um ihn von der Schönung zu entfernen.

Man hat gegen diese öfteren Ablassen eingewendet, daß damit dem Weine jeweils ein noch ausgegorener werde. Es ist indessen das einzige Mittel, ihm nicht später noch seine Körner ausziehen zu müssen, sofern man nicht durch Ordnung und Abtrennung der Hefesäfte vor der Gährung, der Rottungigkeit weiterhin erheblicher Abstichs vergebens. 72 (Call's praktische Mittheilungen. Bd. I, S. 212.)

72 Es wurde gar keine Schwierigkeit machen, jeden Wein schon in den ersten Jahren die Lagererst erreichen zu lassen, wenn wir sich halte Kellner, von 3 bis 4° unter 0 Temperature hätten. Mer die Mühle nicht scheut, den Wein gegen den Winter in ein luftiges, ebenlautiges Local zu bringen, um ihn, ohne ihn freistellen zu lassen, eine Zeit lang einer Temperatur bis 5° unter 0 auszusetzen, wird dadurch eine weit vollkommene Abtrennung der Stüchteserbinbungen, als durch zweijährige Lagern in Kellern von gewöhnlicher Temperatur erreicht.
Namen- und Sachregister

des
hundertfünfunddreißigsten, hundertsechunddreißigsten, hundertsebenunddreißigsten und hundertachtunddreißigsten Bandes des polytechnischen Journals.

Namenregister.

A.

Andraud, über Dampfsteels-Explosionen CXXXVII. 24.

Antrieb, über schmiedeeiserne Wasserformen für Höfe CXXXVI. 49.

Angertstein, über das Bleichen der Knochen und des Eisensteins CXXXVII. 155.

— über das Tränken der Spinnfäden mit Stearinsäure CXXXVII. 155.

— über Mineralöl, Paraffin CXXXVII. 465.

Appold, dessen Zentrifugalsperre CXXXVIII. 252.

Armstroung, über das Heizen der Dampfmaschinen Vosen CXXXVIII. 165.

Arnott, über sein hydrostatisches Gerät für Krank CXXXVIII. 221.

Atkinson, Verbesserungen an Dampfmaschinen CXXXV. 198.

Atwood, System zum Ventilieren der Eisenbahnwagen CXXXV. 315.

B.

Bafits, dessen Krepelmaschine für Wolle CXXXVI. 195.

Barbet, dessen Zübltrefisen, deren Flamme dem Wind widersteht CXXXVIII. 237.

Barham, Apparat zum Ansuchen der Briefmarken CXXXVII. 106.

Barlow, Verfahren Gießformen wasserdicht zu machen CXXXV. 217.

Barraud, über Anfertigung stereoskopischer Lithobilder CXXXV. 440.

Barral, über die Mittel gegen die Taubenhautentzündung CXXXV. 148.

Barruel, Verfahren das Kupfer aus seinen Gegens durch Ammoniak auszubringen CXXXVI. 152.

— Vorschritt zu einem Haustauf CXXXV. 160.

Bastien, Verfahren um leicht Gouen eine Zeichnung daraus zu machen CXXXVIII. 370.

Baudelot, über leicht schmelzbare Zapfenlager CXXXVIII. 9.

Baudrion, über Bereitung umlaufender Eiche mit Kaltwasser CXXXVII. 463.

Bauernfeind, zur Geschichte der Planetenmesser CXXXVII. 81.

Bagin, über die Krankheiten der Räumungspflanzen CXXXVII. 449.
Beattie, über eine Locomotive mit Dampfmaterial-Ersparung CXXXV. 16.
Beanmont, Apparat um durch höhere Heizung Dampf zu erzeugen CXXXVII. 73.
Belford, über Surrogat der Citronensäure und Weinsäure für Farben und Drucker CXXXVII. 145.
— verbesserte Glasschen CXXXVI. 105.
— Verfahren zum Erben der Säfte mit Glycerinflaschen CXXXVIII. 310.
— Verfahren zum Lösen von Kammern sc. CXXXVIII. 345.
Beunnet, Maschinen zum Schlagen von Blattgold sc. CXXXVII. 117.
Bertram, Verfahren zum Schmieden und Schweigen des Eisenbleches beim Schiffsbau sc. CXXXVIII. 269.
Binns, Dekatirmaschine für Wolleintechnische CXXXVI. 199.
Blaske, Maschine um die Treibbienen durch Abdampfen gleichförmig dick zu machen CXXXVIII. 11.
Blet, Verf. den Flachs und Hanf zu rossen CXXXVI. 78.
Bloch, Verf. reines lebergesaures Kali zu bereiten CXXXVIII. 447.
Blumme, über die neueren belgischen Berufsangestellten CXXXVII. 419.
Böttger, über Bereitung der pikirsäure CXXXVI. 466.
— über Entschlammung von Schwefelsäure, flüssiger Säure (im Wein und Hopfen) sc. CXXXVIII. 236.
— über Reduktion des Chlorliths CXXXVI. 158.
Bonvillian, deßen Eisenbahntelegraph CXXXVI. 152. CXXXVII. 74.
— deßen unterrichtliche Telegraphenleitungen CXXXVII. 73.
— deßen elektrischer Wechselstrom CXXXV. 78
Bordier, über Weingest-Fabrikation aus Holz CXXXVI. 387.
Boullé, über einen Trick für Stroh- dächer CXXXVIII. 388.
Bourier, über galvanische Verzinkung der Metalle CXXXVIII. 317.
Boutilet, deßen Fabrikation verkäuflicher galvanoplast. Gegenstände CXXXVIII. 54.
Boury, Verf. zur Bereitung der Pikirsäure CXXXVI. 465.
Bogel, deßen Waschmangel CXXXVI. 96.
Brode, Verf. flechte Naturgegenstände in Metall abzuziehen CXXXVII. 75.
Braithwattre, Construction hängender Dächer für Eisenbahn-Stationen sc. CXXXVII. 100.
Bream well, Verf. zur Ausladungsmetall-Fabrikation CXXXV. 453.
Breamon, über Eintritt der Neutrinity des Chlorvormetall CXXXVII. 307.
Britant, Verf. zur galvanischen Ver- galzung CXXXVI. 58.
Briole, Maschine zum Abspinnen des gefärbten Seidenpapiers CXXXVI. 441.
Brix, über die Telegraphen auf demselben Drahte in entgegengesetzten Richtungen CXXXVII. 172.
— über den Prozentschlag der Jeder- lesungen belgisch der Baumeister Aräometergrade CXXXVI. 214.
— Verf. über die sich entwickelnde Kennt- nis verschiedener Farbfarben CXXXVII. 393.
Brooke, über einen neuen Silbergra CXXXVIII. 437.
Brooke, Maschinen zur Verarbeitung des Kautschuks CXXXV. 31.
— über glänzende Schmiedeeisen CXXXVIII. 77.
Brown, Vorrichtung zur Günstigkeit von Knoten s. aus der zu verfeinernen Wolle CXXXVII. 107.
Brun, Verf. Lichtbildern von Glasplatten auf Wachstelmand zu übertragen CXXXVII. 108.
Brunner, Verf. aus chemischem Wege einen lauhlen Dampf zu erzeugen CXXXVII. 29.
Buchner, Verf. arbeitenbleibende Schwefelsäure zu reinigen CXXXVIII. 208.
Büchner, Erfindung der Prägung ver- schiedener Goabriermesser CXXXVI. 369.
Bunnell, über die Verarbeitung CXXXVIII. 313.
Burns, über die flogenannnte Schwelgs- barkeit des Chlorliths CXXXVII. 168.
— Verf. das Hoc als Surrogat für Hirschbein zu präpariren CXXXVIII. 393.
Burtors, verbesserte Spulmaschine und Seidenwürmische CXXXVII. 110.

C.
Carll, Apparat zur Gewinnung des Saffir- aus den Minelstreifen CXXXVI. 443.
Callian, über seine neue galvaniische Batterie CXXXVI. 401.
Gallen, Mechanismus zum Verdampfen einer röchsenden Bewegung CXXXVIII. 169.
Galverx, über Aufbereitung der beim Rubbeln und Frischen des Mahlsteins abfallenden Schläden CXXXVI. 458.
— über die Destillationsprozesse der Stein- sohlen und deren technische Anwendungen CXXXV. 278.
— über die Wirkung der Galussäure und des Gichtessigs auf die Gifte der Theuerbeizen CXXXV. 156. CXXXVI. 221.
— über die Wirkung der Weinsteinsäure an Baumwollfasern und Leinkleben bei trockener und feuchtiger Hitze CXXXV. 156. CXXXVI. 147.
— über Regierungen CXXXVIII. 282.
— Verl. zum Schliefen benutzten Smigel wieder brauchbar zu machen CXXXV. 463.
Gavö, über gießereibehöltiges Collofum für chinatrackische Zwecke CXXXVI. 68.
Gau, erw. über Photographie auf Kupfer CXXXV. 108.
Gavon, über Photographie auf trockenem Collofum CXXXV. 374.
Garet, Apparat zum Erwärmen des Speisewassers der Dampfsohle CXXXV. 15.
— über eine neue organische Basa CXXXV. 391.

gata, Hämische Kreislauf CXXXVII. 104.
Gavö, eiserner Räder für Eisenbahnwagen CXXXV. 21.
— Sicherheitsapparat für den Grubenbetrieb CXXXV. 24.
Gambles, Maschine zum Ausfressen der Soxfläden sammelartiger Gewebe CXXXV. 34.
Gantner, Fabrikation von Glas-ähernen CXXXV. 415.
— Maschine zum Auffrischen des Glasdes CXXXVI. 30.
Gau, über Michukas als Maschinen- schmier CXXXVIII. 233.
Gau, Apparat zur Ausführung des 2. Getriebes in den Mühlsteinen CXXXVI. 244.
Garcia, über Expansionsoefficienten für Dampfmachinen CXXXV. 321.
Gäschner, wohltierer Kitt für Maschinen- tierungsstöpchen CXXXVI. 309.

ey, neue Vergasungsgeräte zur Fabrikation des Stoffes Eifel und verschiedener Regierungen CXXXVIII. 209.
Gdwaller, über die Blutregulation in den Saumien der Girandole CXXXVII. 229.
— über die Rosen des Leuchttisches aus Torf CXXXVI. 53.
— über Gewichtserhebung der Seile mittels Gewichtsmaschinen CXXXVI. 312.
Gra, deren Druck-Indikator für Dampfmaschinen CXXXV. 246.
Grarne, Festsitzung von Rädern und Rollen auf Wellen CXXXVI. 29.
Glaubet, dessen Tabellen zur Berechnung der Kraft und des Brennmaterial-Verbruches der Dampfmaschinen CXXXV. 3.
— über Anwendung der stereoskopischen Lichtbilder CXXXV. 439.
Golln, Menge, über den Einfuss der Temperatur auf die ersten Resultate CXXXVII. 410.
— über die Gleichförmigkeit und Stabilität des Gießens CXXXVII. 411.
Gollner, Pref., dessen Stahlentfernden Bratöl CXXXVII. 437.
Gollin, Beobachtungen an den Pendel- nähern CXXXV. 314.
Connell, Mac, dessen Schwertfehler CXXXVII. 401.
Goschen, Verfahren zur Gewinnung des Bleies aus dem Bleiglanz CXXXV. 235.
Corpex, van den, über das Nitro- brennen CXXXV. 384.
Crawford, Verf., das Papier mit Collodium zu überziehen CXXXV. 317.
Croutt, Anwendung der Gallussäure zum Erwärmen d. Lichtbildern CXXXVI. 118.
Cutting, Verf., in der Photographie auf Glas CXXXVI. 206.

D.

Davanne, über die Mengen des Chlor- silbers welche im photographischen Papier zurückbleiben CXXXVI. 398. 465.
— über die Ursachen der Veränderung der positiven Lichtbilder auf Papier CXXXVIII. 306.
Davv, Maschine zum Verbreiten des Flachs für das Verbrennen CXXXVI. 32.
Dechert, Theorie und Construction eines auf Polare-Coordinaten gegründeten neuen Planimeters CXXXVI. 108.
Dehner, über Hans’ Versuche die mittelbare Meinung betreffend, und über das mechanische Aequivalent der Bärme CXXXVI. 415.

Dehann, Verf. das Wasserstoffgas von Kohlenoxyd zu reinigen CXXXVIII. 390.

Delsauwe, Verf. zur Benutzung des Schwefels in der Anwendung Elektrolyse CXXXVIII. 207.

Deleprier, über die physiologische Wirkung der Harmstoffe CXXXVI. 43.

DelluviU, Regulator für das elektrische Licht CXXXVII. 404.

Dennier, über die Einmessung der chemischen Einheiten CXXXVIII. 152.

Deborde, bez., Delsmeier CXXXVIII. 407.

Desbordes, bez. CXXXVIII. 407.

Desplaces, über den Einfluß der Temperatur bei Gastein CXXXVII. 410.

— über die Katalyse und Festigkeit der Gasteins CXXXVII. 411.

Desillier, über die Färbung der Alumimum CXXXVII 123.

— Verf. zur Analyse der Bronze und des Messings CXXXVI. 365.

Devrient, galvanostatische Stadionversuche, über die Einwirkung auf die Zink- und Bronzeplatten CXXXVIII. 368.

Dibot, Verf. über den Einfluß der vegetabilischen und mineralischen Gewebe CXXXVII. 376.

Dobell, über verschiedene Anwendungen der Leimfarben CXXXVI. 160.

Dohere, bez., von Mutterteer-Stechers CXXXVI. 337.

Doubosque, über die Anwendung der koagulierenden Färbung CXXXVIII. 423.

Ducharet, bez., zu der Beschreibung der Eifel CXXXVIII. 50.

Duclos, bez., zur Erfassung von Kieselsteinbildung CXXXVIII. 320.

Ducrot, bez., zur Verbesserung des Horns CXXXVII. 265.

Düker, bez., das Stahlspüldeln CXXXVII. 169.

Dufrénon, über den Diamantfreßfall aus Brasilien CXXXVII. 404.

Dugas, bez., über die Behandlung von Reclam der Russen CXXXVI. 343.

Duma, bez., über die Anlagung der Glas Gesteine CXXXVII. 187.

Duméril, bez., über ein Mittel zur Maßvergrößerung der Dampfmaschinen CXXXVII. 29.

Duval, Apparat zum Deeganümmern und Färben seidener Gewebe CXXXVII. 66.

Eble, bez., über die Verbrennung der Brennstoffe in Gas CXXXVII. 38.

Ehrenreich, bez., über die Anwendung der Wärmeleitfähigkeit CXXXVIII 226.

Ehrenreich, bez., über die Anwendung der Wärmeleitfähigkeit CXXXVIII 226.

Engel, bez., über die Darstellung der Metallferien CXXXVI. 155.

Engelbach, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Engelhardt, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Engelhardt, bez., über die Anwendung der Metallferien CXXXVIII. 380.

— bez., über die Anwendung der Metallferien CXXXVIII. 380.

Erickson, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabi, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabi, bez., über die Anwendung der Metallferien CXXXVIII. 380.

— bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.

Fabra, bez., über die Anwendung der Metallferien CXXXVIII. 380.
Fintel, über die Brauchbarkeit von Bleiweiß, Zinnweiß, Schwerttalz und zu Anrührfarben CXXXVII. 236.
Fland, dessen Dampfmaschinen mit großem Geschwindigkeit CXXXVII. 161.
Förster, über die Badे- und Wäsche-enthalten der Neptun CXXXVI. 97.
Fonnetau, Einrichtungsverrichtung für Rekursionsgewebe CXXXV. 316.
Fonnetau, Darstellung einer überschüssigen Regierung CXXXVII. 440.
Forbes, Analoge einiger Kurvenformen Regierungen CXXXVII. 77.
Forôs, über Chlorometrie CXXXVIII. 378.
Fortier, über Photographie auf mit Meerwasser übergossenem Glas CXXXVII. 263.
Foucault, über die Leuchtsstrahl des Porzgates CXXXVII. 53.
Franck, dessen Moderatorelampe CXXXVI. 93.
Franke, dessen parabolische Gentesigalregulator für Dampfmaschinen in vereinfachter Ausführung CXXXVII. 321.
Fraud, über künstliches Ausbraten der Gier CXXXV. 222.
Freyny, Analyse der Knollen des chinesischen Him CXXXVI. 80.
Fretz, dessen verbesserte Badensutter CXXXVIII. 83.
Fresenius, über Chlorometrie mittels destillierender Nifaten CXXXV. 409.
CXXXVII. 205.
Frites, über das Trocken des Braunsieins zum Beizfuß seiner Prüfung CXXXV. 277.
Frömmont, dessen Verschachtungsfenster CXXXVII. 426.
Fuchs, über die Gasanhalte zu Hannover CXXXVI. 77.
Ginti, über das gleichzeitige Telegrafen-
ähren in geteigneteitsten Richtungen
auf demselben Verbindungsdrast! CXXXVII.
166, CXXXVII. 184.

Girard, dessen Turbine ohne Leitern
CXXXVII. 10.
— über die Ursachen der Veränderung
der positiven Lichtbilder auf Papier
CXXXVIII. 306.
— Verfahren zum Beginnen des Urber-
reifens CXXXVII. 124.
Giob, dessen Verfahren Lichtbilder auf Nach-
seilband darzulegen CXXXVI. 76.
Glas, für die Wirkung des Eisens auf Metalle
CXXXVII. 78.
Glassford, Verfahren zur Reinigung
 des Parabisters CXXXVI. 147.
Glassen, Anwendung der Dampfsättel-
Dosen CXXXVII. 245.
Goddall, dessen Erfindungs-Apparat
CXXXVII. 409.
Goddard, Verfahren Kautschukkämm
zur Fabrikation CXXXVII. 448
Göve, über elektrische Entladung
des Antimons CXXXVI. 317.
Grand, dessen elfte Berlin und Dach-
fähre CXXXVI. 191.
Greens, Verfahren dem Scheibenglas
die Eigenschaft des gefährdet zu
nebennehmen CXXXVII 75
Griffith, verbesserte Schneidwerke zur
Glasfabrikation CXXXVIII. 272.
Griessova, über die Unterscheidung der
China regina von den übrigen Chinesi-
rinden CXXXVII. 157.
Grüne, Verfahren zum Praparieren
halbsüßerer Masse
Grüne, über die Blaue camera obscura
CXXXVII. 372, CXXXVII. 76.
Guérin, ebenfalls Bremse für Eisen-
bohnenwagen CXXXVII. 163.
Guérin-Meneville, über das Quart
der Pyrenäen wilten und
CXXXVIII. 157.
— über die Bastel des Bombyx Cynthi
CXXXVII. 278.
— über den Sehnenwurz der Oie
CXXXVII. 140.
— über Seibenzähne mit aus China
besessen Glener CXXXVII. 148.
— über den menschlichen Lufthalt der
Schablonen CXXXVII. 386.
— über eine eine der Schleif-
fläche CXXXVII. 358.
Guillett, über Fabrikation feiner
hieh
CXXXVII. 292.
Guynne, über Fabrikation gewebter
Lachsbier CXXXVII. 432.

Gwynne, verbesserte Centrifugalpumpe
CXXXVIII. 256.

Habich, über Pariserbau-Fabrikation
CXXXVIII. 295.
Habow, über die beste Colloidschmelze
zum photographischen, Beutraft CXXXVII.
397.
Haffkell, Verfahren Zimmermann-Baten
zurüstlehen CXXXVII. 216.
Hallum, Verfahren an der Spinnmas-
schinen für Baumwolle CXXXVIII. 86.
Hansen, über die Unbrauchbarkeit der
Reisiger zur Fortpflanzung der
Bewegungen CXXXVII. 1.
Harburn, über die industrielle Verzwe
der Bombyx Cynthia CXXXVIII. 150.
Hartnby, dessen Schmiedemach
CXXXVII. 171.
Hauer v., über einen Apparat zur Er-
gnung gleichmäßigem Temperaturen
mittels einer Gaslampe CXXXVIII.
196.
Hautefeuille, Verfahren zur quanti-
tativen Ermittlung des Kupfers und
Silber CXXXVII. 151.
Haydon, Verfahren, das umgekehrt ge-
maacht photographische Papier zu
verfüren CXXXVII. 318.
Heeren, Verfahren die Säfte aus ihren
Holländer zu untersuchen CXXXVIII.
310.
— Verfahren über die Wirfung der
verschiedenigen Gasebreter CXXXVII. 36.
Heinemann, über die Fälschung von
Schweineblut und deren Verfälschung
CXXXVII. 252.
Heiting, Verf. zur Steigerung des Schutz-
effekts jedes
CXXXVII. 349.
Helling, dessen Sicherheitsventil für
Dampfsäfte CXXXVIII. 161.
Hennebut, Verfahren den Kopf zur
Verbringung der reinigungs CXXXVIII.
155.
Hennin, Verfahren zum Feuern des
mit Zinnium legerten Goldes CXXXVII.
445.
Henry, über eine Verbindung von Gold
und Quecksilber CXXXVII. 455.
Hering, Anleitung zur Herstellung des
Naturalphotograf CXXXVIII. 363.
Hersenberger, über eine Verbreitung
zum Deutschen und Grönland CXXXVIII. 389.
Hetherington, Verfahren zur Anfertigung von Modellen für das Einformen CXXXVI. 343.

Sigrist, Apparat zum Abdampfen der Zuckerlösungen CXXXV. 69.

Stirnberg, Verhütung von Rost durch Salpeter CXXXVI. 468.

Soffmann, über Reinigung des Königs CXXXVIII. 157.

Soffreder, Anwendung des sündlichen Ultramarin zu Malzblau CXXXV. 404.

Soffmann, über Schwungräder bei Walspieren CXXXV. 341.

Stern, über Vinet’s blue Camera obscura CXXXVI. 76.

Swinford, Darstellung des schwefligeisenen Kaless als Antikolor CXXXVI. 59.

Soffauer, Beschreibung eines Verfahrens um Zinn, Blei, Eisen zu verflüssigen, vergolden, verhärten oder zu bronzierten CXXXVII. 118.

Soubin, Mechanismus um die Beförderung der Magnete auf seiner Armature zu regulieren CXXXVIII. 120.

Sowell, Maschinen zur Fabrication der Sägen CXXXV. 173.

Quart, dessen Speicher mit ununterbrochener Bewegung zum Auswaschen des Getreides CXXXV. 79.

Subson, über Fabrication von Gläsern zum Weifen der Flüsfigkeiten CXXXVIII. 89.

Bugonneau, Fabrication höhler METALLringe CXXXV. 191.

Gultet, Regulator für Gaslichter CXXXV. 437.

Hunt, über gelbe Gläser für photographische Laboratorien CXXXVIII. 237.

J.

Janssen, Maschinen zur Fabrication der Sägen CXXXV. 173.

Jandt, Apparat zum Destilliren und Farben festerer Gewebe CXXXVII. 66.

Jonneyer, über den Einfluß des Schwefels auf die Beschaffenheit des Gifens und das Vermögen des Phosphors, diesen Einfluß aufzuhüben CXXXVII. 293.

Jean, Verbesserung zum Befeuchten der Hauptsender der Dampföfen CXXXVII. 81.

Jennings, Verfahren zur Flaschenver- siegelung CXXXV. 72.

Jalles, geschlossener Apparat zur Ver- sorgung mit der Kalkgas- Flammen CXXXVII. 297.

Johans, dessen Pumpen und hydraulische Schlitten CXXXVII. 163.

Johann, über geformte Kugeln für Lampen CXXXVII. 235.

Jordan, Verh. über Erstellung der Formen zum Metallguss CXXXV. 35.

Johann, über Bestimmung der richtigen Röhrendurchmesser und des Minimales der Drains CXXXVIII. 237.

Johann, über Anwendung des vulkanisierten Kautschuks zur Fabrication von Küchen CXXXVII. 69.

Jentzen, Trockenmaschine für Wäsche CXXXVI. 42.

Jepson, des Barther Wettermetall CXXXVI. 404.

Jellinburg, Reimigungsmaschine für Wäsche CXXXVI. 39.

Jedermann, mit diesen Enden für Dampföfen CXXXVIII. 81.

Jorden, über Regulanten CXXXVII. 282.

Jordam, Verbesserungen an Dampfmaschinen und Dampfspeisungsinstrumenten CXXXV. 56.

Jones, Regulator für Dampfmaschinen CXXXV. 57.

Jordam, dessen Wechselbühls für Welle, mit Differential-Regulator CXXXV. 94.

Jones, Beschreibung einer Maschine zum Einpresse der Metalldecke in Kupfer- und Bronzeblechen CXXXVIII. 14.

Joule, Maschine zum Strängen der Ziegele aus tropfen dem Eben CXXXV. 259.

Joule, Beschreibung einer neuen Schülbere CXXXVIII. 90.
Karmarsch, Beschreibung zweier Blechlehrb CXXXV. 178.
— über Anführung höhler metallener Ringe CXXXV. 342.
— über die Einrichtung des Künstlers und Setzungs des Namenroters CXXXVII. 153.
— über die Leichtigkeit der Papierfärben CXXXVIII. 148.
— über eine neue Art der Weberblätter zu binden CXXXVII. 345.
— über eine Schere zum Glasfärben CXXXVII. 322.
— über schwere Holzblätter CXXXV. 399.
Krate, Berf. zur Destillation des Terpentins CXXXVIII. 140.
Kerl, über die Oberhärten Kupferprobe CXXXVI. 73, 364.
Kerl's Apparat, Apparat zum Verwenden des Speisewassers für Locomotiven CXXXV. 256
Kinds, Verfahren beim Abhören weiter Schäfte CXXXVI. 326.
Kindt, über ein Mittel zur Entfernung erloschener Vorsätzen aus Brunnen CXXXVII. 234.
— Vorschrift zu schneller Befestigung der Eisenbahn CXXXVII. 154.
— Vorschrift zu einer Kuppe zum Färben der Wolle CXXXVII. 235.
— Vorschrift zu roher Tinte CXXXVI. 234
Kirstwegher, dessen Saug- und Düsensumpfe CXXXVII. 154.
Kirtum, verb. Amboß CXXXVII. 19.
Kittum, dessen Freitens Hammer CXXXVII. 152.
Klemm, desse Fettions-Bereitung für Maschinenruben CXXXVI. 69.
Klingworth, dessen neue Schaltbisher CXXXVIII. 90.
Knab, Verarbeiten der Salze der Sehre CXXXVII. 216.
Knaup, Analyse einer weißen Glasur für Thermos CXXXV. 236.
— chemische Untersuchung einiger englischer hydraulischer Kälte CXXXV. 361.
Köbling, Maschine zum Bäuchen und Juridiren der Wildbänder CXXXVIII. 172.
— Berf. zur Feuchtgasbereitung aus Forst- und Steinölsleister CXXXVI. 50.
Köffer, Apparat zum Entweisen und Bäuchen der Holle CXXXVII. 437.
— Maschine zum Säubern und Anpreisen des Grids CXXXVII. 346.
Kopp, über ein Surrogat der Citronensaft- und Weinreisen für Körbe reten CXXXVII. 144.
Kraft, Anwendung des Gasals zur Grünmung von Berlinerblau CXXXV. 393.
Kreisberg, über die Metall- und Spiritusfabrik der Horn. Nobert zu Erfurt CXXXVIII. 75.
Kurppnitz, Berf. zur Bereitung des Schwefelbariums CXXXV. 485.
Kühn, Experimental-Untersuchungen über einige Gegenstände der angewandten Elektricitätslehre CXXXVII. 1-81, 161. 468.

Lacontra, Fabrication höhler Metalls CXXXV. 191.
Lafon, über die Kämme, über Färben und Färben der Lichtbilde auf Papier CXXXVII. 271.
Larond, über die Bungen und andere Legierungen CXXXV. 209.
Lalley, über das Vorkommen des Merschtns im Weim, Bagig. CXXXVII. 467.
Lanayr, Berf. zum Verbinden der Metalle CXXXVIII. 318.
Landever, über Anwendung der gelb ge- wordenen Zinkalumins CXXXV. 236.
— Untersuchung der inbegriffen Bleisäuren und der Wärme der Vinzent-Gewichte CXXXVII. 234.
— Lang, Verfahren zur Fabrication des Knopfen-Schrocks CXXXV. 156.
Lassaffe, über das Mergelstein der Eichenmangan CXXXV. 356.
Laurens, Lesser Untersuchungsapparate und Findlinge für Gäröfen CXXXVIII. 205.
— über den Dauer von Gäröfen in dünnem Holle CXXXVII. 205.
Le, dessen Nervenspeicher CXXXVII. 417.
Leersing, Berf. die Stoffliche Driesele auf ihre Reinheit und ihren Werth zu prüfen CXXXV. 142.
Levrau, Berf. zur Darstellung der Lichtbilder auf Wasserpapier CXXXVI. 109.
Levée, Berf. direkter positiver Lichtbilder auf Glas barzellen CXXXVI. 266.
Leamhard, dessen Kirt zur Herstellung des von Schröder CXXXVII. 430.
Leonhard, über Erhaltung von geschlossenen u. polierten Warmarbeiten CXXXVIII. 314.
Leplay, Behandlung der Örtbeutaten mit Schwefelstinkus bis auf die Auffreibung CXXXVIII. 424.
- Verf. zur Weingeistgewinnung aus Rumelsrüben CXXVII. 72.
Lespinne, Verf. zur Gewinnung des Korns aus seinen Grzen CXXXVII. 275.
Le Stuz, dessen Wasserungm CXXXVIII. 171.
Lethuiller, magnetischen Wasserstandszeiger für Dammschleifen CXXXVI. 90.
Levits, über die Legierungen des Silbers mit dem Kupfer CXXXVI. 452.
- über die Legierungen von Gold und Silber, Gold und Kupfer, Silber und Blei CXXXVII. 453.
- über eine Abänderung des Verfahrens des Silber aus nassem Weke zu probiren CXXXVII. 441.
Liebig v., dessen Grundzüge der Agricult-Chemie CXXXVII. 375.
Lindauer, über Hohensteinlade und Beachtung der Hohen nach höchstmeinten Grundbüsten CXXXV. 125.
- Anleitung zur Berechnung der Hohen CXXXVII. 277.
Lindner, über Verbesserung der Messthermometer in der Vollenfärberk CXXXV. 312.
- über das Entsaaren der Holze mittels Gasfall CXXXVII. 221.
Linnert, über den Blez und Jinngehalt des Hammerlade von CXXXVII. 318.
Liponoph, über Bereitung der Gelatinenfolien u. Gelatinesilber CXXXVII. 156.
Löwe, über.gebrühversuche mit Ace auf Wolle CXXXVII. 238.
- über den Delemer von Desorbes CXXXVII. 407.
- J. Apparat zum Waschen und Abfärben altertherischer Dele wo CXXXV. 435.
- über die Werthbestimmung des Garios CXXXVII. 445.
Lötsel, über eine Kochrecht des Lies CXXXV. 240.
Lucea, Beschreibung der Herb-Döhndarte CXXXVII. 388.
- Verfahren zur Gemeind Fabrication CXXXV. 145.
Ludwig, über Gewinnung von Braunnt-
mein aus seinen Gummen CXXXVIII. 79.
Ludersdorf, über eine neue Made zu Kurzweilisten CXXXV. 463.
Lute, Verf. zur Darstellung ofizierter Lichtbilder auf Papier CXXXV. 269.
M.
Mabry, Verfahren zum Giesereien der Mett CXXXVIII. 142.
Macmill, bereichsweise Dosen zur Icstenfabriken CXXXVIII. 418.
Macclare, Auftergang der Giesformen für Metalle CXXXVII. 345.
Macherson, Verf. Lithographien mittels der Photographie zu erhalten CXXXVIII. 393.
Mab, über das Clavierkunien CXXXV. 194.
Mathé, Verf. die Rezepte von gewöhnlichen in anderen D orders zu erkennen CXXXVII. 306.
Maiden, dessen Pumpe ohne Kolben CXXXVII. 186.
Mallet, dessen Spüler ohne Rollen CXXXVII. 186.
Mallier, dessen Schraubenflüße mit Drehädeln CXXXVII. 164.
Malters, über eine neue Polytechn CXXXVII. 320.
March, Verfahren zur Gießfabriken CXXXVIII. 347.
Mares, über die Wirkungsweise der Schwefelsäure gegen die Braunkohle CXXXVII. 218.
Marse, dessen Apparat für Erzielung gleichmässiger Temperaturen mittels einer Gaslampe CXXXVII. 196.
Mare, über die zweitmässigste Weite der Gassäure CXXXVII. 49.
Marshall, Verf. über die Zementverhältnisse mit Steinfolien CXXXVII. 348.
Marzlin, dessen raumbeschränkten Apparat (Trowenrost) CXXXVII. 447.
- über Absorption der sauren Säure gemischter Fabriken CXXXVII. 129.
Marxius A, Analyse der Verhältnisse CXXXV. 465.
Mathias, dessen Tropfborn - Apparat CXXXVIII. 22.
Mathiola, Verf. galvanoplastische Co-
-igail der Kürperiolaren kargen Platten darzustellen CXXXVII. 350.
Mathieu-Plere, über den Antimon - Sommer CXXXVII. 195.
Mauers, über die Umgestaltung der Körner durch die Würzung der rei-
- nen Wasserters CXXXV. 59.
Raumens, Verfahren zur Zuckerfabrikation CXXXVIII. 320.

Rauh, Speicher zum Gentvorsten des Getreides CXXXVI. 399.

Read, über Photographie aus mit Gewicht überzogenen Glase CXXXV. 443.

— Verf. zur Photographie auf trockenem Golfsäure CXXXVII. 208

Rander, Apparat um durch bloße Wärme Dampf zu erzeugen CXXXVII. 73.

Rasch, Apparat zur Destillation des Meerwassers CXXXVII. 354.

Reißer, über Dampfwärme u. Dampfverwendung in Fabriken CXXXVIII. 65.

Reifens, Verf. um vollkommene vegetabilische Fasern zur Feinflachs-Fabrikation verwenden zu können CXXXVIII. 426.

— Verf. zur Fabrication von Fettfäsern CXXXVIII. 126.

Rüping, über die Bratapparate CXXXVII. 219.

Mintö, Verbesserungen an Geschossen CXXXVII. 101.

Minor, Gestaltung der photographischen Bilder CXXXVII. 396.

Miron, verbesserte Maschinerie der Formen zum Beischlau CXXXV. 267.

Mollenboff, über Überlagerung des richtigen Nebenbündchens und des Minimalgesichts Dräms CXXXVIII. 257.

Moehr, Carl, über maschinelle Verbesserungen an Maschinen CXXXV. 44.

CXXXVII. 364.

Moehr, füh. über Dränsations- und Reduktionsbedenken CXXXV. 289.

— über die Einrichtung der Lüft auf asphaltifte Flaschen CXXXVII. 205.

Monzel, über den Einfluß des Lichtes durch elektrischen Lichtstrahl CXXXV. 370.

Moore, Versuch über eine neue, neue Maschinen zum Herstellen der elektrischen Telegraphen CXXXVII. 265.

Moor, über Feuerwehr mit automatische Anlagen der elektrischen Telegraphen CXXXVII. 222.

Moor, über Verbesserung der elektrischen Telegraphen CXXXVIII. 186.

Moor, über Verbesserungen der elektrischen Telegraphen CXXXVII. 196.

Moor, über Verbesserungen der elektrischen Telegraphen CXXXVII. 196.

Moor, über Verbesserungen der elektrischen Telegraphen CXXXVII. 196.

— über Anwendung des Steinkohlenfeuers zur Verbesserung der elektrischen Telegraphen CXXXVII. 196.

— über Anwendung des Steinkohlenfeuers zur Verbesserung der elektrischen Telegraphen CXXXVII. 196.

— über Anwendung des Steinkohlenfeuers zur Verbesserung der elektrischen Telegraphen CXXXVII. 196.

— über Anwendung des Steinkohlenfeuers zur Verbesserung der elektrischen Telegraphen CXXXVII. 196.

— über Anwendung des Steinkohlenfeuers zur Verbesserung der elektrischen Telegraphen CXXXVII. 196.
Newton, neues Konstruktionsverfahren für Eisenbahnen CXXXVIII. 6.
— Verfahren zum Entschweifen der verschmorten Rätsel CXXXVII. 209.
— Eine neue Netzmaschine für den photographischen Stahlstift CXXXVI. 140.
— Newton, neues Signal CXXXV. 76.
— dessen Kenntnisse und Druckung CXXXVIII. 223.
— Verfahren zur Entfernung der aus dem Baumwolle gemischten Gewebe wiederholungs CXXXVII. 320.
— Jorja, über das Verfahren der Gestaltung der Keile mit Überzügen CXXXVI. 189.
— Berlin, über das gleichzeitige Telegrafen in englischer Gesellschaft von demselben Leitungsaufbau in CXXXVIII. 408.

D.
— Obergöster, über Schöpfen Gutsverfahren zur Gewinnung des Milchsaftes von Preussen CXXXV. 64. 237.
— Darn, Verfahren zur Herstellung von Stempeln CXXXV. 40.
— Olpe, über Brauerei CXXXVI. 319.
— über Reinigung des Rapskohls CXXXVI. 398.

B.
— Paris, neues glasg-metalische Plattier CXXXVIII. 416.
— Poter, über die Trennung des Arsen von Metallen im Gefüge CXXXVI. 395.
— Verfahren zur Herstellung von Edelsteinen zu Güte und Druckung CXXXVII. 57.
— Petersen, Maschinen für Zeuge CXXXVI. 38.
— Wey, über die Ausscheidung des sattelfarbenen Metalls CXXXV. 448.
— über die Gewinnung des Kupfersilberlegierstoffs nach verschiedenen Methoden und Über den geißeligen Gährung CXXXVIII. 58.
— Payne, neues Signal für Eisenbahnen CXXXV. 327.
— über die Fabrikation zusammengefasster Metallsäfte CXXXVII. 415.
— Belgium, über die Entwicklung des Staates CXXXVII. 182. CXXXVIII. 319.

Belouze, über die Verbreitung der Herstellung der sie enthaltenden Samen CXXXVI. 62.
— über die Verbreitung der Herbst durch die Seele CXXXVIII. 422.
— Berlin, Sammlung von handgeschnitzten Steinen CXXXVII. 256.
— Berlins, Verfahren zur Herstellung von Leuchttungsanlagen aus Fluss- und Steinöl CXXXVI. 50.
— Berty, über die Schwammschraube zu ladabes Gewehr CXXXV. 433.
— Peter, über die Verbreitung der Manilla-Indigo zu reinigen CXXXVII. 319.
— Pettensoffer, über die Herstellung der Mehltau Fabrikation CXXXVI. 387.
— Fleischer, über die Herstellung der Nährungsmittel CXXXVII. 302.
— Poisso, über die Unterbrechung der Telegrafen CXXXVII. 15.
— über das barometrische Höhennutzen CXXXVII. 316.
— Pinto, über die Erzielung des Drums mit Nauquers Platten CXXXVII. 108.
— Plattner, über die Physik der Silberverluste beim Roßen der Silbereisen CXXXVII. 119.
— Poiker, über die Herstellung der lithographischen Farben und Verzierung CXXXVII. 461.
— Poicht, über das Verhalten des Paltus beim Erhitzten und Verfahren das sage nach zu bieken CXXXV. 140.
— über den Ölgene im Gleichung CXXXV. 396.
— über die Nachweisung von Estrich im Indigo CXXXV. 397.
— über die Unterscheidung des Safrans vom Silber CXXXVII. 227.
— Unterscheidung von Geißel und unacht schwermystisches Licht CXXXV. 398.
— Boisat, über die Herstellung der Raffolins CXXXVII. 216.
— Pontier, über die Herstellung der Fette CXXXVII. 147.
— Poole, über die Herstellung von Ballen für den Kupferzinn CXXXVI. 35.
— Pouget, über die elektro-chemische Fabrikation von Turbinen CXXXVIII. 43.
— Bouilliet, über die Verarbeitung der Kölner Eisenbahnunternehmen CXXXVI. 436.
— Prieur, über die Herstellung der Kölner Eisenbahnunternehmen CXXXVI. 436.
Quensell, praktische Anwendungen der "Anode" des Glaesers durch Erhitzung CXXXVI. 461.

N.

Mabourin, über Bereitung von Weingeist aus Dusen CXXXVII. 438.

Mabléscher, über Darstellung einer Chlorinsenlösungen für mikroskopische Untersuchungen CXXXVIII. 152.

Ramon, de Luna, über Anwendung des Vitterglaesels statt Schwefelsäure zur Darstellung von Sulfidkies CXXXVIII. 288.

Ramsbottom, verbesserte Roben für Dampfmaschinen und locomotivum CXXXV. 166.

Martin's Luft - Expansionmaschine CXXXVI. 241.

Maw, über durch Luft gespannte Dagen CXXXV. 422.

Meeres, Verbr. im Metallgas CXXXVI. 348.

Meichardt, über amerikanisches Backpulver CXXXIX. 399.

Reindel, über die Verfeinerung der Natrium - Natriumgase - Fabrikation CXXXV. 452.

Reindel, dessen Pyrophosphate CXXXVII. 396.

Reischauer, über eine neue Form der Quarzminen und Quarzbrüche für Förderschneiden CXXXVIII. 44.

Renfrew, verbess. Spulen CXXXVII. 108.

Reynolds, Maschine zum Formen der steifersten Tegel CXXXVIII. 88.

Riegels, über Bereitung des Bromammouns für die Photographie CXXXVII. 317.

Riegels, üb. Wiederverwendung eines mit der Zeit verfallten Chloroforms CXXXVI. 405.

Roi, P., Wärmpapier für Dächer CXXXV. 334.

Ripley, Mechanismus zum Verbrennen von Vorderreinigung CXXXVIII. 169.

Ritter, neues Abdampfverfahren CXXXVI. 391.

Robert Fr., dessen Vacuum Apparat zur Eisenkupferfabrication CXXXVII. 407.

— über die Relative Vorzüge der verschiedenen Methoden zur Gewinnung des Rostzübers CXXXVII. 76.

Robertz, Verbr. an Stäben, Rohren und Rostmaschinen CXXXV. 245.

Robertson, dessen hydrostatisch Organ CXXXVII. 81.

— über die Fabrikation der Eisenbahnwagen in England CXXXV. 335.

Rose H., über Darstellung des Alumi-
niums mittels Kryolith CXXXVII. 363.

Rose J., dessen Construction der Feuer-
faßen für Locomotiven CXXXVIII. 323.

Rosteller, über galvanische Verbr. u. Replikatir. der Metalle CXXXVIII. 317. 318.

Routledge, Anwendung der Eisenbahn-
Kraftfluss CXXXVIII. 102.

Rowland, Apparat zum Reinigen und Steinkohlengas mittelst Thon CXXXVIII. 112.

Rowland, Verbr. die Sicherheit der Dampföfen zu reinigen CXXXVII. 83.

Roy, über die Anwendung der Stof-
flüss durch die Kunstgewerbe, über die Befreiung des Motors und über die Kostbarkeit CXXXV. 391.

Maclaren, Ergebnisse der Prüfung verschiedener Gasbrucher CXXXVI. 309.

Rühlmann, u. die Täuschen der Raumen-
ner Industrie - Ausstellung CXXXV. 424.

— über Nagelsbb. Würfelsteinpfefe u. Pfeife CXXXVII. 245.
Salaville, Vorrichtung zum Konservern des Getreides CXXXVI. 400.
Salomon, Verfahren zum Lichtbilde 5 bar Messingplatten zu copieren und diese für den Druck zu zähen CXXXVI. 208.
Sartorius, über Verein des Kalorimeters nach Mohler's Methode CXXXVII. 420.
Schmölzer, über B volumcorrection zu selteneren Ausgaben CXXXVI. 72.
Schmeck, Beschreibung eines photographischen Vergrößerungsapparates und der Darstellung transparent-positiver Glasbildber CXXXV. 307.
Schumacher, über die Verfeinerung des Glaeses CXXXVII. 204.
Schubert, über die Verbesserung des Glaeses CXXXVIII. 319.
Schubert, über Metall- und Schreibmethoden CXXXVI. 135.
Schulze, über die Anfertigung von Drahtgeweb CXXXVIII. 435.
Schweizer, über den Verein von Häufschwellen und anderen Fägern gegen flüssig CXXXVII. 327.
Seefeld, rauchverhindernder Dampfste spread CXXXVII. 45;
verb. Wärmeverbindungen CXXXVII. 343.
Sertener, über das Anlassen des Gussstahles CXXXVII. 465.
Sculfort, dessen Schraubenluppe mit Drehköpfen CXXXVII. 164.
Seaward, Veröff. an Schiffdampfmaschinen CXXXV. 83.
Seguin, über eine neue Anwendung des Wasser dampes bei Maschinen CXXXV. 326.
Semper, über die chemische Reinbrennmet. Thierhölzern Gestein CXXXVII. 460.
Scheibler, über die Verwendung des Cobaltum auf Glasplatten empfindlich zu erhalten CXXXV. 56.
Scherf, Gegenstand auch zur Fütterung von Maschinen CXXXVI. 95.
Sheriff, Maschine zur Herstellung der Formen für gusseif. Holz CXXXVII. 19.
Sibille, über das Einschälen und Konservern der Getreidearten CXXXVII. 231.
Simeon, über die neuen Vakuum-Apparate zur Zuckerfabrik CXXXVII. 405.
— über die Verwendung der Pufferröhren zur Weinbereitung CXXXV. 79.
Siemens, B., dessen Protomachinen mit regenerierten Dampf CXXXVII. 241.
— elektrische Telegraphen für Eisenbahnen CXXXVII. 176.
Sillermann, über die Entwickelung des Halsteffes der Papierfabriken durch Gegenstandsalubratur CXXXVII. 62.
CXXXVII. 118.
Simoneau, verb. Kautoseen CXXXVII. 271.
Sire, Veröff. Lichtbilde von Glasplatten auf Wachseleinwand zu überbringen CXXXVII. 108.
Slater, Maschinen zur Herstellung von Hölz CXXXVII. 13.
— über den Ersatz der Tüpfelgewebe für eine Maschination für Eisen- und Kupfersalz CXXXVII. 319.
— Verfahren des Werkers des Blutlaugegewebs zu bestimmen CXXXVII. 421.
Smee, über Änderung binocularer photographischer Bilder CXXXV. 466.
Smee, über die Erfindung von neuen Veröff. CXXXVII. 425.
Smith, Veröff. zur Beseitigung des Glaeses CXXXVI. 320.
Sorel, Compendien welche den Kautschuk und die Glau- percha erreichen CXXXVII. 211.
Soubeiran, über Blutegelzucht CXXXVII. 225.
Spahn, dessen Dampfapparat zum Heizen der Betten der CXXXVII. 433.
Splitter, über die Färbung des Glaeses durch die salzalichen Schwefel- metalle CXXXVII. 292.
Stahl, über die Handhabe des Olins- hölzern CXXXVII. 154.
Steffen, Veröffentlichung des Krupps zur Verwendung für das Härben CXXXV. 398.
Steinm., über Bleierzeugung CXXXVII. 376.
— über Verfahren des Härben der Alfebrocks CXXXVII. 429.
— über das Täfelwolken ohne Krupps CXXXVII. 225.
Stein MW. über die Zuzammenlegung einiger Colonial - Züchter - Melassen CXXXVII. 391.
— über ein Wafschuster zum Urfesten der Wolle CXXXV. 239.
— über eine grüne Farbe zur Blumenfahrbung CXXXV. 239.
— über holländisches und französisches Weihrauch CXXXVII. 128.
— über Erkennung der Sibberste auf seine Reinheit CXXXVIII. 390.
— Verfahren zur Trennung von Bod und Bov in Gemeinen CXXXVIII. 390.
Steinbeil, Verfahren zur Steigerung der Wärmestoffe jedes Brennstoffes CXXXVII. 349.
Steinhoff, über Bereitung des Sibberste CXXXVI. 466.
— über eine Kohle CXXXVIII. 377.
Stefan, verbesserte Dampfmaschinen- Ventiile CXXXVII. 23.
Steyr, über einige Eisengräber in Birmingham CXXXVII. 460.
Stevels, über die Tragkraft der Rothpflanzen CXXXVII. 77.
Sstrobel, Apparat zum Abdampfen der Bürstkörner CXXXV. 200.
Stengel, über volumetrische Bestimmung des Esens, Antimonox undArsenits CXXXVI. 353.
Stroh, Bereitung zum Abnehmen der Nähr- und Abser der Locomotiven CXXXVIII. 352.
Stumpf, Besprechung einer Pumpe mit Raumfeucht- Ventiilen CXXXVIII. 240.
Systex, Schmalspinner mit direkter Dampfzweckung CXXXV. 88.

U.

Ungerer, Abdampfsamme für Salz- lösungen CXXXVII. 116.
— diesen unterveränderlichen Dampfsamme für Brei- und Stoffen CXXXVIII. 239.

V.

Barlen, besierten telegraphischen Apparte CXXXVI. 261. 262.
Beitrag, über den Doppelater - Manometer CXXXVII. 341.
Bertheil, Apparat zur Konversion vegetabiler und tierischer Spesen CXXXVII. 300.
Bobig i. a., kontinuierlichen Gasgebäude neuer Construction CXXXVI. 46.
— über Dasstellung feiner Biberlase zum Polieren CXXXVI. 318. 464.
— über die gasförmige Produkte der Dampfpuffer-Detona CXXXVII. 156.
— über eine Legierung zu Compositionen- teilen CXXXVII. 456.
— über eine neue Form der Platinplatt- und Platinbretter für Edelmetall- verarbeitung CXXXVII. 44.
— über einen Hepator neuer Construction CXXXV. 113.
— über Kupferhelper CXXXVI. 237.
Bohl, über den Arsenitschacht geringer Papierfaser CXXXVIII. 74.
Bouillon, zügiger Uebergang für die Siegelbelegung CXXXV. 394.

Bade, dessen Schwimmbahnhof-Dampfschiff CXXXVIII. 249.
Bage, über Bestimmung des richtigen Kohlendampfverhältnisses und des Minimalgefülles der Dampfmaschine CXXXVIII. 257.
Bagen M., über das Bleichen der Rohseide CXXXV. 316.
— über ein Ersatzmittel der Pyrogallsäure in der Photographie CXXXV. 375.
— über eine Verallgemeinerung des Peridolams CXXXV. 377.
— über sündliches Bittermandelöl aus Steinöl CXXXV. 311.
— über Metallspirale CXXXV. 395.
Woltkoff, verbesserte Dosen zum Widerbeleben d. Modenspießs CXXXV. 389.
Waltner, über die eiserne Dämmer für Eisenbahn v. Gæve-Mahl CXXXV. 237.
— über ein Drosselstutzen für sie von Hand bewegte Ventilatoren CXXXV. 315.
Walt, über die Verarbeitung des Weingeschützes vom Krapp CXXXVIII. 79.
Wandel, Verfahren zur Herstellung v. Gemüsebrühe CXXXVIII. 432.
Waterbury, System zu Ventilieren der Eisenbahnmaschinen CXXXV. 315.
Walsen, Verfahren zum Herstellen und Abstreichen von Messing und Kupfer CXXXV. 342.
Watt, über galvanische Vergoldung, Verfeinerung u. CXXXV. 372.
Webster, Verfahren zur Darstellung feiner Kristalle CXXXV. 457.
Weinmann, über Bereitung von Leber- und Papier-Pergament CXXXVII. 159.
Weife, über Anfertigung der Windkraft- Maschinen CXXXV. 237.
Wellner, über Freilichten für nicht parallele Dämmen CXXXVIII. 404.
Weilse, Verbesserungen im Metallhüttenbrennen CXXXVII. 348.
Weilse, Maßnahmen für Justieraufbrenner CXXXVII. 437.
Bernet, Verfe. goldene, silberne u. halbseide zu vollenden CXXXV. 462.
Whitehead, Verbreitung d. mittlerer und letzten Telegraphen Laine CXXXVIII. 94.
Whitaker, selbstwärts der Reimiger für Muschel-Maschinen CXXXV. 334.
White, Verbesserung der Nerven-Gesetze d. Romanze CXXXV. 300.
Whitcroft, Maschinen zum Kämmen und Spinnen der Wolle CXXXV. 91.
Whitworth, Maschinen zum Spinnen und Drehen der Baumwolle CXXXVIII. 20.
Whicke, über Darstellung der Melkbandeisen u. Goldbleche CXXXVII. 56.
— über den Kurbalschutz aus dem Weizen CXXXV. 416.
Wiltins. Verarbeit. zu Elektromagneten CXXXV. 92.
Wilflau, über die Münzstätten d. Vereinigten Staaten CXXXV. 115.
Wittorf, über die Prüfung d. Schwefelsäure CXXXVIII. 236.
Wöhrer, über Darstellung d. Eises in vulkansformigem Sand CXXXV. 211. CXXXVII. 335.
— über die Alumina CXXXVII. 75.
Wolff, über die Anregung d. sündischen Schöpfers CXXXV. 268.
Woodcock, über Mittel zur Rückschleusung d. Dampfschiff-Öfen CXXXV. 161. CXXXVII. 27.
Woodcock, über die Eichung d. Eises in vulkansformigem Sand CXXXVII. 335.
— über die Alumina CXXXVII. 75.
Watts, Mittel gegen das Anrühren d. tinernen Kühleröhrchen CXXXV. 268.
Wright, über einfaches, rustikales Kühlsystem d. Lichtheater CXXXVII. 378.
— über die Verfeinerung d. feinen Schüler mit Eichenholz CXXXV. 348.
Wright, über die Verfeinerung d. feinen Schüler mit Eichenholz CXXXV. 348.
Wright, über die Verfeinerung d. feinen Schüler mit Eichenholz CXXXV. 348.
A.

Abdampfen, Mittenabdampfsverfahren mittels derselben Wärmenmenge welche durch Wärmetauscher in ununterbrochen Kreislauf verkehrt wird CXXXVI. 391.
— Ungekochter Abdampfsflanzen für Salzlösungen CXXXVII. 116.
— siehe auch Zucker.

Ackerbau, Theorie Grundzüge der Agriculture Chemie CXXXVII. 378.
— siehe auch Drainierung, Dreschen, Dünger und Getreide.

Aeppel, über das Dörren des CXXXVII. 240.

Aquivalent, mechanisches der Wärme, siehe Motor.

Aether, Wess Apparat zum Waschen und Abziehen der Nesterarten so CXXXV. 435.

Albedöp, über sein Vorkommen im Wein- essig und Branntwein CXXXVII. 467.

Alkalimetrie, Prices Methode CXXXV. 286.
— siehe auch Bürette.

Alcohol, Mittel gegen das Anfressen der inneren Nüsse, der Detergente apparate CXXXV. 288.
— Stein über Darstellung von absolutem alkohol vollständig CXXXVII. 429.
— über Bereitung des Genevers in Holland CXXXVII. 468.
— über Bereitung des Weingeistes aus dem Kraup CXXXVII. 79.
— über Bereitung des Weingeistes aus leiternen Lumpen CXXXVII. 79.
— über Bereitung von Weingeist aus Wecken CXXXVII. 438.
— über das Vorkommen des Alkohols im Branntwein CXXXVII. 467.
— Zügel für die Weingeist, um seine Innendarbtel als Getränk zu verbrennern CXXXVII. 239.
— siehe auch Wein und Zucker.

Aloe, über ihre Prüfung auf Verfälschungen CXXXV. 157.
— siehe auch Düreinfertigung.

Aluminium, Galvett über Leitungen vgl. mit Eisen und Kupfer CXXXVIII. 285.
— Devisse über seine Fabrication CXXXVII. 125.
— Hoff über seine Darstellung mittels Kruplock CXXXVII. 363.
— Wöhler über seine Darstellung CXXXVI. 75.

Amalgam, siehe Quecksilber.

Ambois, Protokolle Düsseldorff CXXXVIII. 19.

Anatomische Präparate, siehe Einbalsamierung.

Anzucht, siehe Steine, Fernis u. Hüter.

Antidruck, siehe Papierschichtung.

Antimon, Sternal volumetric Beimischung des selben CXXXVII. 393.

Antimon, imbober, Mathieu-Méfian über seine Darstellung CXXXVII. 198.

Appretur, Barlow Verf. über die Gewinde und Gefässen wasserfest und glänzend zu machen CXXXV. 217.

Briggs, Machine über Appretur des gefärbten Seiden harness CXXXVII. 441.

— siehe auch Würze und Wollentrichter.

Architektur, siehe Bauart.

Artensch, Patera über die Trennung des Arzins von Metallen im Großen CXXXV. 395.
— Streng volumetric Beimischung des selben CXXXVII. 353.

Aspirator, Wagenbaukonstruktion eines solchen CXXXV. 113.

Auswertung, siehe Motor.

B.

Baukunst, siehe Drechsler.

Bataan, Menutz für Bandapparat für die Gärten CXXXV. 334.

Bauweinhalten, Förster über dasten der Neuzzeit CXXXVII. 97.

Banknoten, Heinemann über die Fälschung von Währungszeit und deren Verhüllung CXXXVII. 252.
Namenregister.

Barometer, Bich über barometrische Hohe-
meßungen CXXVII. 316.
Barth, Kursnitz über Darstellung des
Schweissbariums CXXV. 455.
— schwefelsaurer, siehe Schwefelsaur.
Baukunst, das Verhältnis des goldenen
Quadrats bei den antiken Bauwerken
angewandt CXXXVII. 321.
— auch Bänkler.
Bauvorrichtungen, Allzweck Verfahren siehe aus
den gemischten Geweben für sich zu
gewinnen CXXXVII. 74.
— auch Appretur, Druckerei, Färbe-
erie, Spinnmaschinen, Webstuhl und
Wolls.
Baumwolle, siehe Steine.
Baumwolle, siehe Bänkler.
Bergwerke, siehe Bergbauber.
Bergwerk, siehe Bergwerke und Stein-
höhlenrinden.
Berlinerblau, siehe Pariserblau.
Betzen, Kornis hydrostatisches CXXXVIII.
— 221.
Betetter, Dampfpumpen zum Reinigen
derselben CXXXVII. 433.
Bewegung, siehe Motor.
Bienen, Mittel gegen den Bienenschlag
CXXXVI. 78.
Bier, Marius Analyse der Mikroskopie
CXXXV. 465.
— auch Bier.
Bildbauer, die Proportionen des mehri-
lchen Körpers CXXXVII. 321.
Birnen, über das Därren der CXXXVIII.
— 239.
Bitternadel, künstliches, Wagner über
seine Darstellung aus Steinoel CXXXVI.
— 311.
Bitterlaus, siehe Magnesia, schwefelsaur.
Blasen, siehe Glasbläse.
Blattgold, siehe Goldfolien.
Blutfärber, siehe Metallschmiede.
Blüten, siehe Ultramarin.
Blütenfarbe, siehe Cyanalium.
Blechseiden, Beschreibung zweier mit Mi-
trometerkurbeln CXXXV. 178.
Blei, Gozssons Verfahren es aus dem
Bleiglanz auszubringen CXXXVII. 235.
— Dichter über Reinigung des Barts
bleiers CXXXVI. 147.
— schwefelsaure, über seine Verwendung
für hitzebeständige Antriebsfarbe CXXXV.
— 238.
Bleichen, Dibutyl Bleichverfahren, für batam-
276. Geprünte u. Gewebe CXXXVII.
376.
Bleichen, Johnsons Centrifugal-Extraktion.
— auch Druckerei, Färberie, Spinne-
Sachregister.

Chlorfärter, Mehr über maschinalanalytische Bestimmung derselben CXXXV. 289.

Chlorit, siehe Silber.

Chlornatürstoff, siehe Silber.

Chlorosilber, siehe Silber.

Chlorosilber, Barit über Mittel zu ihrer vollständigen Abtrennung in Gewissen Fabriken CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, Mehr über maschinalanalytische Bestimmung derselben CXXXV. 289.

Chromatür, Barit über Bestimmung der Gesammtkonzentration des Chromatürs in Gemischen Fabriken CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, Mehr über maschinalanalytische Bestimmung derselben CXXXV. 289.

Chromatür, Barit über Bestimmung der Gesammtkonzentration des Chromatürs in Gemischen Fabriken CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromiatür, mehr über die Bestimmung derselben CXXXVII. 129.

Chromit, mehr über die Bestimmung derselben CXXXVII. 129.

Chromit, mehr über die Bestimmung derselben CXXXVII. 129.

Chromit, mehr über die Bestimmung derselben CXXXVII. 129.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.

Chromatür, mehr über die Bestimmung derselben CXXXVII. 129.

—— Müller über ihre Schaltsbestimmung CXXXVIII. 114.
Dampfhammer, Sykes Schwanzhammer mit dichter Dampfbewegung CXXXV. 88.

Dampfssell, Anordnung über Mittel zur Verhinderung ihres Verschleisses CXXXVII. 24.

— Bertram über das Schneiden und Schweizen des Eisenbleches für Dampfssell CXXXVIII. 289.

— Black's Sicherheitsapparat dafür CXXXV. 459.

— Casket Apparat, zum Erwärmen ihres Speisewassers CXXXVII. 15.

— Ductes Mittel gegen Kesselsteinbildung CXXXVIII. 320.

— Fentons Sicherheitsventile CXXXVIII. 243.

— Helling's Sicherheitsventile CXXXVIII. 161.

— Hofmanns Versuche die Gründe der an die Kesselschlitzen zu befestigenden Nöhrchen zu verhüten aus CXXXVIII. 81.

— Lethuallian's magnetischer Wasserstandsschreiber CXXXVII. 90.

— Moges Versuche über das Verbrennungswasser der Kesseln mit Edelstählen CXXXVII. 189.

— Newland's Methode die Edelstähle zu reinigen CXXXVIII. 83.

— Thompson's Apparat zum Reguliren der Dampfgründung aus Dampfssell CXXXVII. 446.

— Zambfares Kühlerkessel CXXXVII. 241.

— Dampfssell-Offen, das Anbrennen des selben auf den schrägen Gütern CXXXVII. 351.

— Dampfssell-Offen, Anmärkung über das Anheizen des selben beim Kesselschreiber CXXXVII. 163.

— Damperwik rauchvergehbende CXXXVII. 28.

— Garcia's rauchvergehbende CXXXVII. 244.

— Georgs rauchvergehbende CXXXVII. 410.

— Gilbert's rauchvergehbende CXXXVII. 26.

— Jean's Anwendung des Maschens des Rauches CXXXVII. 31.

— Maril's Anwendung des Kreisprozesses zur Rauchverzweigung CXXXVII. 316. 447.

— Pribnows sich selbst verschließendes Ventil zur Verhindierung ihres Verschleisses CXXXVII. 241. CXXXVII. 403.

— Scott's rauchfumbrende CXXXVII. 45.

Dampfssell-Defen, Woodcock's rauchvergehbende CXXXV. 161. CXXXVII. 27.

Dampfmaschinen, Glase's Drei-Indicators für dieselben CXXXV. 246.

— Charbonnier's Expansions-Ventil CXXXV. 321.

— Decker über das mechanische Äquivalent der Wärme CXXXVII. 415.

— Doppeler-Wanometer von Gabriel und Beissians CXXXVII. 341.

— Eales's Maschinen begleitig ihres Brennmaterialverbrauchs CXXXVII. 163.

— Fentons Verbeilserungen an Dampfssell und Dampfssell-Indicators CXXXV. 28.

— Jones's Modulator für Dampfmaschinen-Regulatoren CXXXV. 87.

— Macconell's Schmiedeisen Kolben CXXXVII. 401.

— Newbottom's Kolben CXXXVII. 168.

— Newland's Schiff Dampfsmaschine CXXXVII. 248.

— Tracy's Maschine welche rührmend mit demselben Dampf betrieben wird CXXXVII. 325.

— Siemens's Maschine mit regenerirtem Dampf CXXXVII. 241.

— Stern's Dampfmaschinen - Ventile CXXXVII. 23.

— Tabellen zur Berechnung der Kraft, des Dampfes und Brennmaterial-Verbrauchs der Dampfmaschinen CXXXV. 8.

— über ein Riesenschwingunggrad CXXXVII. 77.

— Vereinigung des französischen parabolischen Centrifugal - Regulators CXXXVII. 321.

— Wades Schwierbahn für Dampfssell CXXXVII. 249.

— siehe auch Motor.

Dampfswagen, Beadelt über Brennmaterial-Erfahrung bei Locomotiven CXXXV. 16.

— Fentons Sicherheitsventile für Locomotiven CXXXVII. 243.

— Gabriel's und Beissians Doppeler-Wanometer für Locomotiven CXXXVII. 341.

— Kirchhans Apparat zur Wärme der Speisewässer für Locomotiven CXXXVII. 256.

— Regulatoren für verschiedene Theile der Locomotiven CXXXV. 289.
Dampfwagen, Meißner über 20. Februar in Dabern CXXXVIII. 65.
 - Ramsbottoms Kolben für Locomotiven CXXXV. 166.
 - Hofes verb. Feuerwalzen CXXXVIII. 323.
 - Rowland's Methode die Heizung der Lokomotiven zugleich CXXXVIII. 83.
 - Stroh-Verrichung zum Abnehmen und Wiederverwenden der Ködern und Aschen an den Lokomotiven CXXXVII. 325.
 - Wood's Versuche über Heizung der Lokomotiven mit Steinhöfen CXXXVII. 348.
 - Rowson's Thermometer. Drainung CXXXVIII. 233.
 - Rechenschieber, Freese's Backensieb CXXXVIII. 88.
 - Whitehead's Verbesserung zum Abbringen rhindrcher Flachen CXXXV. 184.
 - Deschmaschine, Astins'se CXXXV. 198.
 - Deutzer, Calvert über die Würzung der Weinbeinsäure aus Baumwollensäure bei tierischen und tierischen Flügel CXXXV. 156. CXXXVII. 147.
 - grüne Farbe für künstliche Blumenblätter und für Tapeten CXXXV. 239.
 - Grüne Methode zum Präpariren der halbwaasen Menschlieben de laitig vor dem Drucken CXXXV. 464.
 - Haefelehn Verfahren J.B. Brauns CXXXVII. 216.
 - Hurotus Abtreibung der Gewebe für lithographische Farbendruck CXXXVII. 491.
 - Poole's Fabrication der Walzen für den Jugendbrem CXXXVI. 35.
 - über Eikworte der Weinbeinsäure und Citronensaure CXXXVII. 144.
 - Dünger, Meißner über die Anbringung der Stückfische durch die Gliederwunde und über die Würzung des Bohnen CXXXV. 391.

Fier., über füntliche Aussehungen der Eier CXXXV. 210. 222.
 - Einbalsamiren, neue Methode dazu CXXXV. 400.
 - Eisen. Andriew über schwimmende Wasserformen für Hosen CXXXVI. 49.
 - Rembrandt's Schmiedeisen, welches sich günstig lädt CXXXVII. 77.
 - Galvans Ausbereitung der beim Verbrennen und Kräften des Rosenfeins abfallenden Schlacken CXXXVI. 456.
 - Galvans über Legierungen des Eisens mit Kalium, Aluminium und Zink CXXXVIII. 285.
 - Chemische Methode zur Fabrication des Stahls, Eisens und verschiedener Legierungen CXXXVIII. 209.
 - Dübel über das Stahlfabdien auf dem f. preuß. Büttenwerk zu Sax CXXXVII. 189.
 - Gebrauch der Eisensiebe über die bei der Eisenfabrikation in England erforderlichen Maschinentriebe CXXXVIII. 200.
 - Haberd's Hosen CXXXVII. 207.
 - Fentons Verfahren zur Anbringung natürlicher Aften, Holzbandagen usw. aus Blechplatten CXXXVIII. 271.
 - Grünischs Briefe, in der Fabrication gewisser Eisenarten und an den dabei gebrauchlichen Maschinen CXXXVIII. 272.
 - Batterie's Shmerdemschmolen CXXXV. 171.
 - Hofmann über Schwingsreiber bei Walporen CXXXV. 314.
 - Janoyer über den Einfluß der Schwingsreiber auf die Weichteilseide des Fisches, und über das Verbreiten des Phosphors, diesen Einfluß teilweise aufzuheben CXXXVII. 293.
 - Lees verbesserte Form für Schmiedeeisen CXXXVII. 417.
Sachregister.

Gisen, Eindauer Anleit. zur Berechnung der Höhen CXXXVI. 277.
— Eindauer über Höhen Schäden und Verlustigkeit der Höhen nach praktischen Grundsätzen CXXXVI. 125.
— Lucas Verfahren zur Gemischkohlefabrikation CXXXVI. 145.
— Macaluso verschließende Dosen zur Gießenspüllung CXXXVII. 418.
— Marcus Verfahren zur Stahlfabrikation CXXXVII. 347.
— Nasenrot Sepp, des Battdampferastes CXXXVI. 349.
— Pauné über Fabrication untermittelst Eisenhütte CXXXVII. 415.
— Muß über einen Kunstgriff beim Bieten CXXXVI. 402.
— Schmelztüff und Drehsel über verschiedene Anwendungen der Kastenbildung des Gießereis durch Tischlerei CXXXVI. 72. 461.
— Tretler über das Anlassen des Gießofens CXXXVI. 465.
— Schaffs Maschine zur Herstellung der Formen für gießereiforhöfen CXXXVII. 19.
— Stengs volumetrische Bestimmung des Gießens CXXXVI. 353.
— Thomas und Laurenz Uferbegehungsapparat, und Gebäude mit großer Geschwindigkeit für Höhen CXXXVII. 205.
— Turner über Stahlrohren und die beständigkeit des Baudampferastes CXXXV. 394.
— Turner über Verbechter, beim Waben großer Bleche und Draht CXXXV. 417.
— Turner über Pflanzen und mittels von einem Stücke für Walswerke CXXXVII. 391.
— Weihers Darstellung des metallischen Gifens in ein erstes Bande CXXXVI. 211. CXXXVII. 395.
— Gisen, Gießen bestehend, Anwendung des Kastenfärungsrechts und von Rohstoffen zum Besiedeln der Formen vor dem Gießgang CXXX. 316.
— Brades Verfahren Baumbäume, angefeht zu für die Metallgießerei abzuweisen CXXXVII. 75.
— Gießereireigen Anfertigung von Modellen zum Einformen von Gussgegenständen CXXXVI. 343.
— Jodhorns Herstellung der Formen zum Metallguss CXXXV. 35.
— Gisen, Gießen bestehend, Maclarens Anfertigung des Gießformen CXXXVI. 345.
— Ten Figür gezüchtete in Birmingham CXXXVI. 460.
— Thomas u. Laurenz Gießvorn Gartswagen in dünnen Schalen CXXXVII. 205.
— Verstärkung des Gießereis durch Umwälzen CXXXVII. 78.
— Wells Verbecherung im Metallguss CXXXVI. 348.
— Eisenbahnen, Mortons Signal für die Bäume CXXXV. 76.
— Rother Signal CXXXV. 227.
— Routleges Maßsignale CXXXVII. 102.
— Schweiger über das Gussbecken der Bahnwagen, gegen häusliches CXXXVII. 327.
— Statistik der engl. Bahnen CXXXVII. 75.
— Verkauf zu schnellen Briefbeförderung auf Eisenbahnen CXXXV. 164.
— Reise nach Dampfwagen und Telegraphen (elektrische).
— Giesendruckkasten, Boullets Maschine zum Herstellen der hölzernen Kelle für die Bahnschriften CXXXVI. 436.
— Höchst über ihre Fabrikation in England und Wales CXXXV. 335.
— Giesendruckkasten, Aufendruckkasten der englischen CXXXVI. 432.
— Structurendes freischwebender Bremseapparat CXXXVII. 163.
— Mallets verb. Rüffer CXXXVII. 324.
— über Ventilierung derfelben CXXXVII. 315.
— Wagenfahrerei der hannoverschen Bahnen CXXXVI. 235.
— Reise nach Dampfwagen.
— Elektronomes elektrischen Dampfwagens, mit der Zeit eingerieben mittels des Ruhmforstlichen Apparates CXXXV. 370.
— Gaukains elektrischer Apparat welcher als Ventil wirkt CXXXVII. 160.
— Ruhn über Bestimmung der Geschwindigkeit der Geschosse mittels des

— siehe auch Galvanismus und Telegraphie (elektrische).

Eisenviolet, über das Bleichen des selben CXXXVII. 155.

Eiweiß, Anlauf einer Emulsion auf Gussesi-CXXXVII. 74.

— Harle, glanz-f. metalliche Plattierung CXXXVIII. 416.

Erdboden, Kindes Verschalen beim Abnehmen weiter Schachte CXXXVI. 356.

— Mathers Erdboden-Appl. CXXXVIII. 22.

Eisg. über das Vorformen des Abstäubens in demselben CXXXVII. 487.

Eisgasätber, über die Rectification dess. CXXXVIII. 156.

— Anwendung des Bensins zum Abscheiden des Iols von gefärbten Stoffen CXXXV. 382.

— Barlowes Verschalen die gefärbten Gewebe wasserdicht zu machen CXXXV. 217.

— Gelert über die Wirkung der Gallussäure und des Gerbsackes auf die Eichen- und Lohnerbeizten CXXXV. 156. CXXXVII. 224.

— über Surrogat für Indigo- und Kropf CXXXV. 383.

— Chromatise zum Schwarzbeizen des Holzes CXXXV. 399.

— Darstellung der Kieselsäure für die Färbererei CXXXV. 382.

— jüngst über das Färben der reinen Lampenöls CXXXVII. 80.

— Querin über das Färben der so gen. wilde Seidensorten CXXXVII. 157.

— Jandins Apparat zum Dekummern und Färben feinster Gewebe CXXXVII. 66.

— langes Darstellung des Knopperl-Extraktes CXXXV. 156.

— Lindner über Anwendung der Alkali im Mollensfarben CXXXV. 312.

— Löwe's Färberversuche mit Aloe auf Wolle CXXXVII. 238.

Färbererei, Müller's über ländliches salzgeister- saures Eisenviolett als Bleich CXXXVIII. 301.

— Newells Apparat zum Färben und Waschen der Seide CXXXVI. 439.

— Volt über den preparierten Cataph CXXXV. 396.

— Puhf über die Entfärbung der mit Fichtenrainself eis gefärbten Seide und Wolle CXXXVII. 157.

— Statuen Behandlung des Kropfes zur Verbeisterung dess. CXXXV. 398.

— über Surrogat des Weinsteins, der Weinsteinsäure und Citronensäure CXXXVII. 144.

— Unterschreibung von åt und umge schwarg gefärbtem Lute CXXXV. 398.

— siehe auch Aloe, Aperturen, Bleichen, Druckerei, Holz, Indigo, Orfeilen und Kropf.

— Färber, siehe Schreibtischen.

— Feilen, siehe Ufern.

— Feldbahn, siehe Kerbauer.

— Feuchteräumen, franz. Vorrichtung zum Seidenen u. Schleifen des CXXXVIII. 399.

— Feitsäuren, Delachiers verschlossener Apparat zur Stearsäure - Fabrication CXXXVII. 43.

— Westens Verfahren zur Gewinnung der Feitsäuren CXXXVII. 126.

— Belouze über Verfeinerung der neutralen Fette durch die Salien CXXXVIII. 422.

— über Verfeinerung der Ole durch feste Verfeinerung der in enthaltenden CXXXVII. 62.

— Poliets Apparat zur Deinktion der Fette CXXXVIII. 216.

— Lichtenfels Verz. zu ihrer Gewinnung CXXXVIII. 122.

— schieb auch Tafel.

— Feuer, neues griechisches CXXXV. 155.

— Feuerwurche, siehe Flammen.

— Firein, Garneron's um das Austria sich der Gemälde-Beinwand zu verbinden CXXXV. 78.

— Hennebuts Reinigung des Glycerins zur Firein bereitung CXXXVIII. 155.

— Jandens Firein für polierte Metalle CXXXV. 394.

— Oebertes Verfeine Apparatur Frittes CXXXV. 457.

— siehe auch Haufler.

— Fischbein, siehe Horn.

— Flets, ersatz für den Flachs zu lösen CXXXVI. 78.

— Davyd Matchinen zum Vorbereiten des Flaxes für das Verfiben CXXXVI. 32.
Galonanostim, Gallans neue galvanische Batterie CXXXVI. 401.
— Wagner über galvanische Metallflächen CXXXVIII. 395.
— siehe auch Elektromagnetismus, Licht (elektrisches) u. Telegrapfen (elektrische).
— Galvanoplastik, Beilstein's Fabrikation verbessert, galvanoplastischem Gegenstände CXXXVIII. 54.
— Brants Verfahren zur galvanischen Vergoldung CXXXVI. 58.
— Gere vor einer Beschichtung bei der elektrochemischen Ablagerung des Antimons CXXXVI. 317.
— Hoffauer über Vergolden, Veröfen, Bronzeiren und Verzieren des Altek, Zinn, Blei, Eisens und Stahls CXXXVII. 118.

Galvanoplastik, Mathies über die galvano-plastische Darstellung von Kupferplatten im geodätischen Bureau zu Washington CXXXVIII. 350.
— Disse's galvanische Versilberung der Metalle CXXXVIII. 317.
— Verpachtung, d. Metalle CXXXVIII. 318.
— Batt über galvanische Vergoldung, Verkupferung nach CXXXVIII. 372.
— siehe auch Konfektion Gasseluchtung, siehe Leuchtgas.
— Gasgenerator, Ebelens zur Verbrennung der Brennmaterial. in Gas CXXXVIII. 33.
— Gassflasche, siehe Leuchtgas.
— Gasmacher, Vogels continuirendes und gebildete CXXXVIII. 46.
— Gelatinnenförm, siehe Reimung.
— Goldbrennen, siehe Messing.
— Goldbrüden (Möhrer), Basis über ihre Reinheit CXXXVII. 451.
— Gemäldestoffe, siehe Kupfer.
— Gemische, siehe Konfektionen.
— Greden, Anwendung der Carbolfäute zum Konfektionen gebräuchlicher Exakte CXXXV. 358 CXXXVI. 224.
— Wellso's Verfahren zum Färben der Hütten mit schwefelsaurer Zitronen CXXXVII. 310.
— Lindner über das Entfärben der Hütten mit siehe Gasflasche CXXXVII. 221.
— siehe auch Feder.
— Glesbüge, siehe Kanonen.
— Getreide, Basis über die Reinheit des CXXXVII. 452.
— Dover's Formmotten-Eizer CXXXVI. 337.
— Plume über eine neue Gemisch schädliche Fliege CXXXV. 458.
— Quarts Verf. mit unterbrocherer Bewegung zum Konfektionen des Getreides CXXXV. 99.
— Dehans Verf. die Auffärbung der Getreidearten mit Schwefelsäure statt der Malzges zu bewirken CXXXVII. 474.
— Maus's conservier. Verf. CXXXVI. 399.
— Sallans Methode zum Reinigen und Auffärbung des Getreides CXXXVI. 400.
— Sibille über das Entfärben und Konfektionen des Getreides CXXXVII. 231.
— über das Konfektionen großer Getreide- verfont, durch Drainitur CXXXVIII. 158.
— siehe auch Mähren.
Getriebe, feine Motor.
Gewebe, schiefe Beschichtung und Wollentuch
Gewinde, schiefe Flinten.
Gewichte, über Mass- und Gewichtseinheit CXXXVII. 72.
Gefäß, schiefe Bronze und Glas (Glasen bresfeln).
Glas, Ballestorf Glasfen CXXVI. 105.
Glasfabrikation der Glashütten CXXXVII. 415.
— Maschine zum Mattscheiben des Glas CXXXVII. 30.
— Klatschmörtel für Schämende Flaschigkeiten CXXXV 434.
— Sublimes Fabrikation von Gläsern zum Weiten v. Flaschigkeiten CXXXVIII. 69.
— Litt für Glassefäße CXXXV. 237.
— Paris' glasfar metallische Plättchen CXXXVII. 416.
— Pelleug über die Enflaschung des Glases CXXXVII. 182 CXXXVIII. 319.
— Schabare über die Darstellung des Alabasterglases CXXXVIII. 319.
— Smith's Verf. das Glas mittels leichen der Einbrück von Pflanzenblättern etc. zu verjüngen CXXXVII. 320.
— Spiegelrot über die Herstellung des Glases durch die allseitigen Schmelzmetalle CXXXVIII. 292.
— über eine Schere zum Glascheiden CXXXVII. 232.
— Verf. dem Scheibenglas die Eigenschaft des Gläubigen zu nehmen CXXXVII. 75.
— Verzicht zu einem durchsichtigen Glas CXXXVII. 155.
— Gläser, weise für Töpferen CXXXV 236.
— schiefe auch Steingut.
Glimmschlucke, schiefe Zündschlacken.
Glocken, Veröffentlichung bei Ausschlägen der Sinngläser in M. Verf. CXXV. 431.
Gold, Henry über die Verbindung von Gold und Quecksilber CXXXVII. 455.
— über die Scheidung in den amerikanischen Münzsätzen CXXXVII. 115.
— Verf. zum Reimnachen des mit Freudigkeit legirten Goldes CXXXVII. 443.
— schiefe auch Galvanoplastik.
Goldschlitzer, schiefe Steingut.
Graphit, Lese über Werthbestimmung derfelben CXXXVII. 445.
Gusseisen, schiefe Eisen.
Gusseis, schiefe Eisen und Kanonen.
Gutta-percha, Anwendung derfelben anstatt Holz zu Mühlenenhiel CXXXVIII. 73.

Gutta-percha, Spreng Compositien um die Guita-percha zu erzeugen CXXXVII. 211.
— schiefe auch Kautschuk.
Gyps, über das Tränken der Gipsfähigten mit Stearinöle CXXXVII. 185.

Härten, schiefe Eisen.
Häuser, Braithwattes hängende Dächer CXXXVII. 100.
— Ertrag für Strohdächer CXXXVIII 388.
— Grund eigene Loden und Dachstühle CXXXVII. 191.
— Namens über die relative Gesundheit der verschiedensten Gegenen einer Stadt CXXXV. 466.
— Mittel zur Beseitigung der neugebauten Gebäude zum Bewohnen trocken genug in CXXXVIII. 234.
— neues Baumatmaterial CXXXVII. 75.
— neues flächiges Material zur Erbauung von Mauern CXXXVI. 317.
— Thorpe Verf. zum Anstreichen hölzerner Aufbauten mit heissen Flammen CXXXVII. 235.
— Vorwurf zu einem sehr schnell trocknenden Anstrich für 3 laufende Treppen etc. CXXXVII. 155.
— schiefe auch Fensterläden und Stein.
— Hände, schiefe Verben und Leber.
— Hahn, Catalas Hähne mit Kreislauf für Wasser, Dampf etc. CXXXVII. 104.
— Territorial-Rathausbauten CXXXVII. 29.
— Hammer, Kissen Freitens Hammer CXXXVI. 182.
— schiefe auch Dampfhammer.
Handbücher über eine Glase-Handschuhfabrik in Brieffel CXXXVII. 400.
— Heim, schiefe Defen.
— Hobel, Maschinen zur Herstellung der Hobelfäden CXXXVII. 13.
— Hobelmachine, Wirtshaus für Metalle CXXXVI. 184.
— Hobemaschine, schiefe Eisen.
— Holz. s. eben von Tannholz zu Schafsteln CXXXVI. 467.
— Aronshoff über Schwärzerei des Holzes XXVII. 399.
— Wafers neue Holzverarbeitung CXXXVII. 320.
— Schneiße über das Gießereien von Holzem gegen Fäulnis CXXXVII. 327.
— Vorschrift zur Beize für Nufsholz CXXXVI. 468.
Halsfäser, Mommsenhausen über, M. u. K. s. besichtig. der vegetabil. Spiraldreifung CXXXVII. 87.

Halsfuß, schwimmer der Anastich für CXXXVII. 157.

Halsgebken, Clemens Generator zur Verwendung des Halsgebers für das in freisteh. Gase CXXXVII. 33.

— Werke über Eigenschaften der selbstgekühlten Halsfelle CXXXVII. 379.

— über die Zusammenführung der Halsfelle CXXXV. 481.

Henig, Verfahren zur Reinigung des CXXXVII. 157.

Hoffen, Werf, ihn kraftig zu bewahren CXXXV. 240.

— Werf von Heinr. ihn auf Schwefel zu prüfen CXXXVII. 236.

Horn, Bürstein Methode es als Subrogat für Fischfell zu verfeinern CXXXVIII. 393.

— Duerot's Verf. bei der Verarbeitung des selben CXXXVII. 255.

— neue Anwendung des CXXXVII. 224.

Hyalophanie von Heinr. CXXXVII. 396.

J. Indigo, Post über Nachweisung von Stärke in demselben CXXXV. 397.

— Werf, den Manilla-Indigo zu reinigen CXXXV. 319.

Jod, früher Verf. zur Gewinnung des. und der Mutterlange des Natronsalzes CXXXVII. 78.

— Mohr über maßnahmesische Bestimmung des selben CXXXV. 289.

Jodkalium, Werf gelb geworden zu reinigen CXXXV. 226.

Jodkristallen, s. Heinr. Joditium, s. auch Gold.

K. Kämmen, Fabrication der Kautschuklamme CXXXVII. 448

— auch für Blechseifen.

Kalt, hydraulischer, Analysen englischer hydraulischer Kalk CXXXV. 361.

— Kühmanns Bemerkungen darüber CXXXVII. 288. 358. 436.

— White über Fabrikation des Portland-Cement CXXXV. 360.

— schweres, Darstellung des neutralen CXXXVII. 60.

— unterschlag, siehe Blechem und Chlorometrie.

Kalzfett, Einsteins CXXXVI. 271.

Kalzheil, Kühmann über das härten des, und seine Verfeinung CXXXVII. 288. 358. 436.

Kanonen, Dieber über die Gaggsn und Porzellschale des für Verzehre bestimmten Gegenstoffs CXXXV. 401. CXXXVII. 73.

— siehe auch Chromblau.

Kanonenfugen, Methode zur Gegenigung ganz reinen Muntions CXXXVII. 337.

— Volumcorrection der Kanonenfugen durch bloßes Erhören CXXXVII. 72.

Kanonenmetall, s. Bronze.

Kartooffeln, Begin über ihre Krankheit CXXXVII. 451.

— Pop über die Kartooffelfrankheit CXXXV. 391.

— Pop über die Kartooffelfrankheit CXXXVII. 73.

— Broomans Maschinen zur Verwendung des selben in Cylinder CXXX. 31.

— Goodyear über Fabrikation der Kautschukkämme CXXXVII. 448.

— Johnsons Anwendung des vulkanisierten Kautschuk zur Fabrikation von Würstchen und widerstandischen Geweben CXXXVII. 69.

— Sorels Conversions von dem Kautschuk zu ereignen CXXXVII. 211.

— Verfahren zum Chemisieren des vulkanisierten Kautschuk CXXXVII. 209.

— siehe auch Hahn.

Reife, s. Eisenhahnseifen.

Keller, s. Blechemseifen.

Kerzen, Gepökelte Verfahen, dem Talg eine größere Härte zu erteilen CXXXVII. 156.
Kupfer, Karmarsch über die Leuchtkraft der Paraffinserien CXXXVIII. 168.
 - Verfahren um bei der Stearinerien-Paraffination an Kalt zum Verleihen des Tages zu ersparen CXXXVIII. 422.
 - siehe auch Fettöfen.
Kraft, Wirkung der Wasserteilungsförderer CXXXVII. 399.
 - ein ausgefeilte Steinfritte CXXXVII. 80.
 - Leinöl abwasserte zur Herstellung kürzester Stearinerien CXXXVIII. 436.
 - siehe auch Glas und Porzellan.
Kalìgas-Apparat, Meccodins gefährloser CXXXVII. 297.
Kalìgsignal, siehe Silitbahnen.
Knochen, über das Weichen verbieten CXXXVII. 1-5.
Knochenpfanne, siehe Züchter.
Knochenweh, Blockhale der Veröffentlichung der gedruckten Knochenweh für hämische CXXXVII. 261.
 - Wünrömann über die jetzt gebräuchlichen und unpriestlichen Knochenmühlen CXXXVII. 249.
Knober, Darstellung des Knoberges CXXXVII. 156.
Kochsalz, Kühlergeres @te neue Abkühlungsverfahren für die Salzpfanne CXXXVII. 301.
Kohle, siehe Steinsalzen.
Kohle, Steinbuche über planinierte Kohle CXXXVII. 377.
 - siehe auch Braunsalzen, Holzsalzen, Steinofenhof und Torfsohle.
Kohlenwasserstoff, siehe Wasserteiungsförderer.
Kohlenwasserstoff, siehe Kürzeste.
Kochsalz, Osmius CXXXV. 40.
Korn, siehe Getreide.
Kornwurz, siehe Getreide.
Kraftpfanne, siehe Dampfmaschine.
Kraftpfanne, Osmius CXXXV. 40.
Krahn, Wobrüb. maßanamische Bestimmung des Kupfers CXXXV. 44. 298.
 - Wobrüb. Verfahren das Kupferblin zu gewinnen zu verarbeiten CXXXV. 422.
 - Osmius, Osmiusplastik und Kürzeste.
Kupfernachtwut, Vogel über dessen Eigenarten CXXXVII. 247.
Kupferoxyd, Verfahren zu seiner Darstellung CXXXVII. 159.
Kupferplatten, Osmiusplastik.
Kupferdünnst, siehe Züchter.
.
Kupfer, Wobrüb. maßanamische Bestimmung des Kupfers CXXXV. 44. 298.
 - Wobrüb. Verfahren das Kupferblin zu gewinnen zu verarbeiten CXXXV. 422.
 - Osmius, Osmiusplastik und Kürzeste.
Kupfernachtwut, Vogel über dessen Eigenarten CXXXVII. 247.
Kupferoxyd, Verfahren zu seiner Darstellung CXXXVII. 159.
Kupferplatten, Osmiusplastik.
Kupferdünnst, siehe Züchter.

Lampe, Dochte von Fließpapier für Weinsäurelampen CXXXV. 160.
 - Franchot's Moderatort-Lampe CXXXVII. 93.
 - Wobrüb. Konstruktion der Parabell für die Neuentwicklungen der Lampen CXXXVII. 92.
 - Neunburger's Moderatort-Lampe CXXXVII. 258.
 - über gespanntere Linsengläser für Lampen CXXXVII. 235.
 - siehe auch Leuchtgas, Licht (elektrisches), Photozylinder und Steinsalzen.
Lattich, Baum über seine Crankenheit CXXXVII. 479.
Leber, Klima, sættlöderbereit CXXXVII. 69.
 - Sættlöde Sættloederbereit CXXXVII. 69.
 - Sættlöde Bættloederbereit CXXXVII. 69.
 - Sættlöde, Bættloederbereit CXXXVII. 69.
 - Sættlöde, sættloederbereit CXXXVII. 69.
M.

Maasen, das Gewichte, Glas und Schublehre.

Magnesia, schwefelsaure, ihre Anwendung zur Bereitung von Glaubersalz, Sulfarsure etc. CXXVIII. 238.

Magnetismus, das Elektromagnetismus, Malmuster, neue Mahlen, Malmerei, das Kali, silbergesprenstet.

Malkarban, linsenförmiger, das Froschen des Braunsteins bei der Prüfung CXXV 277.

Mehr über maschinalgebräute, das Problem des Braunsteins CXXV. 280.

Müller über Gebarlsbestimmung des Braunsteins CXXVIII. 116.

Mangan, das Flasche, Manganometer, das Dammschneiden, Marmor, das Postmarken, Marmor, das Steinbruch und Rüdlig über die Leuchtkraft des Holzgases CXXV. 47.

Mase, das Gewichte, Glas und Schublehre.

Mausse, das Gewichte, Glas und Schublehre.

Mehrzünder, das Gewichte, Glas und Schublehre.

Mehrzünder, das Hefter, das Weihrauch, Hefter, das Echthändchen, Hefter, das Weihrauch, Hefter, das Echthändchen.

Messe, das Gewichte, Glas und Schublehre.

Metallgießerei, das Gewichte, Glas und Schublehre.

Metan, das Gewichte, Glas und Schublehre.

Metallgießerei, das Gewichte, Glas und Schublehre.
Metallegierungen, Galvans Darstellung verschiedener CXXXVIII. 282.
— lüfend über die Bronzen und andere Legierungen CXXXV. 289.
— fisch auch Bronze, Gold, Messing, Silber etc.
Metalloyznie (salzamische), Wagner's Rüff's erstes Werk CXXXVI. 395.
Metallringe, höhere Armeisen über ihre Anfertigung CXXXV. 342.
— Hegerman's Fabrikation beschaffen CXXXV. 191.
Microzpy, Darstellung der Chlorzinklösungen für mikroskopische Untersuchungen CXXXVIII. 152.
— ein wohlfeiles Microzpy CXXXV. 235.
Mühl, Mabris Verfahren zum Konfektionieren der CXXXVIII. 142.
Winfuschenfuge sich Sprengeisen, Mineralöl (Phenol), Anlageren über seine Fabrication CXXXVII. 465.
Wolfganglauten, Verfahren zu ihrer Behandlung in Goldblau CXXXVIII. 58.
— Anwendung des Differengetriebes bei Wagen CXXXVII. 1.
— Gallenas Mechanismus zum Verstöbern einer rotierenden Bewegung CXXXVIII. 169.
— Clarinissenttigung von Rädern und Rollen auf Wellen CXXXVI. 29.
— Decker über das mechanische Requisit von der Wärme CXXXVI. 245.
— Haken über die Umbrucharbeit der Kettsträger zur Herstellung derselben Bewegungen CXXXVIII. 1.
— Ihnen über die behauptenstichten Erkenntnisse der mittleren Reihung mit Veränderungen von Decker CXXXVI. 405.
— Koch's Friction's Aus- und Einrichtung für treibende Wellen CXXXVI. 321.
— Moore's Anordnung der Treibrollen CXXXV. 2.
— Mittel zur Herstellung der Treibrollen CXXXV. 234.
— Selbsttätig über treibende für nicht parallele Wölbungen CXXXVIII. 404.
— Wichteke's Vorrichtung zum Schneiden der Zähne von Kettenträgern etc. CXXXVII. 184.
— Rechtzuchtmaschinen, Lüfterpanzeronzemachinen, Schneid- und Backvärder.
Mühlen, Chapmans Apparat um die Zuführung des Getreides in die Mühlsteine zu regulieren CXXXVI. 244.
— Rollens Maschinenbau und Düsste CXXXVI. 245.
— Mahlmann über die Mühlen der Münchener Industrie-Abteilung CXXXV. 424.
— fisch auch Getreide und Nahrungsmittel Münchhôfen, über die jüngere der Vereinigten Staaten CXXXV. 115.
— fisch auch Gold und Silber.
N.
Nahrungsmittel, fisch Speisen.
Naphthaöl, Oto über Reinigung d. rohen CXXXVI. 398.
Natrium, fischlenkaure, Naphthaüle über Mittel zur vollständigen Absorption d. sauren Natrium der Sodalösungen CXXXVI. 129.
— über das Benzin d. im Muckkampf der Sodalösungen enthaltenen Schwefels CXXXVII. 207.
— über die Ausscheidung d. fischlenkaures Natriums CXXXVII. 448.
— schwefelsäure, Darstellung desfelselben durch Herstellung des Schwefels mit Bittetals CXXXVI. 238.
— unterschweifelsäuren, Verfahren zu seiner Behandlung CXXXVIII. 199.
Naturfarben, bei Nahrung zu seiner Austüchtung CXXXVIII. 363.
Natriumsulfat, Eingangs Anleitung zu seiner Herstellung CXXXVIII. 396.
Niset, Beruf, die Rieselseite von Reisern zu bestreiten CXXXVI. 395.
Nietmaschine, Nibert's CXXXVII. 245.
Nitrobenzol, Sprünt über seine Darstellung CXXXVIII. 384.
O.
Obst, fisch Beeren und Bienen.
Obstbarre, Behandlung einer zweimaligen für Haushaltungen CXXXVIII. 358.
Öfen, Steinheils Verf zur Steigerung d. pyrometrischen Wärmeleistungen des Brennstoffes CXXXVIII. 349.
— fisch auch Dampfsteinsfein (auch verbrannt), Gasgenerator, Glasöfen, Gläser und Kästchen.
Oele, ätherische, eines Apparat zum Wachsen u. Abscheiden der CXXXV. 405.
Die, atherische, Versäumen zum Ausziehen derselben aus Pflanzen CXXXVIII. 302.

— feine, Mailarts Herbst, die gegenwart eines Dels, von Kreuzpflanzen in jedem anberr. Del zu erkennen CXXXVII. 306.

— Gelbe, über ihre Verklebung durch bloße Berührung von den enthaltenen Somen CXXXVI. 62.

— Delosticke, diese Bleche, Kornis und Häsper.

— Deissens, Dobordes, um die Dicke, derselben der Deitz zu bestimmen CXXXVIII. 407.

— Dilevsi, Untersuchung derselben auf Berührung mit Sodamol CXXXVII. 227.

— Dilevsi, über französisches CXXXVII. 455.

— Dritte, Kracke über Berührung derselben auf ihre Neigung CXXXVII. 142.

— Ditham, Ber., zu ihrer Fabrikation CXXXVII. 139.

— Ditham, Pohls Ber., es rasch zu bleichen CXXXVII. 140.

— Fabrikation, Darstellung d. schweflige- sauren Kals als Antisilor CXXXVI. 60.

— Ditham, Ber., zu ihrer Darstellung CXXXVII. 370.

— Ditham, berber, über Bestimmung der Dicke des Papiers CXXXVII. 187.

— Ditham, über das Säuren des Papiers CXXXVII. 460.

— Ditham, Silbermante, über die Entnahme des für die Chloratur, die bestimmen des Halbstopps durch den Phosphorapparat CXXXVII. 62. CXXXVIII. 118.

— Ditham, über Kieselsäure des grünen Filterpapiers CXXXVII. 74.

— Ditham, auch Kieselsäure, Papiervergütung, Darstellung des, für Schreibpuchen CXXXVI. 159.

— Ditham, Paraffin, Construction, der Flasche CXXXVIII. 92.

— Ditham, Paraffin, über seine Darstellung CXXXVII. 465.

— Ditham, über seine Darstellung aus bituminösen Schiefern CXXXVII. 138.

— Ditham, auch Kieselsäure und Schiefer (bituminöser).

— Ditham, über seine Verarbeitung CXXXVII. 396.

— Ditham, über Photographie auf Glas CXXXVII. 206.

— Ditham, über die Menge des Chloramins, welche in photographischen Papieren zurückbleibt CXXXVII. 398. 465.

— Ditham, über die Verfahren der Herstellung der photographischen Wässer CXXXVII. 465.

— Ditham, über photographische Wässer CXXXVII. 465.

— Ditham, über photographische Wässer CXXXVII. 465.

— Ditham, über photographische Wässer CXXXVII. 465.
Photographie, Eichrodt "Photographie, Eichrodt über Darstellung von Lichtbildern auf schwarzer Wasseremulsion und weißem Wachstof

--- Gütter über die blaue camera obscura CXXXVI. 372. CXXXVI. 76.
--- Padov über die beste Colloidiumwolle zu photographischem Gebrauch CXXXVI. 307.
--- Handsens Verfahren des empfindlich gemachten Papier zu conserviren CXXXV. 318.
--- Born über die Künstler für Lichtbilder CXXXVII. 463.
--- Lafer über die Herstellung der Lichtbilder auf Papier CXXXVII. 274.
--- Legroths Verf. zur Darstellung der Lichtbilder auf Wasseremulsion CXXXVI. 109.
--- Legroths Verf. directe positive Lichtbilder auf Glas zu erzeugen CXXXVI. 256.
--- Hands Colloidium welches sich nicht zersetzt CXXXV. 318.
--- Verfahren die Gallussäurelösungen zu conserviren CXXXV. 318.
--- Eichrodt. Verf. positive Lichtbilder auf Papier darzustellen CXXXVI. 269.
--- Maschines empfindlich machendes Bad CXXXV. 319.
--- Nonner’s Verf. Lithographies mit selbst der Photographie zu erhalten CXXXVIII. 393.
--- Manfall über Photographie aus mit Gtiehw überzeugen Glas CXXXV. 443.
--- Manfall’s Verfahren zur Photographie auf trockenem Colloidium CXXXVII. 288.
--- Minotius über Colorirung der Lichtbilder CXXXV. 396.
--- Rattenti über Photographie aus mit Gtiehw überzeugen Glas CXXXVII. 285.
--- Nippe’s neues neues Arbeiten für den photographischen Stahlbuch CXXXVI. 120.
--- Pinto über Einwirkung des Brom auf Dauerersehe Platten nach der Eröffnung CXXXVI. 108.
--- Fried Verf. die Glasplatten mit Gtiehw zu übertünchen CXXXVII. 267.
--- Sanmouns Verf. Lichtbilder, Lithographies aus Messingplatten zu copiren und diese für den Druck zu äüen CXXXVI. 208.

Photographie, Eichrodt über das Silberbad zu negativen Colloidiumbildern CXXXVII. 269.
--- über einen photographischen Vergrößerungssapparat und die Darstellung transparent = positiver Glaslichtbilder CXXXV. 307.
--- Eichrodt Bes. das Colloidium auf den Glasplatten längere Zeit empfindlich zu erhalten CXXXVI. 36.
--- Fried Verf. um die Colloidiumbilder von Glasplatten auf Wasseremulsion zu übertragen CXXXVIII. 108.
--- Smer über Anfertigung binocularer Lichtbilder CXXXV. 465.
--- Lipton’s Verf. Lichtbilder aus mit Gtiehw überzeugen Colloidium CXXXVIII. 109. 370.
--- Eichrodt’s Anleitung des Papier zu Wasseremulsion CXXXV. 396.
--- über das Herren der Lichtbilder mit untergeweißsichtsamen Natten CXXXV. 319.
--- Verf. bei den Lichtbildern auf Papier die angebesserten Stellen zu eröffen CXXXVII. 318.
--- Verf. zur Erreichung des Eromomum- nium für Photographen CXXXVII. 317. 395.
--- Wagner über ein Kräukmittel der Bevergallussäure CXXXV. 375.
--- Wood’s empfind. Colloidium CXXXVI. 378.

--- Realere Skonometer für Photographen CXXXV. 395.
--- Photometer, freyeraus CXXXVII. 55.
--- Planimeter, Burensend über ihre Ge- sellschaft CXXXVII. 81.
--- Derwis auf Polar’s Coordinaten ge- gründet CXXXVII. 168.
--- Planimeter, feine Galvanoplastik.
--- Platinemter, feine Eichröche.
--- Plattenswage, Verf. zu seiner Darstellung CXXXVI. 159.
--- Platinemter, feine Holz und Zinnlaxe.
--- Vorland, Gießtag, die Karte (kraulkein).
--- Krit für Vorfallen CXXXV. 237.
--- feine Skonometer.
--- Skonometer, Wachsmars Apparatur zum Un- seit durchzubringen CXXXVII. 106.
--- Skonometer, feine Karte (schleiertein).
--- Büdelsald, feine Eifen.
--- Pulver, feine Schießpulver.
--- Bümpke, Arpold’s Centrifugalpumpe CXXXVIII. 252.
Pumpe, Gwennas Centrisugalpumpe CXXXVIII. 255.
- Jobards einfache aus Kautschuk CXXXVII. 153.
- Knödwegers Saug- und Druckpumpe CXXXVII. 154.
- Legierung für die verriebenen Theile der Pumpe CXXXV. 271.
- Letetus Waserpumpe CXXXVIII. 171.
- Malbecks Pumpe ohne Kolben CXXXVI. 186.
- Stumpfes Pumpe mit Kautschuk-Bul- tellen CXXXVIII. 250.
- Bentilli mit Kautschukflaschen für Druckpumpen CXXXVIII. 233.

D.

Quecken, siehe Alkohol.
Dreselfeuer, Henne über eine Verbindung von Gold und Dreselfeuer CXXXVII. 455.
- Verfahren zum Reinigen des selben CXXXVIII. 392.
- siehe auch Schwefel.
Dreselfeuerchlorür, über Bereitung des Gallenöls aus Silbernitrat mittels schwefeliger Säure CXXXVII. 420.

R.

Näder für Maschinen, siehe Motor.
- für Wagen, siehe Giftenbahnwagen.
Namm, Burnell über Baumanbeiten CXXXVIII. 313.
- über die Tragkraft der Rohpfähle CXXXV. 77.
Raumesser, siehe Messer.
Raubverbrennung, siehe Dampfkeßel-Defen (raubverbrannte).
Röhrung, die Maschinen, siehe Motor.
R oppose, siehe Schmiede.
Rohrspirale, siehe Rohre (plattierte).
Röhrungsbüchse, Theorien für Schiffbrüchige CXXXVII. 17.
Röhen, siehe Tiebitreiben.
Ringe, siehe Metallringe (Rohre).
Röhren, siehe Rohre u. Wasserversiegen.
Rollen, siehe Motor.
Rohpfähle, siehe Namm.
Rohr, siehe Dele (fett)
Runfelsrinnen, Basin über ihre Fruchtheit CXXXVII. 450.
- Gails Apparat zur Gewinnung des Kupfers CXXXVII. 443.

Rundröhren, Leplants Verf. sie zur Rein- geigewinnung zu behandeln CXXXVII. 72.
- Paven über die Getreidegewinnung durch Pressen und durch Maceration, u. über die Gähr. des Kupfers CXXXVII. 58.
- Robert üb. die relativen Vorzüge der Getreidegewinnung nach dem Verfahren des Pressens, der Maceration und des Aus- langens getrocknetem Kupfer CXXXVIII. 76.
- Siemens über ihre Verwendung zur Weinbereitung CXXXV. 79.
- über Schügers Verf. zur Gewinnung des Kupfers feste ohne Pressen CXXXVII. 64. 237.

E.

Sägen, Homells Maschinen zur Fabri- cation vonfelsen CXXXV. 173.
- Wrights durch Luft gespannte Sägen CXXXVII. 422.
Sägemaschinen, Beschreibung amerikanischer CXXXVII. 2.
- Reins mit handförmiger Säge CXXXVIII. 250.
Salz, siehe Kochsalz.
Salzpfäße, siehe Chlorwasserstoffsaure.
Sammel Chambers Maschine zum Auf- schneiden der Kaffpäfen sammetzartiger Gewebes CXXXV. 34.
Sauertoff, Borschlag zu seiner Bereitung durch Pressung des Waffers CXXXVII. 236.
Scheere siehe Glas.
Scheer, bituminöser, Analyse desselben zu Werker bei Bielefeld CXXXVIII. 380.
- Analyse eines solchen aus der Ge-egend von Bruchsal CXXXVIII. 437.
Schleipulver, Vogel über die gasförmigen Produkte der Schleipulver-Desto- nation CXXXVII. 156.
Schiffsfahrt, Thomsullahmessungshufs für Schiffbrüchige CXXXVII. 17.
Schildpalt, über die sogenannte Schmelzbarkeit des felsen CXXXVII. 158.
- über eine dadurch zu Versuchszeiten erzielte Maße CXXXVII. 463.
- siehe auch Horn.
Schlachterfahren, über das neue englische CXXXVII. 150.
Schleifen, siehe Messer und Smizgal.
Schleuder, Jobards hydraul CXXXVII. 153.
Schichten, siehe Appreturen.

31
Seidenwürmerzucht, über den Bombyx cythina und seine Zucht CXXXV. 225. 228. 232.
— Harb über den in ihnreifen Warth des Bombyx cythina CXXXVIII. 150.
Seife, Sterne Anleitung zur Untersuchung derfelben aus ihren Handelswarth CXXXVII. 310.
— Müller über Verwendung des Rapsöllerstandes, Wascherlässethen und Ricinusöl CXXXVIII. 305.
— Flieghans über Seifenspulver mit neutralen Stoff und seifenfremdem Balsam CXXXVIII. 425.
— über Anfertigung der Windsorpeste CXXXV. 237.
— siehe auch Reisetkäse und Talg.
Sodal, über seine Untersuchung vom Olivenöl CXXXVII. 227.
Sicherheitslampe, siehe Stahlstengelus.
Sicherheitssiegel, siehe Dampfgesellschaft.
Schild, Elektrode des Chlordampfunges CXXXVI. 158.
— Breve über ein neues Silberberg CXXXVII. 343.
— über die Linien der Silber mit dem Kupfer CXXXVI. 482.
— eine Abänderung des Verfahrens das Silber auf dem Wege zu produzieren CXXXVIII. 441.
— Béders Verf. die Hochmehlverdünner Silberrohre zu Gute zu bringen CXXXVIII. 57.
— Plattner über die Ursachen des Silberverlustes beim Rothen der Erze CXXXVIII. 110.
— über Darstellung einer silberähnlichen Legierung aus Kupfer, Nadel und Silber CXXXVII. 440.
— über die Verfeinerung in den amerikanischen Münzstätten CXXXVII. 115.
— Swirgel, Galvax Verfahren den benügs ten wieder brachbar zu machen CXXXVI. 463.
— Sosa, die Füttern (fohlenhautes).
Spargelmarm, als Kaffeefutrogo CXXXII. 320.
— Soslen, siehe Gontserven, Suppen und Nudeln.
— Spiegel, Bulsals Schußender Übertragung für die Spiegelbegleitung CXXXVII. 304.
— Spinnmaschine, Halts zum Umrumpen CXXXVIII. 63.
— Müller's System mit Zahnraden
statt der Schnüre zur Bewegung der Spulen CXXXVIII. 401.
Spinngarben, Whitwafers selbswirken-
der Mechaniker für Mulemach. CXXXV.
331.
- Böttcherh. Baumwolle CXXXVIII.
20.
- auch auch Flachs, Seide, Spulmaschine
und Wolle.

Steigung, Anwendung der Reibungs-
Gleitreibung, Zündern des.

- Dampfer über Windeingung durch
Gleitreibung CXXXV. 370.
- Maschinen Vert. horizontale Versch-
löcher im Stein bezuglicher CXXXV.
193.

Spulen, Remiereis verbess. CXXXVII.
108.

Spulmaschine, Borkof mit selbstwirken-
der Ausrüstung CXXXVII. 110.
Stabzeichen, es Leinen.
Stabzeichentafeln, von Leinen.
Stabz, die Eichen.
Stammspeicher, Roberts CXXXVII. 245.
Stausfärbe, sie Rottinsaure.
Staunebene, sie Steinebene.
Stauwerk, sie Stauwerk.
Steinbruch, sie Steinbruch.
Steinbrücke, sie Steinbrücke.
Steinbrecher, sie Steinbrecher.
Steinbrecher, sie Steinbrecher.
Steinbrecher, sie Steinbrecher.
Steinbrecher, sie Steinbrecher.

Tabat, sie Tabat.
Talg, Methode den Talg sehr weiss und
saft geruchlos zu machen CXXXVIII.
240.
- Stein, über das Talgspeisen ohne
Geruch CXXXVI. 225
- siehe auch Fettfärbung
- Steinbrecher, sie Steinbrecher.
- Steinbrücke, sie Steinbrücke.
- Steinbruch, sie Steinbruch.
- Steinbrecher, sie Steinbrecher.
Elektrische Telegraphen, elektrische Haubins Mecha-
nismus um die Einwirkung des Magneten auf seine Armatur zu regulieren

Telegraphen, elektrische, Haubins Mechanismus um die Einwirkung des Magneten auf seine Armatur zu regulieren

U.

--- Legierung zu den Compositionsteilen der Uhrmacher CXXXVI. 458.

Schulze's Zifferblätter aus Drachgewebe CXXXVII. 435.

Uebere Mechanismus mit gleitenden federartigen Stiften f. Taschenuhren CXXXVII. 343.

Ultramarin, stärkster, Darstellung von Walsblau mit bemehlen CXXXV. 464. CXXXVI. 467.

Uran, Verfahren den Arsenik davon zu trennen CXXXVI. 395.

B.

Vacuum-Apparat, f. Luftreiner und Lüfter.

Beutelt, f. Dampfexer, Dampfmaschinen und Pumpen.

Berzelius, f. Salvanoplats.

Bergwerk, f. Salvanoplats.

Bezirker, f. Salvanoplats.

Bieringer, f. Salvanoplats und Zinn.

B.

Waagen, über die oberflächlichen Tafelwaagen CXXXVII. 154.

Wärme, Steinseiden Verfahren zur Steigerung des vorweltlichen Wärmen erzeugtes jed. Brennmaterial CXXXVII. 349.

--- Mechanische Theorie derfelben, f. Motor.

--- f. auch Abbauapparat und Dosen.

--- Weiche, Vogels Wachsmarn CXXXVII. 96.

--- Künstliche Farbe zum Beizen der Wässer mittels eines Stempels CXXXVI. 235.

Wagenräder, f. Gisenbahnwagen.

Walzwerk, f. Eisen.

Wasserspanneter, f. über die Oberflächen der Neufäsil CXXXVI. 97.

Walsblau, f. Ultramarin.

Wassermaschinen, Johannsen und Bartenfelds Reinigungsmaschinen f. Wäsche nebst Trockenmaschine CXXXVI. 38. 42.
Bäderbrüche, tiefe Drainierung.
Bäderbäume, tiefe Dampfheizung.
Bädergefäße, tiefe Hefte, tiefe Sauren.
Bädergaben, tiefe Pumpe.
Bäderregen, tiefe Stationierung, tiefe Wascherei, tiefe Kiefer.
G. G. G. M. K. für CXXXVIII. 434.
G. G. M. K. für CXXXVII. 152.
G. G. M. K. für CXXXVII. 46.
J. G. M. K. für CXXXVII. 239.
J. G. M. K. für CXXXVII. 79.
J. G. M. K. für CXXXVII. 467.
J. G. M. K. für CXXXVII. 256.
J. G. M. K. für CXXXVII. 1582.
J. G. M. K. für CXXXVII. 32.
J. G. M. K. für CXXXVII. 151.
J. G. M. K. für CXXXVII. 458.
J. G. M. K. für CXXXVII. 385.
J. G. M. K. für CXXXVII. 150.
J. G. M. K. für CXXXVII. 172.
J. G. M. K. für CXXXVII. 437.
J. G. M. K. für CXXXVII. 430.
J. G. M. K. für CXXXVII. 460.
J. G. M. K. für CXXXVII. 239.
J. G. M. K. für CXXXVII. 385.
J. G. M. K. für CXXXVII. 196.
Achtung! Leidener Verfahren zur Gewinnung des Zinkaus seinen Grzen CXXXVIII. 275.
— Verfahren sein zertausen dargelassen CXXXVIII. 239.
— Zinkwasser, Milchz, Ammoniak, der Formulierung der Formulierung CXXXV. 267.
— Zinkweiss, Fabrikation des selben mittels des Zinksulfates CXXXV. 134.
— Zink über seine Verwendungskraft im Vergleich mit Weißweiss CXXXVII. 236.
— Zinn, Girards Verfahren des Guteisern zu verginmen CXXXVII. 124.
— Zinn davor, maßanalytische Bestimmung des Zinns CXXXV. 239.
— Zinnweiss, Verfahren dargestellt, gelinde, silberne, stählerne etc. Halseisen zu vollsten CXXXV. 462.
— Bogel's Darstellung feinster zum Kupferen CXXXVI. 318. 465.
— Binnöder, Karrachis über die Einwirkung des Kupfers und Weißgläs auf Binnöder CXXXVI. 183.
— Stein über seine Volatilisierung in Schwefel- säuren und ein Verwechsmittel auf seine Reinheit CXXXVIII. 300.
— Sehe auch Antimon.
— Rimmowr-Bation, Hasselv's Verfahren zu seiner Darstellung CXXXV. 216.
— Zücker, Dr. über den Prozentgehalt der Zuckersubstanzen bezüglich der Zuckersubstanzen CXXXVII. 214.
— Galss Neutralisationsverfahren bei der Fabrikation v. Früchtzucker CXXXVII. 239.
— Gladboden über die Wirkung des Zuckers auf Metalle CXXXVII. 78.
— Bigginsche Apparatur zum Abbau von Fett CXXXVII. 89.
— Leplaus Verfahren der Zuckersubstanzen bezüglich des Zuckers mit Schwefelsäure zu bewerken CXXXVII. 424.
— Ludwig über Umlegung der leisen Kupfer in Kupferzucker CXXXVII. 79.
— Zücker, Dr. über die Umlegung des Rohzuckers mittels reinen Wassers und über die Analyse der Sirupe CXXXV. 59.
— Zücker, Haarens Verfahren zur Fabrikation CXXXVIII. 320.
— Weber's Verfahren, um zahlreiche vegetabilische Substanzen zur Fraktionierung der Fabrikation verwenden zu lassen CXXXVIII. 426.
— Müller über Darstellung des Weißgläzes für die optische Zuckerraffine CXXXVIII. 302.
— Rittensperger, über Kupferzucker f. Weißweiss CXXXVII. 357.
— Kiesler's neues Verfahren der Fabrikation des selben aus Nüsse CXXXVII. 302.
— Rothe, Zücker- und Spirituosenfabrik in Kolow CXXXVIII. 75.
— Scheuers Centrifugalapparat zum Drucken und Trocknen des Zuckers CXXXVII. 95.
— Siemens über die neueren Vakuum-Apparate zur Zuckerraffinierung CXXXVII. 405.
— Einfaches Apparat zum Abbau der Zuckerlösungen CXXXV. 200.
— Walthöf's Apparat zur Wiederholung der Zuckersubstanzen CXXXVII. 389.
— Moiseus Muschelapparat zum Raffinen CXXXVII. 187.
— Sehe auch Kupferzucker.

Markus Regulator für die Gaslampen, chemischer I.

Fig. 1

Leitung

Gins elektrochemischer Schreibtelegraph für gleichzeitige Gegenreantwort auf einer Brähtleitung.

Fig. 4

Mechanismus zum Verdopplender rothenden Bewegung

Fig. 5

Kurton's Theneing

Fig. 6
Datum der Entleihung bitte hier einstempeln!