sei mittlere Proportionale zwischen y_1 und y_3 , dann ist für die vorliegende Kurve $\frac{1}{x_2^4} = \frac{1}{x_1^2} \cdot \frac{1}{x_3^2}$, also $x_2^2 = x_1$ x_3 , d. h. auch x_2 ist

mittlere Proportionale zwischen x_1 und x_3 . Folglich:

Bilden $x_1, x_2, x_3, x_4, \ldots$ eine geometrische Reihe, so bilden auch die zugehörigen Ordinaten $y_1, y_2, y_3, y_4, \ldots$

eine geometrische Reihe.

Dies ist eine sämtlichen Parabeln höherer Ordnung $y = x^p$ gemeinsame Eigenschaft; demnach gilt die jetzt zu gebende Konstruktion nicht nur für die Gravitationskurve, sondern z. B. auch für die gleichseitige Hyperbel, für die adiabatischen Curven (bei Luft und Wasserdämpfen) u. s. w., wie es im dritten Bande meines method. Lehrbuchs der Elementarmathematik von Seite 162 ab gezeigt und an Beispielen erläutert ist, wobei es sich namentlich um die theoretische Leistungsfähigkeit der Dampfmaschinen u. s. w. handelt.

Daraus erfolgt die Lösbarkeit der

Aufgabe. Aus zwei demselben Quadranten angehörigen, Punkten A_1 und A_2 der Curve $y = \frac{1}{x^2}$ (allgemein $y = cx^p$) beliebig viele ihrer Punkte zu konstruieren.

Auflösung. Man lege durch O eine beliebige Gerade OF, die im vierten Quadranten liegt. Die Ordinaten von A_1 und A_2 geben als Projektionen die Punkte B_1 und B_2 auf der X-Achse und durch Verlängerung der Lote C_1 und C_2 auf der Hilfslinie. Man ziehe C_1B_2 und Parallele dazu durch B_1 und C_3 , was C_0 und B_3 giebt. Im Zickzack fährt man fort mit der Senkrechten B_3C_3 , der Parallelen C_3B_4 u. s. w. nach rechts, mit der Senkrechten C_0B_0 , der Parallelen B_0C_{-1} u. s. w. nach links. Dann folgen die Punkte

$$\dots, B_{-3}, B_{-2}, B_{-1}, B_{0}, B_{1}, B_{2}, B_{3}, B_{4}, \dots$$

in geometrischer Reihe aufeinander. (Vergl. Fig. 2.)

Die zugehörigen Ordinaten findet man mit Hilfe einer beliebigen Geraden OH im zweiten Quadranten auf ganz demselben Wege, was die Punkte

...,
$$D_{-3}$$
, D_{-2} , D_{-1} , D_0 , D_1 , D_2 , D_3 ,

giebt. Die zusammengehörigen Ordinaten und Abscissen geben die Curvenpunkte*)

$$\dots, A_{-3}, A_{-2}, A_{-1}, A_0, A_1, A_2, A_3, \dots$$

26*

^{*)} Diese Art des Konstruierens ist bei den Technikern beliebt, da die Konstruktion durch einfaches Verschieben des Winkelhakens auf der Reißsschiene erfolgt. Es sei bemerkt, daß, wenn man auf der einen Achse wie oben verfährt, auf der andern aber gleiche Abstände abträgt, eine logarithmische Linie entsteht.